
Adaptive Multi-Compositionality for Recursive Neural
Models with Applications to Sentiment Analysis

Li Dong†⇤ Furu Wei‡ Ming Zhou‡ Ke Xu†
†State Key Lab of Software Development Environment, Beihang University, Beijing, China

‡Microsoft Research, Beijing, China
donglixp@gmail.com {fuwei,mingzhou}@microsoft.com kexu@nlsde.buaa.edu.cn

Abstract

Recursive neural models have achieved promising re-
sults in many natural language processing tasks. The
main difference among these models lies in the com-
position function, i.e., how to obtain the vector repre-
sentation for a phrase or sentence using the representa-
tions of words it contains. This paper introduces a novel
Adaptive Multi-Compositionality (AdaMC) layer to re-
cursive neural models. The basic idea is to use more
than one composition functions and adaptively select
them depending on the input vectors. We present a gen-
eral framework to model each semantic composition
as a distribution over these composition functions. The
composition functions and parameters used for adap-
tive selection are learned jointly from data. We inte-
grate AdaMC into existing recursive neural models and
conduct extensive experiments on the Stanford Senti-
ment Treebank. The results illustrate that AdaMC sig-
nificantly outperforms state-of-the-art sentiment clas-
sification methods. It helps push the best accuracy
of sentence-level negative/positive classification from
85.4% up to 88.5%.

Introduction
Recursive Neural Models (RNMs), which utilize the recur-
sive structure of the input (e.g., a sentence), are one family
of popular deep learning models. They are particularly effec-
tive for many Natural Language Processing (NLP) tasks due
to the compositional nature of natural language. Recently,
many promising results have been reported on semantic re-
lationship classification (Socher et al. 2012), syntactic pars-
ing (Socher et al. 2013a), sentiment analysis (Socher et al.
2013b), and so on. The main difference among RNMs lies
in the semantic composition method, i.e., how to obtain the
vector representation for a phrase or sentence using the rep-
resentations of words and phrases it contains. For instance,
we can compute the word vector for the phrase “not good”
with the vectors of the words “not” and “good”. For many
tasks, we even need to obtain the vector representations for
sentences. The composition algorithm becomes the key to
make the vector representations go beyond words to phrases
and sentences.

⇤Contribution during internship at Microsoft Research.
Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

There have been several attempts in literature to ad-
dress the semantic composition for RNMs. Specifically,
RNN (Socher et al. 2011) uses a global matrix to linearly
combine the elements of vectors, while RNTN (Socher et
al. 2013b) employs a global tensor to model the products
of dimensions. Sometimes it is challenging to find a sin-
gle powerful function to model the semantic composition.
Intuitively, we can employ multiple composition functions,
instead of only using a single global one. Instead of find-
ing more complex composition functions, MV-RNN (Socher
et al. 2012) assigns matrices for every words to make the
compositions specific. However, the number of composition
matrices is the same as vocabulary size, which makes the
number of parameters quite large. It is easy to overfit the
training data and difficult to be optimized. Moreover, MV-
RNN needs another global matrix to linearly combine the
composition matrices for phrases, which still makes these
compositions not specific. In order to overcome these short-
comings and make the compositions specific, it is better to
use a certain number of composition functions, and embed
the role-sensitive (linguistic and semantic) information into
word vectors to adaptively select these compositions rather
than concrete words. The example “not (so good)” in senti-
ment analysis illustrates this point. To obtain the polarity of
this phrase, we firstly combine the words “so” and “good”,
then combine the “not” and “so good”. Specifically, the first
combination is a strengthen composition which makes the
sentiment polarity stronger, and the second step is a negation
composition which negates the positive polarity to negative.

In this paper, we introduce a novel Adaptive Multi-
Compositionality (AdaMC) method for RNMs. AdaMC
consists of more than one composition functions, and adap-
tively selects them depending on the input vectors. The
model learns to embed the semantic categories of words into
their corresponding word vectors, and uses them to choose
these composition functions adaptively. Specifically, we pro-
pose a parametrization method to compute the probability
distribution for every function given the child vectors. We
also introduce a hyper-parameter to model the adaptive pref-
erences over the different composition functions and show
three special cases of AdaMC. By adjusting this hyper-
parameter, there is a continuous transition between these
three special cases. Moreover, all these composition func-
tions and how to select them are automatically learned from

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1537



supervisions, instead of choosing them heuristically or by
manually defined rules. Hence, task-specific composition in-
formation can be embedded into representations and used in
the task. We have conducted extensive experiments on the
Stanford Sentiment Treebank. The experimental results il-
lustrate that our approach significantly improves the baseline
methods, and yields state-of-the-art accuracy on the senti-
ment classification task.

The main contributions of this paper are three-fold:
• We introduce an Adaptive Multi-Compositionality ap-

proach into recursive neural models to better perform se-
mantic compositions;

• We propose a parametrization method to calculate the
probabilities of different composition functions given two
input vectors;

• We present empirical results on the public available Stan-
ford Sentiment Treebank. AdaMC significantly outper-
forms state-of-the-art sentiment classification results.

Related Work
Semantic composition has attracted extensive attention in
vector based semantic models. Let a and b be two words,
represented by the vectors a and b. The goal of seman-
tic composition is to compute vector c to represent the
phrase ab. Most previous works focus on defining dif-
ferent composition functions to obtain vector c. Landauer
and Dutnais (1997) use the average of a and b to ob-
tain the representation for ab. Mitchell and Lapata (2008;
2010) suggest using weighted addition (c = ↵a + �b) and
element-wise multiplication (c = a� b) to compute vector
c. Another operation is the tensor product (Smolensky 1990;
Aerts and Czachor 2004; Clark, Coecke, and Sadrzadeh
2008; Widdows 2008), such as the outer product, for com-
position. The outer product of two vectors produces a ma-
trix, which makes the representations become exponentially
larger. An improvement of using the outer product is to use
circular convolution (Plate 1991; Jones and Mewhort 2007)
as composition functions. It compresses the result matrix of
the outer product to a vector. Baroni and Zamparelli (2010)
represent nouns as vectors, and adjectives as matrices. Then
the authors apply matrix-by-vector multiplication for the
adj-noun pair composition. Instead of using vector repre-
sentations, Rudolph and Giesbrecht (2010) and Yessenalina
and Cardie (2011) use matrices to represent the phrases and
define the composition functions as matrix multiplication.
However, most of previous settings are unsupervised instead
of using the supervisions from the specific tasks, and evalu-
ated by comparing the similarity between short phrases (e.g.,
adj-noun word pairs). For example, the “very good” and
“very bad” are regarded as similar phrases, which sometimes
is not feasible for specific tasks (e.g., sentiment analysis).

Recently, some works use the semantic composition in
recursive neural networks to build deep models for NLP
tasks, and have achieved some promising results. Socher et
al. (2011) learn a matrix W to combine the vectors a,b, and

the composition result is W


a
b

�
. Socher et al. (2012) as-

sign matrix-vector pairs (A,a) and (B,b) for words a and

b, where A,B are matrices, and vectors a,b are representa-
tions. When two phrases are combined, the composition re-

sult is W

Ba
Ab

�
, where W is a global linear mapping matrix.

Yu, Deng, and Seide (2013) and Socher et al. (2013b) use
a tensor layer to model the intersections between different
dimensions of combined vectors.

Grefenstette and Sadrzadeh (2011; 2013) present a cat-
egorical compositional model, which employs formal se-
mantics (grammatical structure) to guide the composition
sequence. Hermann and Blunsom (2013) and Polajnar, Fa-
garasan, and Clark (2013) use the parsing results based on
Combinatory Categorial Grammar (CCG) to guide the se-
mantic composition. Socher et al. (2013a) propose to com-
pute the composition vectors depending on the Part-Of-
Speech (POS) tags of two phrases. Our work is significantly
different from them. To begin with, we do not employ any
syntactic categories (such as CCG combinators and types,
and POS tags), which are assumed to have been obtained by
existing parsers. In addition, sometimes the syntactic cate-
gories are not helpful to guide the compositions for some
tasks. For instance, both “not good” and “very good” are
adv-adj pairs. However, the former is a negation composi-
tion which negates the polarity strength, and the other one
is a amplifier in the sentiment analysis task. Our proposed
method learns to select the composition functions depend-
ing on the current vectors (adaptively). Moreover, our model
can also leverage these syntactic knowledge in a unified way
by regarding them as features, instead of using them heuris-
tically or by manually crafted rules.

Recursive Neural Models
The recursive neural models represent the phrases and words
as D-dimensional vectors. The models perform composi-
tions based on binary trees, and obtain the vector represen-
tations in a bottom-up way. Notably, the word vectors in
the leaf nodes are regarded as parameters, and will be up-
dated according to the supervisions. Specifically, the vectors
of phrases are computed by the composition of their child
vectors. The vector of node i is calculated via:

vi

= f
�
g
�
vi

l

,vi

r

��
(1)

where vi

l

,vi

r

are the vectors of its left child and right child,
g is the composition function, and f is the nonlinearity func-
tion (such as tanh, sigmoid, softsign, etc.). As illustrated in
Figure 1, the representation of “so bad” is calculated by the
composition of “so” and “bad”, and the representation of tri-
gram “not so bad” is recursively obtained by the vectors of
“not” and “so bad”.

The learned representations are then fed into a classifier to
predict the labels for nodes. The softmax layer is used as a
standard component, as shown in Figure 1. The k-th element
of softmax(z) is exp{zk}P

j exp{zj} . It outputs the probability distri-
bution over K classes for a given input. To be more specific,
the prediction distribution of node i is calculated via:

yi

= softmax
�
Uvi

�
(2)

1538



not so good

g

Negative

Negative PositiveNeutral

Very 
Positive

SoftmaxSoftmaxSoftmax

Softmax

Softmax

so good

not so good

g

Figure 1: Composition process for “not so good”. The g is a
global composition function in recursive neural models.

where U 2 RK⇥D is the classification matrix, vi is the vec-
tor representation of node i, and yi is the prediction distri-
bution for node i.

The main difference between recursive neural models lies
in the design of composition functions. We describe two
mainstream models and their composition functions.

RNN: Recursive Neural Network
The RNN (Socher et al. 2011) is a standard member of recur-
sive neural models. Every dimension of parent vector is cal-
culated by weighted linear combination of the child vectors’
dimensions. The vector representation of node i is obtained
via:

vi

= f

✓
W


vi

l

vi

r

�
+ b

◆
(3)

where W 2 RD⇥2D is the composition matrix, b is the bias
vector, vi

l

,vi

r

are the left and right child vectors respectively,
and f is the nonlinearity function. The dimension of v

i

is the
same as its child vectors, and it is recursively used in the next
composition.

RNTN: Recursive Neural Tensor Network
The RNTN (Socher et al. 2013b) uses more parameters and
a more powerful composition function than RNN. The main
idea of RNTN is to employ tensors to model the intersection
between every dimension of vectors. The vector of node i is
computed via:

vi

= f

 
vi

l

vi

r

�
T

T [1:D]


vi

l

vi

r

�
+W


vi

l

vi

r

�
+ b

!
(4)

where T [1:D] is a tensor, W 2 RD⇥2D is a linear compo-
sition matrix, b is the bias vector, and f is the nonlinearity
function. The result of tensor product is


vi

l

vi

r

�
T

T [1:D]


vi

l

vi

r

�
=

2

666664


vi

l

vi

r

�
T

T [1]


vi

l

vi

r

�

...
vi

l

vi

r

�
T

T [D]


vi

l

vi

r

�

3

777775
(5)

where T [d] 2 R2D⇥2D is the d-th slice of T [1:D]. It ob-
tains a D-dimensional vector which defines multiple bilinear
forms. When all the elements of T [1:D] are zero, the model
is the same as RNN.

Adaptive Multi-Compositionality for
Recursive Neural Models

We illustrate the main idea of proposed Adaptive Multi-
Compositionality method in Figure 2. We use a compo-

sition pool which consists of C composition functions
{g

1

, . . . , g
C

}. To obtain the vector of “so good”, we firstly
feed its child vectors (vso and vgood) to a classifier to get
the probability P

�
g
h

|vso,vgood

�
for using each composi-

tion function g
h

. Intuitively, we should choose composition
functions which strengthen the polarity of “good”, and pre-
dict the “so good” as very positive. Similarly, we compute
the probability P

�
g
h

|vnot,vso good

�
for every composition

function. Ideally, we should select negate composition func-
tions to obtain vnot so good, and the polarity should be neg-
ative. As shown in this example, it is more reasonable to
use multiple composition functions than finding a complex
composition function for the recursive neural models.

not so good

Negative

Negative PositiveNeutral

Very 
Positive

SoftmaxSoftmaxSoftmax

Softmax

Softmax

so good

not so good

g1 gC...
Composition Pool

g1 gC...
Composition Pool

Figure 2: The composition pool consists of multiple com-
position functions. It selects the functions depending on the
input child vectors, and produces the composition result us-
ing more than one composition functions.

Generally, we define the composition result vi as:

vi

= f

 
CX

h=1

P
�
g
h

|vi

l

,vi

r

�
g
h

�
vi

l

,vi

r

�
!

(6)

where f is the nonlinearity function, g
1

, . . . , g
C

are the com-
position functions, and P

�
g
h

|vi

l

,vi

r

�
is the probability of

employing g
h

given the child vectors vi

l

,vi

r

. For the compo-
sition functions, we use the same forms as in RNN (Equa-
tion (3)) and RNTN (Equation (4)). The key point is how
to select them properly depending on the child vectors, i.e.,
how to define P

�
g
h

|vi

l

,vi

r

�
. We define a parametrization

approach (named AdaMC), and show three special cases of
it. By adjusting the parameter of AdaMC, there is a contin-
uously transition between these special cases.

1539



AdaMC: Adaptive Multi-Compositionality
To start with, we define the �-softmax function as:

�-softmax (z) =
1P

i

exp{�z
i

}

2

64
exp{�z

1

}
...

exp{�z
K

}

3

75 (7)

where z = [z
1

. . . z
K

]

T is a vector. This function is known
as the Boltzmann distribution and Gibbs measure (Georgii
2011), which are widely used in statistical mechanics. When
� = 0, the �-softmax function produces a uniform distribu-
tion; When � = 1, it is the same as softmax function; When
� ! 1, this function only activates the dimension with
maximum weight, and sets its probability to 1. We then em-
ploy this function to compute the probability distribution for
the composition functions via:

2

64
P
�
g
1

|vi

l

,vi

r

�

...
P
�
g
C

|vi

l

,vi

r

�

3

75 = �-softmax
✓
S


vi

l

vi

r

�◆
(8)

where S 2 RC⇥2D is the matrix used to determine which
composition function we use, and vi

l

,vi

r

are the left and right
child vectors.

Avg-AdaMC: Average AdaMC
We average the composition results, and this is a special case
of AdaMC (� = 0). The probability of using g

h

is:

P
�
g
h

|vi

l

,vi

r

�
=

1

C
(9)

where h = 1, . . . , C, and C is the number of composition
functions.

Weighted-AdaMC: Weighted Average AdaMC
One special case of AdaMC is setting � = 1. It uses the
softmax probability to perform a weighted average.

2

64
P
�
g
1

|vi

l

,vi

r

�

...
P
�
g
C

|vi

l

,vi

r

�

3

75 = softmax
✓
S


vi

l

vi

r

�◆
(10)

where S 2 RC⇥2D is the parameter matrix.

Max-AdaMC: Max Output AdaMC
If we set � ! 1 in AdaMC, it is a greedy selection al-
gorithm and only outputs the composition result with maxi-
mum softmax probability.

Model Training
We use the softmax classifier to predict the probabilities for
classes, and compare the distribution with ground truth. We
define the target vector ti for node i, which is a binary vec-
tor. If the correct label is k, we set ti

k

to 1 and the others to 0.
Our goal is to minimize the cross-entropy error between the
predicted distribution yi and target distribution ti. For each
sentence, the objective function is defined as:

min

⇥

E(⇥) = �
X

i

X

j

ti
j

logyi

j

+

X

✓2⇥

�
✓

k✓k2
2

(11)

where ⇥ represents the parameters, and the second term is a
L
2

-regularization penalty.
We employ back-propagation algorithm (Rumelhart, Hin-

ton, and Williams 1986) to propagate the error from the top
node to the leaf nodes. The derivatives are computed and
gathered to update the parameters. The details can be found
in the supplemental material due to space limitations. The
AdaGrad (Duchi, Hazan, and Singer 2011) is used to solve
this non-convex optimization problem.

Experiments
Dataset Description
We evaluate the models on Stanford Sentiment Treebank1.
This corpus contains the labels of syntactically plausible
phrases, which allows us to train the compositional mod-
els based on the parsing trees. The treebank is built upon
10,662 critic reviews in Rotten Tomatoes2, which is origi-
nally used for sentence-level sentiment classification (Pang
and Lee 2005). The Stanford Parser (Klein and Manning
2003) is used to parse all these reviews to parsing trees, and
extract 215,154 phrases. Next, the workers in Amazon Me-
chanical Turk annotate polarity levels for all these phrases.
Most of the shorter phrases are annotated as neutral, and
longer phrases tend to be with stronger polarity. All the sen-
timent scales are merged to five categories (very negative,
negative, neutral, positive, very positive).

Experiment Settings
We use the standard dataset splits (train: 8,544, dev: 1,101,
test: 2,210) in all the experiments. For all these models, we
tune the parameters on the dev dataset. We use the mini-
batch version AdaGrad in our experiments with the batch
size between 20 and 30. We employ f = tanh as the non-
linearity function as it is significantly better than the models
without using nonlinearity (Socher et al. 2011). Each word
in the vocabulary is assigned with a vector representation. To
initialize the parameters, we randomly sample values from
a uniform distribution U (�✏,+✏), where ✏ is a small value.
It should be noted that the word vectors are regarded as pa-
rameters, and will be updated in the training process.

Evaluation
We compare different methods on the Sentiment Treebank
in this section to evaluate the effectiveness of our methods.

SVM. Support Vector Machine (SVM) achieves good per-
formance in the sentiment classification task (Pang and Lee
2005). We use the bag-of-words features in our experiments.

MNB/bi-MNB. As indicated in the work of Wang and
Manning (2012), Multinomial Naı̈ve Bayes (MNB) often
outperforms SVM for sentence-level sentiment classifica-
tion. The MNB uses uni-gram features, and bi-MNB also
uses bi-gram features.

VecAvg. This model (Landauer and Dutnais 1997) aver-
ages child vectors to obtain the parent vector. It ignores the
word order when performing compositions.

1http://nlp.stanford.edu/sentiment/treebank.html
2http://www.rottentomatoes.com

1540



Method Fine-grained Pos./Neg.
All Root All Root

SVM 64.3 40.7 84.6 79.4
MNB 67.2 41.0 82.6 81.8
bi-MNB 71.0 41.9 82.7 83.1
VecAvg 73.3 32.7 85.1 80.1
MV-RNN 78.7 44.4 86.8 82.9
RNN 79.0 43.2 86.1 82.4
Avg-AdaMC-RNN 80.1 43.4 89.1 84.9
Max-AdaMC-RNN 80.3 43.8 91.0 85.6
Weighted-AdaMC-RNN 80.7 45.4 93.6 86.5
AdaMC-RNN 80.8 45.8 93.4 87.1
RNTN 80.7 45.7 87.6 85.4
Avg-AdaMC-RNTN 80.6 45.7 89.7 86.3
Max-AdaMC-RNTN 80.3 45.6 91.3 86.6
Weighted-AdaMC-RNTN 81.0 46.3 93.8 88.4
AdaMC-RNTN 81.1 46.7 94.1 88.5

Table 1: Results of evaluation on the Sentiment Treebank.
The top three methods are in bold and the best is also
underlined. Our methods (AdaMC-RNN, AdaMC-RNTN)
achieve best performances when � is set to 2.

RNN/RNTN. Recursive Neural Network (Socher et al.
2011) computes the parent vector by weighted linear com-
bination of the child vectors’ dimensions. Recursive Neu-
ral Tensor Network (Socher et al. 2013b) employs tensors
to model intersections between different dimension of child
vectors. We use the same settings as in the original papers.

MV-RNN. This model (Socher et al. 2012) assigns a com-
position matrix for each word. Besides performing compo-
sitions to obtain the vector representations, the model uses
another global matrix to combine these composition ma-
trices for phrases. The above baseline results are reported
in (Socher et al. 2013b).

AdaMC. Compared with the original models, AdaMC-
RNN and AdaMC-RNTN employ multiple composition
functions, and determine composition functions depending
on the child vectors in every step. We use 15 composition
functions, and set the size of word vectors as 25 for AdaMC-
RNN and 15 for AdaMC-RNTN in the experiments.

Avg/Max/Weighted-AdaMC. Special cases of AdaMC
are used in RNN and RNTN. The number of composition
functions and dimension of word vectors are the same as in
AdaMC-RNN and AdaMC-RNTN.

Table 1 shows the evaluation results of different models.
SVM and MNB are two effective baselines for sentiment
classification (Wang and Manning 2012). We notice that Ve-
cAvg performs better than bag-of-words methods on evalua-
tions for all nodes, while the performances of root nodes are
worse than them. It indicates that VecAvg achieves better
results on short phrases, but it loses some sentiment infor-
mation in the composition process for long phrases. We also
obtain the conclusion that it is more difficult to get good
composition results for long phrases than for short ones.
So comparing the evaluation results for long fragments is
more meaningful to us. Compared with VecAvg, the perfor-
mances of RNN improve on both short and long phrases.
MV-RNN uses more composition matrices and improves the

accuracies than RNN. Moreover, the RNTN, which employs
tensors to model the intersections between different seman-
tic dimensions, achieves better results than MV-RNN, RNN
and bag-of-words models. This illustrates that more pow-
erful composition functions help capture complex semantic
compositions especially for the longer phrases and the effec-
tiveness of recursive neural models.

We then compare our Adaptive Multi-Compositionality
(AdaMC) method with baselines. First of all, we apply
our approaches in RNN, and there are significant gains of
the evaluation metrics. Specifically, the all nodes and root
nodes fine-grained accuracies of AdaMC-RNN increase by
1.8% and 2.6% respectively than RNN which only em-
ploys one global composition functions. For polarity (posi-
tive/negative) classification, the all nodes and root nodes ac-
curacies of our method rise by 7.3% and 4.7% respectively.

Moreover, we find that AdaMC-RNN surpasses MV-
RNN. The MV-RNN assigns specific composition matrix
for every word. It is easy to overfit training data, because
the number of composition matrices is the same as vocabu-
lary size. MV-RNN needs another global matrix to compute
the composition matrices for long phrases, which makes the
composition non-specific. However, AdaMC-RNN employs
a certain number of composition functions and adaptively
selects them depending on the combined vectors. The exper-
imental results illustrate that AdaMC-RNN is a better way to
achieve specific compositions than MV-RNN.

Furthermore, the fine-grained accuracies of AdaMC-RNN
are comparable with RNTN, and the positive/negative ac-
curacies are better than RNTN. Notably, although AdaMC-
RNN employs fewer parameters than RNTN, it achieves bet-
ter performances without employing tensors. The results in-
dicate using multiple composition functions is another good
approach to improve the semantic composition besides find-
ing more powerful composition functions (such as tensors).

We also apply our method in RNTN, and obtain state-of-
the-art performances. Compared with RNTN, all nodes and
root nodes fine-grained accuracies of AdaMC-RNTN rise by
0.4% and 1.0% respectively. Considering positive/negative
classification, the all nodes and root nodes accuracies of our
method increase by 6.5% and 3.1% respectively than RNTN.
This demonstrates our method can boost the performances
even if we have used powerful composition functions.

Finally, we evaluate the special cases (� = 0, 1, and
� ! 1) of AdaMC models, and they are all of help to
improve the results. The performances of Weighted-AdaMC
(� = 1) are most similar to AdaMC, and are better than Avg-
AdaMC (� = 0) and Max-AdaMC (� ! 1) in both RNN
and RNTN. To be specific, the results of Max-AdaMC-RNN
surpass Avg-AdaMC-RNN. However, the fine-grained accu-
racies of Avg-AdaMC-RNTN are slightly better than Max-
AdaMC-RNTN, and the positive/negative accuracies are just
the opposite. We will further explore the differences between
these special cases in next section.

Effects of �
We compare different � for AdaMC defined in Equation (8).
Different parameter � leads to different composition selec-
tion schemes. When � = 1, the model directly employs the

1541



(a) Root Fine-grained Accuracy

(b) Root Pos/Neg Accuracy

Figure 3: The curve shows the accuracy for root nodes as
� = 0, 20, 21, . . . , 26 increases. AdaMC-RNN and AdaMC-
RNTN achieve the best results at � = 2

1.

really bad
very bad / only dull /
much bad / extremely bad /
(all that) bad

(is n’t)
(necessarily bad)

(is n’t) (painfully bad) /
not mean-spirited / not
(too slow) / not well-acted /
(have otherwise) (been bland)

great
(Broadway play)

great (cinematic innovation) /
great subject /
great performance /
energetic entertainment /
great (comedy filmmaker)

(arty and) jazzy

(Smart and) fun /
(verve and) fun /
(unique and) entertaining /
(gentle and) engrossing /
(warmth and) humor

Table 2: We use cosine similarity of composition selection
vectors (Equation (8)) for phrases to query the nearest com-
positions.

probabilities outputted by the softmax classifier as weights
to combine the composition results. The � = 0 makes the
probabilities obey a uniform distribution, while � ! 1 re-
sults in a maximum probability selection algorithm.

As demonstrated in Figure 3, the overall conclusion is that
the optimal � tends to be between the setting of Weighted-
AdaMC and Max-AdaMC. Both the AdaMC-RNN and
AdaMC-RNTN achieve the best root fine-grained and pos-
itive/negative accuracies at � = 2, and they have a simi-
lar trend. Specifically, the Weighted-AdaMC (� = 1) per-
forms better than Avg-AdaMC (� = 0) and Max-AdaMC
(� ! 1). It indicates that adaptive (role-sensitive) compo-
sitionality selection is useful to model the compositions.

The Avg-AdaMC does not consider role-sensitive infor-
mation, while Max-AdaMC does not use multiple com-
position functions to get the smoothed results. Weighted-
AdaMC employs the probabilities obtained by softmax clas-
sifier to make trade-offs between them, hence it obtains bet-
ter performances. Based on this observation, we introduce
the parameter � and employ the Boltzmann distribution in
AdaMC to adjust the effects of these two perspectives.

Adaptive Compositionality Examples
To analyze the adaptive compositionality selection, we com-
pute the probability distribution (as in Equation (8)) for ev-
ery composition, i.e., [P (g

1

|a,b) . . . P (g
C

|a,b)]T where
a,b are the child vectors. As demonstrated in Table 2, we
query some composition examples and employ cosine sim-
ilarity as our similarity metric. To be specific, “really bad”
is a strengthen composition which makes the sentiment po-
larity stronger, and the most similar compositions are of the
same type. Notably, we notice that the bi-gram “all that”
is detected as an intensification indicator. The second ex-
ample is a negation composition. “(have otherwise) (been

bland)” is regarded as a similar composition, which illus-
trates the combination of “have” and “otherwise” keeps the
negation semantics of “otherwise”. The third case and the
similar compositions are the combinations of a sentiment ad-
jective word and noun phrase. This demonstrates our model
embeds some word-category information in word vectors to
select the composition functions. The last example is two
sentiment words connected by “and”. The results illustrate
our model recognize this kind of conjunction which joins
two non-contrasting items. From all these cases, we find
the compositions which are of similar types are closer, and
our method learns to distinguish these different composition
types according to the supervisions of specific tasks.

Conclusion and Future Work
We propose an Adaptive Multi-Compositionality (AdaMC)
method for recursive neural models to achieve better seman-
tic compositions in this paper. AdaMC uses more than one
composition functions and adaptively selects them depend-
ing on the input vectors. We present a general framework
to model the composition as a distribution over the compo-
sition functions. We integrate AdaMC into existing popu-
lar recursive neural models (such as RNN and RNTN) and
conduct experiments for sentence-level sentiment analysis

1542



tasks. Experimental results on the Stanford Sentiment Tree-
bank show that AdaMC significantly improves the baselines
with fewer parameters. We further compare the distribution
similarities of composition functions for phrase pairs, and
the results verify the effectiveness of AdaMC on modeling
and leveraging the semantic categories of words and phrases
in the process of composition. There are several interesting
directions for further research studies. For instance, we can
evaluate our method in other NLP tasks. Moreover, exter-
nal information (such as part-of-speech tags) can be used
as features to select the composition functions. In addition,
we can mix different types of composition functions (such
as the linear combination approach in RNN and the tensor
based approach in RNTN) to achieve more flexible choices
in the adaptive composition methods.

Acknowledgments
We gratefully acknowledge helpful discussions with Richard
Socher. This research was partly supported by the National
863 Program of China (No. 2012AA011005), the fund of
SKLSDE (Grant No. SKLSDE-2013ZX-06), and Research
Fund for the Doctoral Program of Higher Education of
China (Grant No. 20111102110019).

References
Aerts, D., and Czachor, M. 2004. Quantum aspects of se-
mantic analysis and symbolic artificial intelligence. Journal

of Physics A: Mathematical and General 37(12):L123.
Baroni, M., and Zamparelli, R. 2010. Nouns are vectors, ad-
jectives are matrices: Representing adjective-noun construc-
tions in semantic space. In EMNLP, EMNLP ’10, 1183–
1193.
Clark, S.; Coecke, B.; and Sadrzadeh, M. 2008. A compo-
sitional distributional model of meaning. In Proceedings of

the Second Quantum Interaction Symposium, 133–140.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. JMLR 12:2121–2159.
Georgii, H. 2011. Gibbs Measures and Phase Transitions.
De Gruyter studies in mathematics. De Gruyter.
Grefenstette, E., and Sadrzadeh, M. 2011. Experimental
support for a categorical compositional distributional model
of meaning. In EMNLP, 1394–1404.
Grefenstette, E.; Dinu, G.; Zhang, Y.-Z.; Sadrzadeh, M.; and
Baroni, M. 2013. Multi-step regression learning for compo-
sitional distributional semantics. In Proceedings of the 10th

International Conference on Computational Semantics.
Hermann, K. M., and Blunsom, P. 2013. The role of syntax
in vector space models of compositional semantics. In ACL,
894–904.
Jones, M. N., and Mewhort, D. J. 2007. Representing word
meaning and order information in a composite holographic
lexicon. Psychological review 114(1):1.
Klein, D., and Manning, C. D. 2003. Accurate unlexicalized
parsing. In ACL, 423–430.

Landauer, T. K., and Dutnais, S. T. 1997. A solution to
plato’s problem: The latent semantic analysis theory of ac-
quisition, induction, and representation of knowledge. Psy-

chological review 211–240.
Mitchell, J., and Lapata, M. 2008. Vector-based models of
semantic composition. In ACL, 236–244.
Mitchell, J., and Lapata, M. 2010. Composition in distribu-
tional models of semantics. Cognitive Science 34(8):1388–
1439.
Pang, B., and Lee, L. 2005. Seeing stars: exploiting class
relationships for sentiment categorization with respect to rat-
ing scales. In ACL, 115–124.
Plate, T. 1991. Holographic reduced representations: Con-
volution algebra for compositional distributed representa-
tions. In IJCAI, 30–35. Citeseer.
Polajnar, T.; Fagarasan, L.; and Clark, S. 2013. Learning
type-driven tensor-based meaning representations. CoRR

abs/1312.5985.
Rudolph, S., and Giesbrecht, E. 2010. Compositional
matrix-space models of language. In ACL, 907–916.
Rumelhart, D.; Hinton, G.; and Williams, R. 1986. Learn-
ing representations by back-propagating errors. Nature

323(6088):533–536.
Smolensky, P. 1990. Tensor product variable binding and the
representation of symbolic structures in connectionist sys-
tems. Artificial Intelligence 46(12):159 – 216.
Socher, R.; Lin, C. C.; Ng, A. Y.; and Manning, C. D. 2011.
Parsing Natural Scenes and Natural Language with Recur-
sive Neural Networks. In ICML.
Socher, R.; Huval, B.; Manning, C. D.; and Ng, A. Y. 2012.
Semantic compositionality through recursive matrix-vector
spaces. In EMNLP-CoNLL, 1201–1211.
Socher, R.; Bauer, J.; Manning, C. D.; and Ng, A. Y. 2013a.
Parsing With Compositional Vector Grammars. In ACL.
Socher, R.; Perelygin, A.; Wu, J. Y.; Chuang, J.; Manning,
C. D.; Ng, A. Y.; and Potts, C. 2013b. Recursive Deep Mod-
els for Semantic Compositionality Over a Sentiment Tree-
bank. In EMNLP, 1631–1642.
Wang, S., and Manning, C. 2012. Baselines and bigrams:
Simple, good sentiment and topic classification. In ACL,
90–94.
Widdows, D. 2008. Semantic vector products: Some ini-
tial investigations. In Second AAAI Symposium on Quantum

Interaction, volume 26, 28th. Citeseer.
Yessenalina, A., and Cardie, C. 2011. Compositional
matrix-space models for sentiment analysis. In EMNLP,
172–182.
Yu, D.; Deng, L.; and Seide, F. 2013. The deep tensor neural
network with applications to large vocabulary speech recog-
nition. Audio, Speech, and Language Processing, IEEE

Transactions on 21(2):388–396.

1543




