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Abstract

This paper introduces a novel framework for performing ma-
chine learning on longitudinal neuroimaging datasets. These
datasets are characterized by their size, particularly their
width (millions of features per data input). Specifically, we
address the problem of detecting subtle, short-term changes
in neural structure that are indicative of cognitive change and
correlate with risk factors for Alzheimer’s disease. We intro-
duce a new spatially-sensitive kernel that allows us to rea-
son about individuals, as opposed to populations. In doing so,
this paper presents the first evidence demonstrating that very
small changes in white matter structure over a two year period
can predict change in cognitive function in healthy adults.

1 Introduction
This paper introduces a framework for analyzing longitudi-
nal neuroimaging datasets. We address the problem of de-
tecting subtle changes in neural structure that are indica-
tive of cognitive decline and correlate with risk factors for
Alzheimer’s disease (AD). AD is a form of dementia affect-
ing memory and executive function afflicting over 18 million
worldwide. This number is projected to rise manifold to over
70 million by 2050 and cost trillions of dollars in healthcare.

The problem of identifying neural changes that corre-
spond to age and cognitive decline is one that will benefit
from a machine learning methodology tailored to its spe-
cific needs. Previous approaches to the problem of analyz-
ing neural change have focused on separating populations
with different risk factors based on gross changes, such as
regional gray matter atrophy (Misra, Fan, and Davatzikos
2009; Smith et al. 2002) or statistical voxel-based compar-
isons (Le Bihan et al. 2001; Dyrba et al. 2012). In contrast,
we introduce a new spatially-sensitive kernel that allows us
to characterize individuals, as opposed to populations. We
use this for both classification and regression, e.g., to predict
changes in a participant’s cognitive test scores over time us-
ing neuroimaging data alone. This is a difficult problem and
in solving this, we have been able to identify neural regions
that are implicated in cognitive performance and change
over time. More generally, our approach introduces a simple
paradigm for addressing wide-data longitudinal problems. It
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is not specific to neuroimage analysis and shares a number
of properties that are representative of this class of problem,
which arises often in medical and related domains. These
properties include:

1. The datasets are wide – they have many more features (p)
than they do samples (N ). For example in an MRI study,
we may gather O(1e6) voxels for each of 100 patients.
Similarly, a genome-wide association study may have
500,000 single nucleotide polymorphisms (SNPs) mea-
sured over a similar number of patients. Because p� N ,
linear models are often the tool of choice due to their
speed and low variance. However, these models are also
often extremely sparse, as described next.

2. Longitudinal studies track changes over time, with the
goal of correlating significant features with some outcome
or effect. Naturally occurring variations across features
can mask these correlations. For example in medical stud-
ies based on neuroimaging, most neural variation is non-
pathological and unrelated to the study outcome. The de-
sired model is therefore often extremely sparse but identi-
fying significant features may be difficult due to the next
issue.

3. We often lack ground truth to validate results. Consider
the problem of determining whether healthy participants
tracked over time are expected to develop some condition,
such as AD. Given the subjects are currently healthy, even
if issues (1) and (2) could be ignored, we have few ways
to validate any constructed models. Instead, results are of-
ten presented as hypothesis tests that distinguish popula-
tions, e.g., those with a family history of the disease from
control groups. Predictions about specific individuals are
therefore elusive, outside of summary statistics for popu-
lations of which they are members.

4. It is increasingly common to track longitudinal changes
over very short periods of time. In human neuroimag-
ing, this interval has become as short as three months
(ADNI). One may ask if there is even a ”signal” to find
here. How do we know if there is anything meaningful to
detect? This is exacerbated when the sampling time frame
is much shorter than the onset time of observable phenom-
ena we would like to predict.
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1.1 Framework
Our approach will begin with a ”simple” classification prob-
lem. For longitudinal data, one instance of ground truth is
the chronological order in which the datasets were collected.
Thus, a natural question is: can we determine this order
for a given individual? Solving this problem allows us to
identify and rank the most temporally significant (longitudi-
nally) and consistent (cross-sectionally) voxels in our data.
We hypothesize that these voxels correlate with other tem-
porally sensitive data, such as cognitive test scores. In con-
firming this hypothesis using the novel computational meth-
ods in Section 3 for the experiments in Section 4, we present
the first evidence demonstrating that very small changes in
white matter structure over a two year period can predict
change in cognitive function in healthy adults.

2 Background and Data
The analysis in this paper focuses on the white matter (WM)
regions of the brain. Much previous research on Alzheimer’s
disease has focused on gray matter; white matter has his-
torically been regarded as less relevant to cognition. In re-
cent years, however, the role of white matter in the trans-
fer of information has attracted vigorous interest (Ziegler
et al. 2010). Data examined here come from the Merit220
and PREDICT cohorts provided by the Wisconsin Registry
for Alzheimer’s Prevention (Sager, Hermann, and La Rue
2005). Longitudinal imaging and cognitive testing data were
available for 75 subjects, who were healthy and middle-aged
(ranging from ages 45 to 70). All tested cognitively nor-
mal on neuropsychological assays. A significant percentage
(78%) of subjects showed one or more risk factors for AD.

Imaging data consisted of measurements of white matter
microstructure obtained through diffusion tensor magnetic
resonance imaging (DT-MRI, or DTI). Specifically, we use a
summary measure at each voxel called fractional anisotropy
(FA). FA is a scalar measure of the directional coherence
of water diffusion that reflects tissue microstructure, and
is particularly sensitive to white matter organization in the
brain (Basser and Pierpaoli 1996).

Each subject additionally provided extensive demo-
graphic information. The subjects were also genotyped to
determine the presence of the apolipoprotein E (APOE) ε4
allele, which is the strongest genetic risk factor for late on-
set Alzheimer’s disease and is associated with earlier age of
onset compared to other forms (Corder et al. 1993). In the
experiment detailed in Section 4.2 we examine whether the
presence or absence of this allele leads to a difference in the
way WM changes over time.

2.1 Neuropsychological Tests
All participants underwent comprehensive neuropsycholog-
ical testing. Cognitive factor scores were derived from a fac-
tor analytic study of the WRAP neuropsychological battery
and adapted from work published by Dowling et al. (Dowl-
ing et al. 2010). Based on prior studies showing a strong
relationship between indicators of white matter health and
processing speed, the factor score chosen for our experiment
was the Speed and Flexibility factor, a composite measure

based on the interference trial from the Stroop Test (Tren-
erry et al. 1989), and Trail Making Test A and B (Reitan and
Wolfson 2009).

Preprocessing Raw scan data was processed and non-
linearly registered to a template image in standard MNI152
space using Tract-Based Spatial Statistics (TBSS) (Smith et
al. 2006). Each scan underwent identical preprocessing.

Using the white matter atlas from the Johns’ Hopkins
University DTI research group (Oishi et al. 2008), we ex-
tracted the voxels corresponding to the corpus callosum, su-
perior longitudinal fasciculus, fornix, and cingulum bundle.
These regions were chosen based on their vulnerability to
Alzheimer’s disease (Di Paola et al. 2010; Benitez et al.
2014; Canu et al. 2013). The sizes of these regions range
from hundreds to over 20,000 voxels.

Figure 1 illustrates the location and shape of the corpus
callosum and details its splenium (back), which is a region
known to show significant changes both is healthy aging and
AD.

3 A Point Set Approach
In many classification problems, data are often abstracted
into a representation, e.g., a vector, that fails to retain their
spatial information. This is common with many methods in
machine learning. However, given the inherent spatial nature
of the voxel data, incorporating the voxel locations into our
analysis seemed reasonable. This view has received much
scrutiny in clustering (Coen, Ansari, and Fillmore 2010),
where set theoretic measures of similarity cannot capture
subtle changes in the spatial distribution of data. Rather
than serialize the voxels of a brain or region into one vec-
tor and lose their locations, we represent them as a point set
B = (V,W ) where V ⊂ R3 is the set of positions of the
voxels, W ⊂ R and every point vi in V has a corresponding
weight wi in W . Weights wi correspond to FA values here.

3.1 Comparison of Point Sets
To work with point set representations, we need a way of
measuring the similarity or dissimilarity between different
point sets. We compare DTI scans by defining a custom dis-
tance between their respective voxel sets. This distance is
not a simple point-to-point distance; rather it is between two
point sets. For a more detailed analysis of related approaches
to this problem, including Pyramid Match Kernel (Grau-
man and Darrell 2007) and Similarity Distance, see (Coen,
Ansari, and Fillmore 2011).
Random Fourier Features These were introduced to trans-
form data into a form where linear operations can ap-
proximately simulate kernel evaluations (Rahimi and Recht
2007). In this work, a map Φ̃ (the “lifting” function) is ap-
plied to each d-dimensional data point in Rd, transforming it
into an element of RD, a D-dimensional approximation of a
reproducing kernel Hilbert space (RKHS). This mapping is
randomized and similarity-preserving; a shift-invariant ker-
nel in the original space is approximately equal to the inner
product in the new space, where the approximation can be
made as precise as possible by varying the dimensionality
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Figure 1: (a) The blue outer mesh is a 3-D view of a representation of the surface of the human brain. The red inner mesh
outlines the corpus callosum. (b) A view of the corpus callosum in isolation. The corpus callosum is a thick band of nerve fibers
that connects the left and right hemispheres of the brain. (c) A view of the splenium of the corpus callosum, which contains
over 12,000 voxels. The splenium of the corpus callosum carries fibers that connect the bilateral temporal, parietal and occipital
lobes.

(D) of the lifted space. For the kernelK(x,y) = e−
‖x−y‖2

2 ,
the approximate lifting map Φ̂D : Rd → RD is defined as
follows: Φ̂(x) =

[cos(ω1x), . . . , cos(ωD/2x), sin(ω1x), . . . , sin(ωD/2x)]

for x ∈ Rd where elements of ωi’s are drawn i.i.d from
a standard normal distribution and

〈Φ̂(x), Φ̂(y)〉 ' K(x,y) = e−
‖x−y‖2

2 for any x,y ∈ Rd

Raman et al. (Raman, Phillips, and Venkatasubramanian
2011) applied this approximate lifting map in represent-
ing point sets as elements of an RKHS. The map is ap-
plied to each point in a point set, and the whole set is
then represented as a single vector by summing the lifted
representations of the constituent points. The summed vec-
tor is normalized to unit length to eliminate differences
caused by differing set cardinalities. The similarity between
two point sets X and Y is defined as the dot product be-
tween the vectors representing them. We extend this formu-
lation of point set similarity to incorporate weights for each
point, so that the final expression for similarity between two
point sets X = (VX ,WX) and Y = (VY ,WY ) becomes

〈 Φ̂(X)

‖Φ̂(X)‖
,

Φ̂(Y )

‖Φ̂(Y )‖
, where Φ̂(X) =

∑
vi∈VX

wiΦ̂(vi). For a

visual demonstration of lifting in a toy example, see Fig-
ure 2.

Given the large number of available voxels in our
neuroimaging data, we combined longitudinal and cross-
sectional data to identify those that had comparatively large,
consistent, and similar values in all difference images corre-
sponding to a class. Our hypothesis is that the voxels that
change similarly in all subjects (cross-sectionally) across
time (longitudinally) are the ones most sensitive to temporal
ordering. Towards this, we define a “Q-value” for each voxel
as follows:

Q(vi) =
mean(FA1

i − FA2
i )

var(FA1
i − FA2

i )
(1)

where FA1
i is the FA value at voxel i at time 1, FA2

i the
value at time 2, and mean and variance are computed cross-
sectionally over all subjects.

Figure 2: This figure provides an illustration of the “lift” op-
eration described in Section 3.1. The three clusters of points
in the original two-dimensional space (colored blue, red, and
green respectively) are transformed into singular points in
a much higher D-dimensional space. An approximation of
their relative positions in a two-dimensional projection is
shown on the right hand side of the figure. Notice that the
“distance” relationships between the clusters on the left are
preserved in the new space, in that blue is closer to red than
green which is furthest from the others.

We also define an additional quantity called CONSIS-
TENCY (CONS) for a voxel as follows:

POSi =
1

#subjects

∑
subjects

{FA1
i − FA2

i > 0} (2)

CONSi = max(POSi, 1− POSi) (3)

Note that POS is defined as a sum of indicator functions.
CONSISTENCY in a voxel measures the percentage of sub-
jects who show the same sign change in that voxel from time
1 to time 2.

For a point set R = (V,W ) (such as those corresponding
to a WM region), we define ∆R = (V,∆W ) where ∆W
is the change in FA from time 1 to time 2. We set thresh-
olds on Q and CONS to identify subsets of ”informative”
voxels ∆R̂Q(τ) = (V̂Q(τ),∆ŴQ(τ)) and ∆R̂CONS(τ) =

(V̂CONS(τ),∆ŴCONS(τ)) where:
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Figure 3: Two axial slices from DTI scans of the same partic-
ipant taken approximately two years apart. In our first task,
we treated the order of the scans as unknown and proceeded
to use data from 75 subjects to predict the order. The images
shown here are slices from the full three-dimensional scan.
The analysis is performed on the full scans.

V̂Q(τQ) = {vi|vi ∈ V,Q(vi) > τQ} and (4)

∆ŴQ(τQ) = {wi s.t. vi ∈ V̂Q(τQ)} (5)

V̂CONS(τC) = {vi|vi ∈ V,CONS(vi) > τC} and (6)

∆ŴCONS(τC) = {wi s.t. vi ∈ V̂CONS(τC)} (7)

4 Experiments & Analysis
We present three experiments conducted on the data set in
Section 2.1. These demonstrate application of our frame-
work to detecting minute, short-term changes in WM struc-
ture and relating them to changes in cognitive test scores and
genetic biomarkers.

4.1 Before vs. After

Our goal is to determine the temporal ordering in pairs of
scans for an individual. Given two scans, which was taken
earlier? (see Figure 3 for an example) Our approach is to
exploit voxels that undergo changes that are consistent and
similar across subjects. This problem is challenging for sev-
eral reasons: 1) The time period between scans is extremely
short (1.5-2 years) and the subtle changes in the scans are
believed to be largely unrelated to cognition; 2) All subjects
are healthy and middle-aged and do not exhibit any pathol-
ogy; 3) Domain experts in neuroscience and radiology we
have tested are unable to solve this problem for healthy pa-
tients better than chance.

Experimental Setup For each of the 75 subjects, we con-
struct two “difference” images. The first subtracts the lat-
ter image from the earlier one (the “positive difference im-
age”), and the second by reverses the order of subtraction
(the “negative difference image”). This is done so that when
given two new images from a single subject with no order-
ing information, we perform the subtraction in an arbitrary
manner and compute to which set of difference images this
new difference image is more “similar,” using the kernel in
Section 3.1.

Region |∆V̂CONS| Accuracy
RFF SD

C. Callosum (whole) 3429 voxels 96% 86.7%
C. Callosum (splenium) 463 voxels 97.3% 90.7%
C. Callosum (genu) 364 voxels 90.7% 86.7%
Cingulum bundle 776 voxels 97.3% 89.3%

Table 1: Classification results for predicting the before im-
age from the later image using four different WM regions.
τ was fixed at 0.7 for all experiments, and the number of
voxels reported is the mean cardinality of the set |∆V̂CONS|
across the different folds in each experiment. Accuracies
are reported for two different point set comparison tech-
niques: Random Fourier features (RFF) and Similarity Dis-
tance (SD) (see Section 3.1.)

Baseline Since there are an equal number of positive and
negative difference images, the baseline accuracy for this ex-
periment is 50%. We applied two classification methods for
comparisons with our method.
Region-wide means. A standard approach for characteriz-
ing images is to compare mean FA values over a whole WM
region across one time point. The classification rule “the im-
age with the higher mean is the earlier image” achieves an
accuracy rate of 57% on the splenium of the corpus callosum
- little better than random chance. The reason for this is that
not all voxels show a decrease in FA value over time; in fact
some voxels show an increase. Change in one direction off-
sets change in the other direction, leading to a low accuracy.
This insight leads us to the next baseline method.
Sign-weighted voxel means. The sign of Q indicates
whether the voxel saw an overall increase or decrease in its
value over all subjects. As in the earlier method, we compute
the mean FA value within a region, but this time weighted by
the sign of Q for that voxel. Applying the same classifica-
tion rule yields an accuracy of 82% for the same region. All
12,729 voxels in the region are required to achieve this ac-
curacy.

Classification & Accuracy We trained a support vector
machine (SVM) with kernels derived from Random Fourier
Features (Section 3.1) and Similarity Distance (Coen,
Ansari, and Fillmore 2011) to classify “positive” and “nega-
tive” difference images. Accuracy was determined with ten-
fold cross validation. CONS and voxel selection were re-
calculated per fold in order to prevent any information leak-
age from the test set during training. τ was chosen via a
beam search. The effect on accuracy was negligible within a
range between 0.65 and 0.75 for CONS. The 10-fold cross-
validation accuracy in predicting “before” scans from “af-
ter” scans (i.e. “positive” difference images from “negative”
difference images) is shown for different WM regions in Ta-
ble 1. As the table shows, approximately 450 well-chosen
voxels in the splenium are sufficient to achieve a classifica-
tion accuracy of 96%.

Identification of Regions of Consistent Cross-Sectional
Change The hypothesis of this experiment was that there
exist voxels that undergo consistent and similar changes
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Figure 4: This figure illustrates the portions of the splenium
of the corpus callosum that contain voxels with high CONS
value. Red voxels indicate a consistent increase in FA value
across subjects, while blue represents a consistent decrease.

across subjects, and identification of these voxels would help
in characterizing cross-sectional FA change. The experimen-
tal results in the previous section show that this hypothesis
holds. We now pinpoint those voxels and visualize them in
the context of the WM region they belong to. Voxels can be
distinguished based on whether they show an upward trend
in FA value or a downward trend. Figure 4 shows that vox-
els tend to be spatially proximal to other voxels of the same
type. We note that this naturally-occurring “clustering” of
nearby voxels with similar trends is readily apparent even
when no smoothing is applied to the data. Further study of
these regions and the trends within them will be useful in
understanding patterns of age-related change in FA. Of par-
ticular interest are the correlations between FA changes, de-
myelination, and cognitive impairment, as discussed in Sec-
tion 5.

4.2 APOE Status Classification
We now wish to apply the framework developed above to
a different problem, one with higher clinical relevance: is
there a difference in the way that WM changes in subjects
with different APOE (see Section 2) genotypes? Prior stud-
ies have established that subjects with the ε4 allele are at
higher risk for developing AD (Corder et al. 1993). We at-
tempt to answer this question by predicting the APOE ε4
status (i.e. the presence (APOE +ve) or absence (APOE -
ve) of this allele) based on the changes in FA values. This
experiment is similar to the previous one. Rather than have
two sets of positive and negative difference images, we take
just one (positive difference images) and group them by the
APOE ε4 status of the subjects they correspond to. We trans-
form these images into point sets and apply a slightly differ-
ent voxel selection scheme than before (because the task is
different): within each group we identify the voxels that ex-
hibit increases and decreases most consistently, and take the
union across both groups:

∆R̂CONS(τ) = ∆
ApoE -ve

R̂CONS(τ) ∪ ∆
ApoE +ve

R̂CONS(τ)

We use the kernel defined in Section 3.1 in an SVM to dif-
ferentiate between these two classes of point sets. The base-
line accuracy for this experiment is 62.7%, since 47 out of
75 subjects are APOE ε4 negative. The best cross-validated

accuracy of 76% was obtained using the whole body of the
corpus callosum, with τ = 0.63 (corresponding to approxi-
mately 600 voxels).

4.3 Regression

We would like to model changes in subjects’ neuropsycho-
logical test scores using FA differences observed over time.
Even employing the Q score defined above to prune the
space of voxels, it remains the case that p > N . Fitting
multivariate linear models in this case cannot be done with-
out constraints. Common approaches that limit model explo-
ration including stepwise, best-subset, lasso, and ridge re-
gression. The latter two are often combined via elastic net
regularization. There are many ways to validate these mod-
els including: using adjusted R2 values, cross-validation,
hold out sets, and checking the distributions of the residuals.
However, with a limited number of samples N , evaluating
the assessments themselves is difficult. None of the differ-
ences between earlier and later test scores is statistically sig-
nificant according to paired t-tests adjusted for inequality of
variances. Scatterplots of earlier vs. later test scores fit lines
of slope 1 with relatively high R2. In these cases, even null
models perform well.

While most of the study’s cognitive tests had negative ad-
justed R2 values when fit to linear models using the high
Q voxels from Section 4.1, the Speed and Flexibility score
(§ 2.1) yielded an adjusted R2 of almost .4. ANOVA analy-
sis revealed wide levels of variability within the model, sug-
gesting that while Q is useful for ”screening” informative
voxels, it may not be sufficient for model feature selection.

To better manage the need for constrained variable se-
lection with wide data, we used the coordinate descent ap-
proach for lasso and ridge in (Friedman, Hastie, and Tib-
shirani 2010). To make the results easier to interpret, we
modified our approach to perform logistic regression on the
signs of the test score changes, viewed as binomial distribu-
tions. This normalizes the error penalty and allows us to pose
a well-defined problem: Can changes in neuroimaging data
predict whether a subject’s score for some neuropsychologi-
cal test has increased or decreased? One might suppose that
cognitive abilities uniformly deteriorate monotonically with
age. However, evidence does not bear this out, as discussed
in Section 5.

Lasso logistic regression via coordinate descent run 100
times with 10-fold cross validation achieved a classification
accuracy of 70% with shrinkage parameter λ = .011, which
corresponds to the λ within one standard error of the min-
imum. Results for this and other methods are shown in Ta-
ble 2.

These results are quite surprising. Although achieving
70% accuracy seems a modest achievement, consider that
this prediction is made using voxel-based neuroimaging data
selected because they were able to accurately answer our ini-
tial ”Which image came first?” question. Within their own
representation, the outcome data do not appear separable.
But when viewing them from the neuroimaging perspective,
we can classify them.
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Method Parameters Accuracy
Lasso logistic regression λ = .011 70%

(Friedman et al. 2010)
SVM, Lifted kernel 2D = 500, C = 1 58%
SVM, Gaussian kernel σ = 1, C = 1 57%
Baseline Random Guessing 54%

Table 2: Classification results for predicting Speed and Flex-
ibility from voxels

Figure 5: A view of voxels clustered by Q values. Colors
correspond to different clusters.

4.4 Clustering
In general, we prefer as few explanatory variables in a model
as possible. Wide linear models always raise the specter of
overfitting and are notoriously difficult to interpret, partic-
ularly when constructed with lasso. E.g., one cannot deter-
mine the significance of variables by the magnitude of their
coefficients. Following on the spatial point set approach in
Section 3, we cluster the voxels based on spatial proxim-
ity and their Q values. Simple linkage-based clustering con-
nects voxels with their neighbors if theirQ values are within
ρ percent of each other. We typically take ρ = 15 and spec-
ify the maximum number of desired clusters as 30. Emerg-
ing from the clustering was the observation that spatially ad-
jacent voxels are likely to have similar Q values. Figure 5
shows regions corresponding to clustered voxels.

Because the clusters are internally consistent with respect
to Q values, we used their mean FA values in a ridge logis-
tic regression analysis to predict the sign of the change in the
Speed and Flexibility score. We are no longer dealing with
wide data since the number of regions p = 30 here. While
one might imagine the clustering process is lossy, the clus-
ters are better predictors than the voxels used in the previous
model. Ridge logistic regression via coordinate descent run
100 times with 10-fold cross validation achieved a classifi-
cation accuracy of 75% for shrinking parameter λ = 0.13, as
chosen above. Results for this and other methods are shown
in Table 3. No significant improvement was seen for other
parameters on competing approaches.

5 Discussion
This paper presents a new approach for longitudinal analy-
sis of neuroimaging data. From a computational perspective,
our approach relies on the spatial nature of the data both
for defining a new kernel and for clustering voxels based on
their perceived quality orQ value. We demonstrated this ker-

Method Parameters Accuracy
Ridge logistic regression λ = .013 75%

(Friedman et al. 2010)
SVM, Lifted kernel 2D = 500, C = 1 55.7%
SVM, Gaussian kernel σ = 1, C = 1 58.5%
Baseline Random Guessing 54%

Table 3: Classification results for predicting Speed and Flex-
ibility from 30 clusters of voxels

nel can be used to reliably classify longitudinal neuroimages
based on small changes in their white matter structure. We
then used the voxels that enabled this classification to pre-
dict changes in the significant cognitive factor of Speed and
Flexibility, a cognitive function known to be tightly associ-
ated with white matter health. While a relationship between
speed based cognitive tests and white matter microstructure
has been qualitatively examined in cross-sectional studies,
this is the first work to determine that change in FA over
two years can predict change in cognitive function in healthy
adults.

From a neuroscience perspective, this work found that
over time, portions of the splenium show a decrease in FA
between time points separated by 2 years. While this was ex-
pected due to aging, more unexpected were the portions of
white matter tracts that showed FA increase (the red regions
of Figure 4.) The splenium of the corpus callosum carries
fibers that connect the bilateral temporal, parietal and oc-
cipital lobes. While occipital brain regions do not show high
levels of change with age, the temporal and to a lesser extent
parietal cortices do change with age. Studies on frontal cor-
tex WM in rhesus macaques indicate that age is associated
with loss of nerve fibers but that this degenerative process
may be accompanied by continued myelination (Bowley et
al. 2010). It is possible that changes occurring over time in-
clude both loss of fibers and regenerative myelination. How-
ever, in the absence of post-mortem pathological findings,
this interpretation is speculative. Another possibility is that
our findings reflect the continued myelination that occurs in
aging. Visuo-motor skill training in young adults has been
shown to increase FA over time (Scholz et al. 2009), and
Lövdén et al have shown that experience-dependent changes
in FA occur even in older age (Lövdén et al. 2010).

It is possible that we are capturing patterns of white matter
change that are not necessarily related to a degenerative ef-
fect of time, rather, the effect may reflect continued plastic-
ity in the brain. This is underscored by the tight relationship
found with the Speed and Flexibility factor score. Because
speed of neural conduction relies on intact myelin, it is not
surprising that cognitive speed of processing is linked with
white matter health.
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