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Abstract

Sensitive data such as medical records and business reports
usually contains valuable information that can be used to
build prediction models. However, designing learning mod-
els by directly using sensitive data might result in severe pri-
vacy and copyright issues. In this paper, we propose a novel
matrix completion based framework that aims to tackle two
challenging issues simultaneously: i) handling missing and
noisy sensitive data, and ii) preserving the privacy of the sen-
sitive data during the learning process. In particular, the pro-
posed framework is able to mask the sensitive data while en-
suring that the transformed data are still usable for training
regression models. We show that two key properties, namely
model preserving and privacy preserving, are satisfied by
the transformed data obtained from the proposed framework.
In model preserving, we guarantee that the linear regression
model built from the masked data approximates the regres-
sion model learned from the original data in a perfect way. In
privacy preserving, we ensure that the original sensitive data
cannot be recovered since the transformation procedure is ir-
reversible. Given these two characteristics, the transformed
data can be safely released to any learners for designing pre-
diction models without revealing any private content. Our
empirical studies with a synthesized dataset and multiple sen-
sitive benchmark datasets verify our theoretical claim as well
as the effectiveness of the proposed framework.

Introduction
Regression analysis is an important task that has found
numerous applications in economics (Dielman 2001; Wu
and Tseng 2002), politics (Black and Black 1973; Kousser
1973), health care (Bland and others 2000; Ryan and Farrar
2000), and social sciences (Ron 2002; Stevens 2009). Most
of the studies under this topic focus on the learnability of the
regression model but overlook the critical privacy protection
issue. Note that many data, such as medical records, voting
statistics and business reports, contains sensitive informa-
tion, directly sharing them between the owner and learner
may result in severe privacy concerns.

To address this issue, an initial thought is to make the
data anonymous or perturb the sensitive information in the
data. However, these methods cannot really protect the pri-
vacy. (Sweeney 1997) points out that more than 87% of
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American citizens can be uniquely identified by just observ-
ing their gender, ZIP code and birthdate. Also, in the well-
known Netflix Prize, although the released Netflix movie
rating data has been perturbed, (Narayanan and Shmatikov
2008) shows that it is possible to identify users of the Net-
flix data by linking them to IMDB dataset. An alternative
approach to protect the privacy of sensitive information is
to mask the sensitive data by either adding (Vaidya and
Clifton 2004; Yu, Vaidya, and Jiang 2006; Gambs, Kégl,
and Aı̈meur 2007), or multiplying (Chen and Liu 2005;
Liu, Kargupta, and Ryan 2006) a randomized matrix. How-
ever, there is always a trade-off between the utility and the
privacy of the sensitive data. After introducing a sufficient
amount of noises to the sensitive data, it has no guarantee
that the regression model learned by the distorted data is the
same as the regression model built using the original sen-
sitive data. More importantly, information in sensitive data
can be usually missing or noisy. For example, in health in-
vestigations, the reasons of missing data can be summarized
as inappropriate study designs, equipment failure, side ef-
fects associated with the treatment, or even law issues (He
2010).

In this work, we aim to address these limitations by devel-
oping a novel learning-based framework that aims to learn a
transformation from n sensitive data points to m (m 6= n)
masked data points. Meanwhile, the proposed framework is
able to address the following two problems: i) missing data,
where a large number of features and responses in sensi-
tive data are missing, and ii) noisy data, where sensitive data
contains noises or outliers.

In our analysis, we show that the proposed framework en-
sures the following two key properties:

• Model preserving, with which we guarantee that the re-
gression model learned from the masked data is the same
as the regression model learned from the completed and
denoised sensitive data;

• Privacy preserving, with which we ensure that sensitive
data cannot be reliably recovered even when both the
masked data and the learning algorithm are known.

Given these two characteristics, data owners can safely re-
lease the masked data to learners then directly applies the
learned linear regression model to perform regression anal-
ysis on the original sensitive data.
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The core of the proposed framework is based on the the-
ory of matrix completion (Candès and Tao 2010). In order
to ensure that the regression model built by the masked data
Zm is the same as the regression model learned from the
sensitive data Zs, we aim to ensure its sufficient condition,
i.e., the columns of Zm lie in the subspace spanned by the
columns of sensitive data Zs. By assuming that the denoised
sensitive data matrix is low-rank, a commonly used assump-
tion in data analysis, we show that the combination of the
sensitive data and the masked data should also be of low-
rank. This enables us to cast the data masking problem into
a problem of matrix completion. Moreover, to handle the
missing values and noises in the sensitive data, we formu-
late a cost function in the form of squared loss. Through
minimizing this loss under the nuclear norm regularization,
we are able to simultaneously remove the noises from the
sensitive data and learn optimal features/responses for the
masked data. In addition, with the theory of matrix com-
pletion, we show that the original sensitive data cannot be
recovered from the masked data. The proposed framework,
to the best of our knowledge, is the first one that satisfies
the properties of model preserving and privacy preserving
simultaneously.

Related work
In this section, we review the existing work on privacy-
preserving data mining and differential privacy.

One important topic to protect the sensitive information
during the procedures of data analysis is privacy-preserving
data mining (Aggarwal and Yu 2008). To do so, the own-
ers of sensitive data usually provide modified or perturbed
data entries to prevent the leaking of privacy informa-
tion. In additive perturbation (Vaidya and Clifton 2004;
Yu, Vaidya, and Jiang 2006; Gambs, Kégl, and Aı̈meur
2007), a noise component drawn from some distributions is
added to the data in order to mask the sensitive informa-
tion. Usually, the added noise should be sufficiently large
so that individual records cannot be recovered. Then some
data mining techniques are developed to work with the ag-
gregated distributions derived from the perturbed records.
Additive perturbation is not suitable for high-dimensional
data since the density estimation becomes increasingly in-
accurate when the dimensionality of data is large than
10 (Aggarwal and Yu 2008). In contrast to additive per-
turbation, multiplicative perturbation (Chen and Liu 2005;
Liu, Kargupta, and Ryan 2006) masks the sensitive informa-
tion by multiplying a randomized matrix such that the dis-
tances between different data after perturbation are approx-
imately preserved. Then a set of “transformation-invariant
data mining models” can be applied to the perturbed data
directly. However, multiplicative perturbations are not en-
tirely safe from adversarial attacks because it was threat-
ened by the two kinds of attacks “known input-output at-
tack” and “known sample attack” (Aggarwal and Yu 2008).
Other privacy-preserving data mining schemes (Verykios et
al. 2004; Aggarwal and Yu 2008) include blocking the sen-
sitive data entries, k-anonymity, combining several values
into a coarser category, interchanging values of individual
records, and releasing a sample of entire database. However,

none of them is designed to preserve the regression models.
Differential privacy (Dwork 2006) is a new privacy stan-

dard that has attracted considerable attention in recent years.
It provides formal privacy guarantees that do not depend on
an adversary’s background knowledge. As shown in (Hardt
and Roth 2013), in order to preserve the data privacy, the
added noise of any differentially private algorithms must
scale polynomially with the dimensionality of the sensitive
data. This indicates that the noisy terms can easily over-
whelm the signals when data is relatively high-dimensional,
thus significantly hurt the performance of regression.

Privacy and Regression Model Preserved
Learning by Matrix Completion

In this section, we first present the problem statement and
a general framework of privacy and regression model pre-
served learning. We then introduce the proposed algorithm
for learning masked data when sensitive data is either fully-
observed or only partially-observed. Finally, we present the
analysis regarding the properties of model preserving and
privacy preserving.

Problem Definition and Framework

Let S = {S1, . . . , Sn} be the set of n sensitive records,
and let X = (x1, . . . ,xn) ∈ R(d+1)×n be a matrix where
its first d rows are the features of the n sensitive records
and its last row is a vector of all 1s. We introduce the
last row in order to capture the bias term of the regres-
sion model. Following (Goldberg et al. 2010; Cabral et al.
2011), we assume that X is generated as follows: it starts
from a (d + 1) × n low-rank “pre”-feature matrix X0 with
rank(X0) � min(d + 1, n), then the actual feature matrix
X is generated by adding a Gaussian noise matrix EX to X0

such that |EX = X −X0|F is small. The logic behind the
low-rank assumption is that, generally speaking, only a few
factors can contribute to value changes of the sensitive data.
Meanwhile, let Y = (y1, . . . ,yn) ∈ Rt×n be the responses
matrix with tmultivariate measurements. We then define the
soft responses Y0 = (y0

1, . . . ,y
0
n) as Y0 = WX0, where

W ∈ Rt×(d+1) is the underlying linear regression model.
Both X0 and Y0 can be viewed as the denoised features
and responses for the sensitive data. Then the problem of
learning the regression model of sensitive data is essentially
equivalent to learning the regression model of X0 and Y0.

To preserve both the privacy and regression model of sen-
sitive data, we propose to compute a new feature matrix
A ∈ R(d+1)×m and a new response matrix B ∈ Rt×m such
that (i) the linear regression model learned from A and B is
the same as the model learned from X0 and Y0, and (ii) X0

and Y0 cannot be accurately recovered even if both A and
B are known. To this end, we develop a matrix completion
based framework to learn A and B without computing the
regression model W explicitly. Then the owners of sensi-
tive data can safely release the masked feature A and their
associated responses B to a learner without taking privacy
risks.
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Privacy and Model Preserved Learning
In this subsection, we present the proposed matrix comple-
tion based framework of privacy and regression model pre-
served learning. Since the denoised feature X0 is a low-rank
matrix and the soft response Y0 = WX0 is a linear combi-
nation of X0, it is easy to verify that the matrix [Y0;X0] is
also of low-rank. When the target feature matrix A and re-
sponse matrix B share the same regression model as X0 and
Y0, we have Y0 = WX0 and B = WA. Thus, it directly
follows that

[Y0, B] = W[X0, A],

and we expect the following combined matrix

Z0 =

[
Y0 B
X0 A

]
is also of low-rank.

Given this observation, a direct thought for optimizing
matrices A and B is to minimize the nuclear norm, which
is the convex surrogate of the rank function, of matrix Z0.
However, this simple approach is infeasible in practice since
both of the denoised matrices X0 and Y0 are unknown.
More severely, it could result in a trivial solution, e.g., both
A and B are zero matrices.

In order to guarantee that the masked data A and B share
the same regression model as sensitive data X0 and Y0, we
aim to ensure its sufficient condition, i.e., the columns of
masked data Zm = [B;A] lie in the subspace spanned by
the column space of sensitive data Zs = [Y0;X0]. In other
words, this condition guarantees that there exist a n × m
matrix P satisfying

Zm = ZsP.

This observation inspires us to address the problem of triv-
ial solution by generating a random feature matrix Ã that
shares the same subspace as the noisy sensitive features X.
This enables us to learn a masked data Zm = [B;A] by en-
suring that i) the matrix Z0 = [Zs,Zm] is of low-rank, and
ii) the learned matrices X0, Y0 and A in Z0 are close to the
observed matrices X,Y and Ã.

In order to estimate the matrix Ã, we first generate a nor-
malized n ×m random matrix P whose entries take values
+1/
√
m and −1/

√
m with equal probability 1/2. We then

transform the (d+ 1)×n matrix X to a (d+ 1)×m matrix
Ã, given by

Ã = XP. (1)

We normalize the projection matrix P since we want to
ensure that the entries in matrices Ã and X have roughly
the same magnitudes. The equation (1) guarantees that the
columns in Ã lie in the subspace spanned by the columns of
feature matrix X.

Given the matrices X, Y and Ã, we rewrite Z0 as

Z0 =

[
Y B

X Ã

]
+

[
EY 0
EX EA

]
(2)

= Z + E.

where EA = A− Ã, EX = X−X0, and EY = Y −Y0

are the errors/noises in matrices A, X, and Y, respectively.

In order to capture such noises, we introduce a squared loss
function, i.e. L(u, v) = 1

2 (u − v)2, to penalize large differ-
ences between the true features/responses and the observed
ones.

Combining the above ideas, we propose a matrix comple-
tion based framework to simultaneously denoise the sensi-
tive data and learn the masked data by solving the following
optimization problem

min
Z0∈R(t+d+1)×(n+m)

µ||Z0||∗ +
1

tn

t∑
i=1

n∑
j=1

L(Zij , [Z0]ij)

+
C

(d+ 1)(n+m)

t+d+1∑
i=t+1

n+m∑
j=1

L(Zij , [Z0]ij), (3)

where ‖ · ‖∗ stands for the nuclear norm of matrix, and µ,C
are positive trade-off parameters. In problem (3), we penal-
ize features and responses separately since they may have
different magnitudes. Once the optimal matrix Z0 is found,
the masked feature matrix A and the corresponding response
matrix B can be released to learners for training regression
models.

Note that in many cases, the sensitive features or re-
sponses can be corrupted, we then discuss how to handle
the issue of missing entries in the sensitive data. In the fol-
lowing, we only focus on the problem of recovering the de-
noised sensitive data from the corrupted one. This is due to
the reason that, as long as the sensitive data is recovered, we
can follow the same procedure as discussed before to gener-
ate masked data.

Suppose the entries in X and Y are missing at random.
We denote by ΩX and ΩY to be the index sets of observed
entries in sensitive features and responses, respectively. We
define a family of matrix projection operators PΩ that takes
a p × q matrix E as the input and outputs a new matrix
PΩ(E) ∈ Rp×q as

[PΩ(E)]ij =

{
Eij (i, j) ∈ Ω
0 otherwise. (4)

This projection operator guarantees that only the observed
entries in the matrix can be projected into the space where
we apply matrix completion. Note that (i) the denoised sen-
sitive data matrix Zs = [Y0;X0] is of low-rank, and (ii)
both ||PΩX

(X−X0)||F and ||PΩY
(Y−Y0)||F should be

relatively small, we can cast the problem of recovering the
sensitive data matrix Zs into the following convex optimiza-
tion problem

min
Zs∈R(t+d+1)×n

µ||Zs||∗ +
1

|ΩY|
∑

ij∈ΩY

L(Yij ,Y0ij
)

+
C

|ΩX|
∑

ij∈ΩX

L(Xij ,X0ij ). (5)

It is evident that the optimization problem (5) is a variant
of the optimization problem (3). In more detail, problem
(5) and problem (3) are equivalent when m = 0, |ΩX| =
n(d + 1) and |ΩY| = nt. We use the efficient Fixed Point
Continuation method (Ma, Goldfarb, and Chen 2011) to op-
timize the problems (3) and (5).
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Analysis
In this subsection, we analyze the properties of the proposed
framework. Specifically, we show that the proposed frame-
work satisfies both the properties of model preserving as
well as privacy preserving.

i) Model Preserving Let Zs = [Y0;X0] be the denoised re-
sponses and features of n sensitive data, and let Ze = [B;A]
be the responses and features ofmmasked data. The follow-
ing theorem shows the property of model preserving:

Theorem 1. Let X = X0 + E, where Eij ∼ N(0, σ2). Let
Ã = XP and B̂ be the optimal solution of the optimization
problem

min
B∈Rt×m

∣∣∣∣∣∣∣∣[ Y0 B

X0 Ã

]∣∣∣∣∣∣∣∣
∗
. (6)

Then the columns of the matrix ZE = E[B̂; Ã] lie in the
subspace spanned by the columns of sensitive data Zs =
[Y0;X0], where E[M] is the expectation of matrix M.

Note that Y0 = WX0. Using Theorem 1, it is easy to
verify that the learned masked data also satisfying E(B̂) =
WA. Although Theorem 1 only shows that the expecta-
tion of the masked data share the same regression model as
the original sensitive data, our empirical studies further ver-
ify that the masked data approximates the regression model
learned from the original data in an almost perfect way.

Based on Theorem 1, we have the following corollary
showing that the nuclear norm minimization problem (6) can
be approximately reduced to the problem of finding a n×m
transformation matrix T.

Corollary 1. The convex optimization problem (6) can be
approximately relaxed to the following optimization prob-
lem:

min
T∈Rn×m

||T||2F + λ||Ã−X0T||2F , (7)

where ||T||F is the Frobenius norm of matrix T.

We skip the proof of Theorem 1 and Corollary 1 due to
space limitation. Corollary 1 basically shows that the pro-
posed nuclear norm minimization problem is close to the
problem of learning a n × m transformation matrix which
maps the sensitive data to the masked data. However, the
proposed optimization problem (3) is more desirable than
the optimization problem (7) since: (i) the denoised feature
matrix X0 is unknown and we cannot optimize problem (7)
without knowing it, and (ii) problem (3) is robust to noisy
information in sensitive data while problem (7) is not.

ii) Privacy Preserving We then discuss the privacy preserv-
ing property of the proposed framework. Specifically, the
proposed framework can preserve privacy of sensitive data
in the following aspects:

• Number of sensitive records Since learners can only ob-
serve the features and responses ofmmasked records and
m can be significantly different from n, they cannot iden-
tify the number of sensitive records.

• Privacy of X and Y Even if the number of sensitive
records n is leaked, learners still have no chance to re-
cover the sensitive data features X and responses Y. This
is because that the proposed framework approximately
learns a n×m transformation matrix T and this matrix is
completely blind to the learners. Indeed, directly optimiz-
ing the problem (3) using the masked data A and B will
lead to a trivial solution, e.g., both the recovered matrices
X and Y are all zero matrices.
• Privacy of individual record. In addition, the proposed

framework enjoys an even higher privacy standard that
is similar to the property of differential privacy (Dwork
2006). In more detail, even though the matrices A and
B, as well as the n − 1 sensitive records are known, the
learner still cannot recover the last column of the sensitive
record. Based on the theory of matrix completion (Candès
and Tao 2010), there is no chance to recover a single col-
umn if no entry in that column is observed. Specifically,
even when all of the n + m − 1 columns of the matrix
Z0 are known, the learner still cannot complete the last
unknown column, thus cannot recover the last sensitive
record.
Note that by implicitly identifying the linear regression

model (i.e., a hyperplane in a (d + 1)-dimensional space)
using the sensitive data, the proposed framework simulta-
neously erases all the sensitive information and randomly
generate m new data points (masked data) that are lying on
this hyperplane. This is the key reason that why the proposed
framework satisfies both properties of model preserving and
privacy preserving.

Experiments
In this section, we first use simulated data to verify our theo-
retical claim, i.e., the columns of masked data Zm = [B;A]
approximately lie in the subspace spanned by the columns of
sensitive data Zs = [Y0;X0]. We then use two benchmark
datasets for regression to verify the effectiveness of the pro-
posed data masking framework.

Experiment with Synthesized Data
We first conduct experiments with simulated data to ver-
ify that the learned masked data Zm is spanned by the
same subspace as the sensitive data Zs, the key condition
to ensure the property of model preserving. To this end,
we first generate two random matrices U and V with sizes
equaling to 500 × 20 and 1, 000 × 20. We then construct
a low-rank denoised feature matrix as X0 = UV>. By
adding some Gaussian noises to the entries of X0, we gen-
erate a noisy feature matrix X, i.e., X = X0 + EX with
EXi,j ∼ N(0, σ2). Also, we set the regression model W
as a randomly generated 500 × 10 matrix, indicating that
there are 10 multivariate measurements in total. This en-
ables us to compute the soft label matrix via Y0 = W>X0.
Finally, we also add some random Gaussian noises to ma-
trix Y0 for simulating noisy response as Y = Y0 + EY

with EYi,j ∼ N(0, σ2). We use noisy features X and re-
sponses Y as the input of the proposed framework then an-
alyze whether the learned masked data Zm = [B;A] lies
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Table 1: Projection errors with different levels of the added
noise

Variances σ2 0.05 0.1 0.2 0.3 0.4 0.5
Errors E 0 0 0 0.01 0.01 0.02

Table 2: Projection errors with different levels of the added
noise when 80% of entries in sensitive data are missing

Variances σ2 0.05 0.1 0.2 0.3 0.4 0.5
Errors E 0 0 0 0.01 0.01 0.01

in the subspace spanned by the columns of sensitive data
Zs = [Y0;X0]. Following (Yi et al. 2013), we define a pro-
jection operator Pk as Pk = UrU

>
r , where Ur are the top

r left singular vectors of matrix Zs and r is the rank of Zs.
Then the projection error is expressed as

E = max
1≤i≤m

1

m
‖(Zm)i −Pk(Zm)i‖2. (8)

To verify the robustness of the proposed framework, we vary
the variance σ2 in the range {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.
For each σ2, we optimize the masked data Zm = [B;A]
using the proposed framework, then compute the projection
error E using Eq. (8). Table 1 shows the average projection
errors over 10 runs. We observe that the projection errors
equal to 0 when σ2 is no greater than 0.2, indicating that the
masked data truly lies in the subspace spanned by the col-
umn space of the sensitive data when the added noise is not
too large. Even when the variance is as large as 0.5, the pro-
jection error is still merely 0.02, verifying that the proposed
framework is also robust to high levels of noises.

To further verify our theoretical claim in the case of miss-
ing data, we randomly mark 80% entries of the feature ma-
trix X and the response matrix Y as unobserved. We then
use the partially observed data to generate masked data. The
average projection errors over 10 runs are summarized in
Table 2. It is expected that, with a large portion of entries
missing, the task of identifying the underlying column space
of sensitive data would become more challenging. However,
by comparing the Table 1 and Table 2, we observe that the
proposed method can yield the same projection errors as the
complete data even when a large portion of entries in sensi-
tive data are missing. We conjecture that by recovering miss-
ing entries through the matrix completion problem (5), the
recovered sensitive data tends to be close to the denoised
data matrix Zs = [Y0;X0], making it a good starting point
to learn masked data by optimizing the problem (3). To sum
up, this experiment verifies that the proposed method can
accurately recover the column space of sensitive data even
when the sensitive data is both noisy and highly corrupted
(i.e., a majority of sensitive data is missing).

Experiment with Benchmark Datasets
We then evaluate the proposed framework on two sensitive
benchmark datasets. They are

1. ADNI dataset (Zhou et al. 2013) that is from the
Alzheimer’s Disease Neuroimaging Initiative database.
This dataset contains 328 Magnetic Resonance Imaging

(MRI) features of 675 patients. The responses of this data
are the Mini-Mental State Exam (MMSE) scores at six
time points M06, M12, M18, M24, M36, and M48.

2. School data set (Gong, Ye, and Zhang 2012) that is
from the Inner London Education Authority (ILEA). This
dataset is consists of examination records of 15, 362 stu-
dents from 139 secondary schools in years 1985, 1986 and
1987. Each sample is represented by 27 binary attributes
which include year, gender, examination score, and so on.
The responses of this data are the examination scores and
we have a total of 139 tasks with each task corresponding
to one school.

Since the proposed framework is the first method that si-
multaneously satisfies the properties of model preserving
and privacy preserving, there is no existing strong base-
line algorithm that can be compared. Note that the proposed
framework can be approximately reduced to a model pre-
served multiplicative approach, we compare it to the random
projection method (Liu, Kargupta, and Ryan 2006) that mul-
tiplies a random matrix to sensitive data in order to preserve
its privacy. To this end, we randomly generate a d̃× (d+ 1)

projection matrix P satisfying that the expectation of P>P
equals to an identity matrix. We then project the original
sensitive features to a d̃-dimensional space using the pro-
jection matrix P, i.e., X̃ = PX. After obtaining the linear
regression model W̃ learned using X̃ and Y, we can project
it back to a regression model W in the original (d + 1)-
dimensional space by W = W̃P>. In our experiments, the
dimensionality d̃ of random projection matrix P is set to be
[d/2].

We first conduct experiments when both features and re-
sponses are fully observed. For both of these two sensitive
datasets, we randomly sample 70% of the records as train-
ing data to generate the masked data for training regression
models. We treat the remaining 30% of records as testing
data for evaluating the regression performance. To evaluate
the effect of model preserving property, we apply support
vector regression (SVR) (Smola and Schölkopf 2004) with
a linear kernel to both learned masked data and the origi-
nal training (sensitive) data. We denote the linear regression
models learned from the masked and sensitive data as Wm

and Ws, respectively. To obtain optimal models, we apply
5-fold cross validations on both masked and sensitive data
with the regularization parameter of SVR ranging from 2−5

to 25. The number of masked data m is set to be [n/3]. To
measure the difference between two regression models We

and Ws, we use

ηW =
|Wm −Ws|F

max(|Wm|F , |Ws|F )

as an evaluation metric. In addition, we also employ the Root
Mean Squared Error (RMSE) (Gunst and Mason 1977) to
evaluate the regression performance. We denote RMSEWm

as the performance of applying Wm to the testing data, and
RMSEWs

as the performance of applying Ws to the testing
data. Each experiment is repeated 10 times and the average
performance are reported.
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(a) Comparisons of ηw for the proposed framework and ran-
dom projection

(b) Comparisons of regression performances using different
methods

Figure 1: Comparisons of regression models trained directly by sensitive data, by masked data generated from the proposed framework, and
by perturbed data generated from random projections.

(a) Comparisons of ηw with missing and complete data (b) Comparisons of regression performances with missing
and complete data

Figure 2: Comparison of regression models trained directly by sensitive data, by masked data generated from the complete sensitive data,
and by masked data generated from the partially-observed sensitive data.

Figure 1 compares the regression models learned using
the masked data generated by the proposed framework and
the regression models trained using the perturbed data gen-
erated by the random projection method. Figure 1(a) shows
that for the proposed method, the regression models learned
by the masked data and the regression models learned by the
original training (sensitive) data are very close to each other.
In contrast, random projection method cannot preserve the
regression model since the normalized model differences ηw
are significantly larger than 0 in both datasets. In Figure 1(b),
we observed that by directly applying the regression mod-
els learned from the masked data to the testing data, we can
achieve almost the same performance as using the regression
models built from the original sensitive data. As a compar-
ison, random projection approach suffers from a large in-
crease of regression errors in terms of RMSE, verifying that
it cannot preserve the regression models.

We further conduct experiments to evaluate how the pro-
posed framework performs when a considerable portion of
entries in sensitive data are missing. We randomly mark 80%
entries of the sensitive data features and responses as un-
observed. We then use the partially-observed sensitive data
to generate masked data by the proposed framework. Since
random projection cannot be applied to missing data, we
compare the performance of the proposed framework with
missing data to the proposed framework with complete data,
and the experimental results averaged over 10 random trials
are shown in Figure 2.

From Figure 2(a), we observed that even when 80% of
the sensitive features and responses are missing, the nor-
malized model difference ηw are still very small (less than
0.04), indicating that the learned masked data can still pre-
serve the regression models of the original fully-observed

data. Figure 2(b) shows that when applying the trained re-
gression models to the testing data, the models learned us-
ing partially-observed sensitive data can achieve very simi-
lar RMSEs as the models directly trained using the complete
sensitive data. This is not surprising since the difference be-
tween two regression models is very small, as indicated by
Figure 2 (a). In summary, the experiments verify that the
proposed framework can satisfy the property of model pre-
serving, and it is also robust to missing and noisy entries in
both sensitive features and responses.

Conclusions and Future Work
In this paper, we propose a framework for privacy and re-
gression model preserved learning. The key idea is to cast
the problem of data masking into a problem of matrix com-
pletion. The masked data are generated through filling un-
known entries that tend to maintain the low-rank matrix
structure. We show that the masked data using the proposed
framework satisfies both properties of model preserving and
privacy preserving. This ensures that data owners can safely
release sensitive data to learners for training regression mod-
els and the learned model can be directly applied to the orig-
inal sensitive data. In addition, by exploiting the strengths
of loss functions as well as matrix completion techniques,
the proposed framework is robust to both noises and missing
entries that often occur in the sensitive data. Our empirical
studies with a synthesized dataset and two real-world sen-
sitive datasets verify our theoretical claims, and also show
promising performance of the proposed algorithm. Our fu-
ture directions include the extensions to privacy preserving
for the classification problem, as well as preserving nonlin-
ear regression models.
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