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Abstract 
In the field of NLP, most of the existing domain adaptation 
studies belong to the feature-based adaptation, while the 
research of instance-based adaptation is very scarce. In this 
work, we propose a new instance-based adaptation model, 
called in-target-domain logistic approximation (ILA). In 
ILA, we adapt the source-domain data to the target domain 
by a logistic approximation. The normalized in-target-
domain probability is assigned as an instance weight to each 
of the source-domain training data. An instance-weighted 
classification model is trained finally for the cross-domain 
classification problem. Compared to the previous techniques, 
ILA conducts instance adaptation in a dimensionality-
reduced linear feature space to ensure efficiency in high-
dimensional NLP tasks. The instance weights in ILA are 
learnt by leveraging the criteria of both maximum likelihood 
and minimum statistical distance. The empirical results on 
two NLP tasks including text categorization and sentiment 
classification show that our ILA model has advantages over 
the state-of-the-art instance adaptation methods, in cross-
domain classification accuracy, parameter stability and 
computational efficiency. 
 Introduction 

For many NLP tasks, e.g., text categorization, sentiment 
classification, etc., it is nowadays very easy to obtain a 
large collection of labeled data from different domains in 
the vast amount of Internet texts. But not all of them are 
useful for training a desired target-domain classifier. Thus, 
it is necessary for us to employ an instance adaptation 
technique to identify the most important training instances, 
and increase their weights in the training process. 
However, to the best of our knowledge, most existing work 
for domain adaptation in NLP employs feature-based 
adaptation, while the research of instance-based adaptation 
is very scarce (Jiang and Zhai, 2007; Pan and Yang, 2010; 
Xia et al., 2013a).  

The instance adaptation methods were mainly proposed 
by the machine learning community in the past. In machine 
learning, “instance adaptation” is   also   termed   “covariate  
shift”  or  “instance  selection  bias”,  where   the  key  problem  
is density ratio estimation (DRE). Series of kernel-based 
methods were proposed to solve the DRE problem 
(Shimodaira, 2000; Huang et al., 2007; Sugiyama et al., 
2007; Tsuboi et al., 2008; Kanamori et al., 2009). Among 
them, the KLIEP algorithm (Sugiyama et al., 2007) is the 
representative one. It estimates the density ratio based on a 
linear model in a Gaussian kernel space. 

However, the kernel-based methods are mostly designed 
under tasks of low-dimensional continuous distributions. It 
is hard to apply them directly to tasks of high-dimensional 
discrete distributions. E.g., if KLIEP is applied to such 
tasks, it is difficult to choose a suitable kernel function. 
The kernel function mapping in high-dimensional feature 
space is also computationally impractical.  

In this work, we propose a new instance adaptation 
model, called in-target-domain logistic approximation 
(ILA), to adapt the source-domain training data to the 
target domain by a logistic approximation. In ILA, instance 
adaptation is conducted in a linear feature space, rather 
than a complex kernel space. A domain-sensitive feature 
selection method is proposed furthermore to reduce the 
dimensionality of the linear feature space. Both make ILA 
efficient for high-dimensional NLP tasks. 

More recently, Xia et al. (2013b) proposed an instance 
weighting approach via PU learning (PUIW) for domain 
adaptation in sentiment classification. Although PUIW is 
applicable to high-dimensional NLP tasks, the instance 
weights are learnt by two separated steps in PUIW. The 
instance weight learning is not efficient, and the adaptation 
performance depends heavily on the preset value of the 
calibration parameter. In ILA, the instance weights are 
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estimated by leveraging the criteria of both maximum 
likelihood and minimum statistical distance in one single 
model. It makes ILA more stable in parameter sensitivity. 

We evaluate our ILA algorithm on ten datasets of two 
NLP tasks including cross-domain text categorization and 
sentiment classification. The empirical results show that 
ILA is superior to the state-of-the-art instance adaptation 
methods, in classification accuracy, parameter stability and 
computational efficiency. 

Related Work 
While the feature-based adaptation has been sufficiently 
studied in the field of NLP (Daume III, 2007; Blitzer et al., 
2007; Pan et al., 2008; Pan et al., 2010; Glorot et al., 2011; 
Duan et al., 2012), the work of instance-based adaptation is 
relatively scarce. In this work, we focus on instance-based 
adaptation. 

In the machine learning community, instance adaptation 
is also known as the “covariate  shift” or “instance  selection  
bias” (Zadrozny, 2004). There the key issue is the density 
ratio estimation (DRE). The estimated density ratio could 
then be used to generate weighted training samples for 
statistical machine learning. There were series of kernel-
based methods to solve the DER problem. For example, 
Shimodaira (2000), Dudik et al. (2005) and Huang et al. 
(2007) utilized kernel density estimation, maximum 
entropy density estimation, and kernel mean matching 
respectively. Sugiyama et al., (2007) proposed a KLIEP 
algorithm to directly estimate the density ratio by using a 
linear model in a Gaussian kernel space. Parameters were 
learnt by minimizing the K-L divergence between the true 
and approximated distributions. The least square criterion 
was also studied in (Kanamori et al., 2009). Tsuboi et al. 
(2008) extended KLIEP by employing a log-linear model 
instead of the linear model. It made KLIEP feasible in the 
setting of large-scale test dataset, yet with low-dimensional 
feature space.  

However, it is hard to apply these kernel-based methods 
to the NLP tasks of high-dimensional discrete distributions 
directly. The ILA model proposed here uses a logistic 
approximation for instance adaptation in a dimensionality-
reduced linear space, without kernel function mapping. It 
makes instance adaptation applicable to high-dimensional 
NLP tasks. 

Bickel et al. (2007) utilized a logistic regression model 
to learn the density ratio together with the classification 
parameters, under the multi-task learning framework. Its 
aim is to maximize the likelihood of data in both domains. 
By contrast, the goal in ILA is to use the instance-weighted 
source-domain labeled data to maximize the likelihood of 
the data in the target domain. 

Recently, Xia et al. (2013b) proposed instance selection 
and instance weighting algorithm via PU learning for 
domain adaptation in sentiment classification. Instance 

weights were learnt by two separate steps. Each training 
sample is assigned with an in-target-domain probability at 
first; the calibrated probabilities were then used as weights 
to train an instance-weighted sentiment classifier. In 
comparison, the instance weights in ILA are estimated in 
one single model. 

Problem Formalization 
To facilitate the following discussion, we introduce some 
notations at first. Let p(x)p(x) , p(y)p(y)  and p(yjx)p(yjx)  respectively 
denote the instance, class and posterior probability, where 
x2Xx2X  is the feature vector, and y2Yy2Y  is the class label. 
The subscript ss and tt denote the source and target domain.  

Let µμµμ  be the parameter of a classification model. Since 
labeled data are not available in the target domain, the goal 
of instance adaptation is to use the source-domain labeled 
data as an approximate, to maximize the likelihood of the 
data in the target domain:  

µμ¤ = arg max
µμ
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X
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where ~pt(x)~pt(x)  and ~pt(yjx)~pt(yjx) denote the approximated target-
domain distributions, which are adapted from the source 
domain. 1 

We use w(x) = ~pt(x)
ps(x)w(x) = ~pt(x)
ps(x) to denote the instance weight. The 

empirical form of the above problem is:  

µμ¤ = argmax
µμ

1

Ns

NsX

n=1

w(xn) logp(xn; ynjµμ)µμ¤ = argmax
µμ

1

Ns

NsX

n=1

w(xn) logp(xn; ynjµμ)        (1) 

where  NsNs is the size of source-domain training set.  
Therefore, the key problem in instance adaptation is the 

estimation of the instance weight w(x) = ~pt(x)
ps(x)w(x) = ~pt(x)
ps(x).  

The Instance Adaptation Model 
In this work, we propose an instance adaptation approach, 
called in-target-domain logistic approximation (ILA). 

In-target-domain Logistic Approximation 
In ILA, it is assumed that a target-domain instance xx  is 
generated by the following instance adaptation process:  

1) An instance xx  is drawn by first sampling xx  from the 
source-domain distribution ps(x)ps(x);  

2) An in-target-domain selector then adapts xx  to the target 
domain, based on a logistic approximation. 

                                                 
1 The second equation holds because it is assumed in instance-
based adaptation that ~pt(yjx) ¼ ps(yjx)~pt(yjx) ¼ ps(yjx) (Pan and Yang, 2010). 
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Under this assumption, the approximated target-domain 
instance distribution can be formulized as: 

~pt(x) =® ¢ 1

1+ e¡¯ˉTx
ps(x)~pt(x) =® ¢ 1

1+ e¡¯ˉTx
ps(x)                 (2) 

where ®®  is a normalization factor making ~pt(x)~pt(x)  a valid 
probability; ¯ˉ¯ˉ is the feature weight. Note that ®® and ¯ˉ¯ˉ  are 
parameters of the instance adaptation model. They should 
be distinguished from the parameter µμµμ  of the classification 
model in Equation (1). 

The normalized in-target-domain probability  

w(x) =
®

1 + e¡¯ˉTx
w(x) =

®

1 + e¡¯ˉTx
                           (3) 

will be used as instance weights for training an instance-
weighted classification model after instance adaptation.  

Instance Adaptation Parameter Learning 
There are two different types of criteria that can be used to 
learn the instance adaptation parameters.  

Maximum Likelihood (ML): On one hand, we can view 
the in-target-domain selector as a binary classification 
problem (i.e., a logistic regression model), where the class 
labels   are   the   “target domain”   and   “source domain”. 
Parameters are learnt to best distinguish data of two 
different domains. For this purpose, we define the negative 
log-likelihood function as: 

Jml = ¡ 1

N

Ã
NtX

i=1

log
1

1 + e¡¯ˉTxi
+

NsX

j=1

log
e¡¯ˉ

Tx0
j

1 + e¡¯ˉ
Tx0

j

!

Jml = ¡ 1

N

Ã
NtX

i=1

log
1

1 + e¡¯ˉTxi
+

NsX

j=1

log
e¡¯ˉ

Tx0
j

1 + e¡¯ˉ
Tx0

j

!

 (4) 

where x0x0  denotes the source-domain training sample, NsNs 
and NtNt respectively denote the size of the source and target 
domain training set, and N =Ns +NtN =Ns +Nt. 

According to Equation (3), the posterior probability of a 
sample belonging to the target domain is proportional to 
the instance weight in instance adaptation. Therefore, by 
maximizing Equation (4), the samples with higher target-
domain probability will receive relatively larger weights in 
instance adaptation.  

In fact, the ML criterion was originally used in PUIW 
(Xia et al., 2013b), where a semi-supervised target/source 
domain classifier was learnt based on EM algorithm. But in 
PUIW the in-target-domain probability should be 
calibrated before serving as the instance weight. By 
contrast, the instance weights in ILA are estimated in one 
single model, based on a combined cost function. 

Minimum Statistical Distance (MSD): On the other hand, 
we can learn the parameters by minimizing the statistical 
distance between the true target-domain distribution pt(x)pt(x) 
and the approximated one ~pt(x)~pt(x). Sugiyama et al. (2007) 
proposed a Kullback-Leibler (K-L) importance estimation 

procedure (i.e., KLIEP) under a linear instance adaptation 
model.  

Here, we will derive the minimum K-L divergence 
criterion under ILA: 

KL(ptjj~pt) =

Z

X
pt(x) log

pt(x)

~pt(x)
dx

= KL(ptjjps)¡
Z

X
pt(x) log

®

1 + e¡¯ˉTx
dx:

KL(ptjj~pt) =

Z

X
pt(x) log

pt(x)

~pt(x)
dx

= KL(ptjjps)¡
Z

X
pt(x) log

®

1 + e¡¯ˉTx
dx:

 

Note that the first term is the K-L divergence of pt(x)pt(x) and 
ps(x)ps(x). It is independent of ®®  and ¯ˉ¯ˉ , and can be ignored in 
optimization: 

argmin
®;¯ˉ

KL(ptjj~pt) = argmin
®;¯ˉ

¡
Z

X
pt(x) log

®

1 + e¡¯ˉTx
dx:argmin

®;¯ˉ
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®;¯ˉ
¡

Z

X
pt(x) log

®

1 + e¡¯ˉTx
dx: 

We add the constraint that ~pt(x)~pt(x) is a valid probability 
Z

X
~pt(x)dx = 1;

Z

X
~pt(x)dx = 1; 

and take the empirical form of the optimization problem: 

min
®;¯ˉ

¡ 1

Nt

NtX
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®

1 + e¡¯ˉTxi
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1

Ns
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Tx0
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s:t:
1
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j=1

®

1 + e¡¯ˉ
Tx0

j

= 1:

  

Such an equality constrained problem was optimized by 
gradient descent with feasibility satisfaction in KLIEP.  

In ILA, the problem can become unconstrained by 
solving ®®  from the equality constraint and plugging that 
back into the cost function. This leads to optimization 
efficiency in comparison with KLIEP. 

After removing the constant term, we get the final 
minimum statistical distance cost function: 

Jmsd =
1

Nt

NtX

i=1

log(1 + e¡¯ˉ
Txi) + log

NsX

j=1

1

1 + e¡¯ˉ
Tx0

j

:Jmsd =
1

Nt

NtX

i=1

log(1 + e¡¯ˉ
Txi) + log

NsX

j=1

1

1 + e¡¯ˉ
Tx0

j

: (5) 

The Combined Cost Function: In density ratio estimation, 
it is reasonable to learn the instance weight by minimizing 
the statistical distance such as K-L divergence. However, 
in instance adaptation for cross-domain classification, the 
criterion sometimes tends to be arbitrary due to over-fitting. 
Blindly minimizing the statistical distance may encourage 
the system to assign particularly large weights to the most 
target-domain-relevant instances. If the instance adaptation 
assumption (e.g.,  ~pt(yjx) ¼ ps(yjx)~pt(yjx) ¼ ps(yjx)) does not hold in these 
samples, the cross-domain classification performance will 
be severely hurt. By contrast, the ML criterion seems to be 
more moderate. 

Therefore, we propose a combined cost function to 
leverage two different types of criteria for learning the 
parameters in ILA: 
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J = ¸Jmsd + (1¡ ¸)JmlJ = ¸Jmsd + (1¡ ¸)Jml                        (6) 

where ¸ 2 [0; 1]¸ 2 [0; 1] is a tradeoff parameter. When ¸=0¸=0 , it 
becomes the ML criterion; when ¸=1¸=1, it becomes the 
MSD criterion. 
Gradient Descent Optimization: Since both JmlJml and JmsdJmsd 
are unconstrained, we can easily use the gradient descent 
method to minimize JJ . The gradients of JmlJml and JmsdJmsd are 
as follows: 
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where ±(¢)±(¢) denotes the sigmoid function. 

Instance Adaptation Feature Selection  
Furthermore, we propose a domain-sensitive feature 
selection technique, to reduce the dimension of the linear 
feature space in ILA. 

Information gain (IG) has been identified as one of the 
best feature selection methods (Yang and Pedersen, 1997) 
in document categorization. Motivated by that, we use IG 
to calculate the dependence of features and domains. Note 
that here we aim to select domain-sensitive features. Thus, 
we modify the standard IG to calculate the relevance 
between a term xkxk  and the domain indicator variable dd 
(rather than the class label yy ): 

IG(xk) =¡
X

l2f0;1g

p(d = l) log p(d = l)

+ p(xk)
X

l2f0;1g

p(d = ljxk) log p(d = ljxk)

+ p(¹xk)
X

l2f0;1g

p(d = lj¹xk) log p(d = lj¹xk):

IG(xk) =¡
X

l2f0;1g

p(d = l) log p(d = l)

+ p(xk)
X

l2f0;1g

p(d = ljxk) log p(d = ljxk)

+ p(¹xk)
X

l2f0;1g

p(d = lj¹xk) log p(d = lj¹xk):

 

where d = 1d = 1 denotes the target domain, d = 0d = 0 denotes the 
source domain. The top-ranked terms will be selected as 
features in our ILA algorithm. In the experimental study, 
we will discuss the effects of feature selection in ILA. 

Instance-weighted Classification Model 
So far we have introduced the instance adaptation model. 
Once the parameter ®®  and ¯ˉ¯ˉ have been learnt, we first use 
Equation (3) to calculate the instance weight for each 
source-domain training sample. Then, we train an instance-
weight classification model based on Equation (1) for the 
cross-domain classification problem. 

Standard classification models, such as Naïve Bayes, 
MaxEnt and SVMs, can all be extended to an instance-
weighted version, by incorporating the instance weights 
into the training process. In this work, we only adopt the 
instance-weighted naïve Bayes (IWNB) model. Details of 
IWNB can be found in (Xia et al., 2013b).  

Experimental Study 

Experimental Settings and Datasets 
To fully evaluate the performance of ILA, we conduct the 
domain adaptation experiments on two different NLP tasks: 
1) text categorization; 2) sentiment classification. 

For text categorization, we employ the 20 Newsgroups 
dataset2 for experiments. It contains seven top categories, 
and there are 20 subcategories under the top categories. We 
follow the experimental settings in (Dai et al., 2007) for 
domain adaptation. That is, we select four top categories 
(“com”, ”rec”, ”sci” and ”talk”) as the class labels, and 
generate source and target domains based on subcategories. 
For   instance,   “med”   and   “space”   are   two   subcategories  
under  “sci”,  and  “guns”  and  “misc”  are   two  subcategories  
under   “talk”.   The   datasets   are   split   in   such   a   way   that  
“med”  and  “guns”  are  used  as  the  source  domain  data, and 
“space”  and  “misc”  are  used  as  the  target  domain  data. 

For sentiment classification, we follow the datasets and 
experimental settings used by (Xia et al., 2013b). That is, 
the Movie Review dataset3 is used as the source domain, 
and each of the Multi-domain sentiment datasets4 (Book, 
DVD, Electronics, and Kitchen) serves as the target 
domain. We randomly choose 200 labeled data from the 
target domain, and mix them with 2000 source-domain 
labeled data5 to construct a domain-mixed training dataset. 
The remaining data in the target domain is used as the test 
set.  

In both of the two tasks, unigrams and bigrams with 
term frequency no less than 4 are used as features for 
classification. We randomly repeat the experiments for 10 
times, and report the average results in Table 1. The 
tradeoff parameter ¸̧ is set to be 0.7 in text categorization 
and 0.6 in sentiment classification. The percentage in 
instance adaptation feature selection is set to be 30% and 
50% in text categorization and sentiment classification, 
respectively. To avoid the over-fitting problem mentioned 
in the MSD criterion, we set the maximum iteration steps 
in gradient descent optimization as 30. The paired t-test 
(Yang and Liu, 1999) is employed for significance testing. 

                                                 
2 http://qwone.com/~jason/20Newsgroups/ 
3 http://www.cs.cornell.edu/people/pabo/movie-review-data/ 
4 http://www.cs.jhu.edu/~mdredze/datasets/sentiment/ 
5 It is designed to test if the instance adaptation approach could 
identify the hidden target-domain-relevant samples and make full 
use of them. 

1603



Compared Systems 
The following systems are implemented for comparison 
with our ILA model: 
1) No-Adaptation: the standard machine learning method 

using all training samples; 
2) KLIEP-Linear: the KLIEP model (Sugiyama et al., 

2007) using a linear kernel; 
3) KLIEP-Gaussian: the KLIEP model using a Gaussian 

kernel; 
4) PUIS: the instance selection model proposed by (Xia et 

al., 2013b) via PU learning; 
5) PUIW: the instance weighting model proposed by (Xia 

et al., 2013b) via PU learning. 

Domain Adaptation Performance 
In Table 1, we report the domain adaptation performance 
of the six evaluated systems on text categorization and 
sentiment classification. 

Text categorization: It can be seen that KLIEP-Linear 
fails in instance adaptation. It is even 5.9% lower than the 
No-Adaptation baseline. KLIEP-Gaussian is much better, 
but the improvement is very limited (0.9%). PUIS shows 
comparable performance to KLIEP-Gaussian (0.800 vs. 
0.797), which is also less efficient. PUIW is shown to be 
quite efficient in instance adaptation. It gains a 2.5% 
increase against the No-Adaptation baseline. 

By contrast, our ILA model yields the best performance 
(0.835). It outperforms the No-Adaptation, KLIEP-Linear, 
KLIEP-Gaussian, PUIS and PUIW systems 4.7, 10.6, 3.8, 
3.5 and 2.2 percentages, respectively. All improvements 
are significant according to the paired t-test (p-value<0.05), 
except for the “rec vs sci” dataset compared to PUIW.  

Sentiment classification: The observation is similar to that 
in text categorization. KLIEP-Linear still fails in instance 
adaptation; while this time KLIEP-Gaussian behaves more 
efficient. It improves the No-Adaptation baseline 3.2%, 
and beats PUIS (0.763 vs. 0.747), but is still slightly lower 
than PUIW (0.763 vs. 0.771). The performance of our ILA 
model is still sound (0.783). It outperforms No-Adaptation, 
KLIEP-Linear, KLIEP-Gaussian, PUIS and PUIW 5.2, 8.9, 
2.0, 3.6 and 1.2 percentages, respectively. All of the 
improvements are significant (p-value<0.05). 

Effect of Instance Adaptation Feature Selection 
In this subsection, we discuss the effect of feature selection 
in instance adaptation. Due to space limitation, we only 
present the results on four datasets in Figure 1. The same 
conclusions can be drawn from the other datasets.  

It can be observed across four datasets that, using only 
1-10% (500-5,000) features can obtain a comparable (or 
even better) performance than all features (around 50,000) 
in ILA. It suggests that our ILA model can work efficiently 
in a dimensionality-reduced linear feature space.  

Task Dataset K-L 
Divergence 

No 
Adaptation 

KLIEP PUIS PUIW ILA Linear Gaussian 

Text 
categorization 

sci vs com 28.3 0.602 0.504 0.624 0.602 0.619 0.630 
talk vs com 18.5 0.908 0.910 0.922 0.909 0.907 0.959 
sci vs talk 29.3 0.852 0.851 0.855 0.880 0.863 0.921 
rec vs sci 28.3 0.651 0.593 0.652 0.689 0.742 0.742 

rec vs com 20.6 0.900 0.693 0.910 0.901 0.911 0.922 
talk vs rec 35.3 0.820 0.821 0.821 0.821 0.834 0.837 

Avg. 26.7 0.788 0.729 0.797 0.800 0.813 0.835 

Sentiment 
classification 

movie  →  book 4.06 0.756 0.737 0.768 0.757 0.774 0.780 
movie  →  dvd 2.12 0.762 0.738 0.783 0.762 0.782 0.796 
movie  →  elec 13.4 0.697 0.673 0.741 0.726 0.750 0.768 

movie  →  kitchen 13.4 0.709 0.626 0.759 0.743 0.777 0.785 
Avg. 8.25 0.731 0.694 0.763 0.747 0.771 0.783 

Table 1: Domain adaptation performance of different systems on two NLP tasks. In text categorization, “A vs B” means that the top 
category A and B are used as class labels, and subcategories under the top categories are used to generate the source and target 
domain datasets. In sentiment classification, “A → B” denote that we use dataset A as the source domain, and B as the target domain.  
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Figure 1: The effect of domain-sensitive feature selection in ILA. 
The x-axis denotes the percentage of selected features; the y-axis 
denotes the domain adaptation accuracy. 
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Sensitivity to the Tradeoff Parameter ¸̧ 
We further discuss the sensitivity of the tradeoff parameter 
¸̧ in ILA. In Figure 2, we still only present the results on 
four datasets. Similar conclusions can be drawn from the 
other datasets. 

As shown in Figure 2, neither the ML criterion (¸=0¸=0) 
nor the MSD criterion (¸=1¸=1) yields the best instance 
adaptation performance. In all of the four datasets, the 
tradeoff parameter ¸̧ is quite stable. The best accuracy can 
be obtained when ¸̧ is located at 0.5 to 0.7. It suggests that 
the ML and MSD criteria have distinct strength, and a 
combination of them is reasonable for instance adaptation. 

Comparison of Parameter Stability 
In this subsection, we compare ILA, KLIEP-Gaussian and 
PUIW in parameter stability. In Figure 3, we report the 
sensitivity of the calibration parameter ®® in PUIW, and the 
kernel function parameter ±±  in KLIEP-Gaussian.  

It can be seen that the performances of both PUIW and 
KLIEP-Gaussian change dramatically as their parameters 
change. In PUIW, the domain adaptation accuracy drops 
8% when ®®  changes from 0.1 to 0.01. The change of ±±  
from 5 to 1 in KLIEP-Gaussian may cause a decline of 
more than 10%. Moreover, the best parameters are not 
consistent across different datasets. For example, KLIEP-
Gaussian obtains the best accuracy on four datasets when ¾¾  
is 5, 8, 15 and 20, respectively.  

By contrast, our ILA model tends to be more moderate 
and stable in parameter tuning.  

Comparison of Computational Efficiency 
Finally, we compare the computational efficiency of three 
models. We implement all three algorithms with Python, 
and run the experiments on a server with a 2.2GHz Intel 
Xeon Processor and 4GB RAM.  

In Table 2, we report the average computational time for 
running KLIEP-Gaussian, PUIW and ILA on two tasks, 
respectively.  Observed from the results, the computational 
cost of KLIEP-Gaussian is much higher than that of PUIW 
and ILA. Note that in KLIEP-Gaussian, we have already 

applied domain-sensitive feature selection before kernel 
function mapping, otherwise the computational times will 
be much longer. The computational cost of PUIW is about 
1.5 to 2 times that of ILA. 

It indicates that our ILA approach outperforms the state-
of-the-art approaches in computational efficiency. 

Conclusions and Future Work 
We propose an instance adaptation model called in-target-
domain logistic approximation (ILA) for high-dimensional 
domain adaptation tasks. ILA works in a dimensionality-
reduced linear feature space, and learns the instance 
weights by leveraging the criteria of both maximum 
likelihood and minimum statistical distance. In comparison 
with the existing instance domain adaptation approaches, 
ILA has certain advantages in cross-domain classification 
accuracy, parameter stability and computational efficiency. 

One of the shortcomings in ILA is that it only models 
the adaptation of marginal distribution (ps(x) ! ~pt(x)ps(x) ! ~pt(x)), but 
ignore the adaptation of ps(yjx) ! pt(yjx)ps(yjx) ! pt(yjx). This may not 
hold for real-world applications. We plan to conduct an in-
depth study regarding to this point in our future work. 
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Figure 2: Sensitivity of the tradeoff parameter in ILA. The x-axis 
denotes the value of the tradeoff parameter ¸̧ in Equation (6). 
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Figure 3: Parameter stability of PUIW and KLIEP-Gaussian. The x-
axis denotes the value of the calibration parameter ®®  in PUIW 
(left), and the kernel parameter ±±  in KLIEP-Gaussian (right). 

Task KLIEP-Gaussian PUIW ILA 
#1000 #100 

Text categorization 19346s 2121s 241s 161s 
Sentiment classification 5219s 482s 184s 97s 

Table 2: Comparisons of computational efficiency.   “#1000”   and  
“#100”  mean that the number of centers used in the Gaussian kernel 
function is 1000 and 100 respectively. 

1605



References 
Bickel, S.; Brückner, M.; and Scheffer, T. 2007. 
Discriminative learning for differing training and test 
distributions. In Proc. of ICML. 
Blitzer, J.; Dredze, M.; and Pereira, F. 2007. Biographies, 
Bollywood, Boom-boxes and Blenders: Domain 
Adaptation for Sentiment Classification. In Proc. of ACL. 
Dai, W.; Xue, G.; Yang, Q.; and Yu, Y. 2007. Transferring 
Naive Bayes Classifiers for Text Classification. In Proc. of 
AAAI. 
Daume III H. 2007. Frustratingly Easy Domain Adaptation. 
In Proc. of ACL. 
Duan, L. ; Xu, D. ; and Tsang, I. W. 2012. Learning with 
Augmented Features for Heterogeneous Domain 
Adaptation. In Proc. of ICML. 
Dudik, M.; Schapire, R.; and Yu, P. S. 2005. Correcting 
sample selection bias in maximum entropy density 
estimation. In  NIPS. 
Glorot, X.; Bordes, A.;  and Bengio, Y. 2011. Domain 
Adaptation for Large-Scale Sentiment Classification: A 
Deep Learning Approach. In Proc. of ICML. 
Huang, J.; Smola, A.; Gretton, A.; Borgwardt, K.; and 
Schölkopf, B. 2007. Correcting sample selection bias by 
unlabeled data. In NIPS. 
Jiang, J., and Zhai, C. 2007. Instance weighting for domain 
adaptation in NLP. In Proc. of ACL. 
Kanamori, T.; Hido, S.; and Sugiyama, M. 2009. A least-
squares approach to direct importance estimation. Journal 
of Machine Learning Research, 10:1391–1445. 
Pan, S. J.; Tsang, I. W.; Kwok, J. T.;  and Yang, Q. 2008. 
Domain Adaptation via Transfer Component Analysis. In 
Proc of IJCAI. 
Pan, S. J.,  and Yang, Q. 2010. A survey on transfer 
learning. IEEE Trans. Knowledge and Data Engineering, 
22(10): 1345–1359. 
Pan, S. J.; Ni, X.; Sun, J.; Yang, Q.; and Chen, Z. 2010. 
Cross-domain sentiment classification via spectral feature 
alignment. In Proc. of WWW. 
Shimodaira, H. 2000. Improving predictive inference under 
covariate shift by weighting the log-likelihood function. 
Journal of Statistical Planning and Inference, 90:227–244, 
2000. 
Sugiyama, M.; Nakajima, S.; Kashima, H.; Bunau, P. V.; 
and Kawanabe, M. 2007. Direct importance estimation 
with model selection and its application to covariate shift 
adaptation. In NIPS. 
Tsuboi, Y.; Kashima, H.; Hido, S.; Bickel, S.; and 
Sugiyama, M. 2008. In Prof. of SDM. 
Xia, R; Zong, C; Hu, X.; and Cambria, E. 2013a. Feature 
Ensemble plus Sample Selection: Domain Adaptation for 
Sentiment Classification. IEEE Intelligent Systems, 28(3): 
10–18. 

Xia, R.; Hu, X.; Lu, J.; Yang, J.; and Zong, C. 2013b. 
Instance Selection and Instance Weighting for Cross-
domain Sentiment Classification via PU Learning. In Proc 
of IJCAI. 
Yang, Y., and Liu, X. 1999. A re-examination of text 
categorization methods. In Proc. of SIGIR. 
Yang, Y., and Pedersen, J. O. 1997. A Comparative Study 
on Feature Selection in Text Categorization. In Proc. of 
ICML. 
Zadrozny, B. 2004. Learning and evaluating classifiers 
under sample selection bias. In Proc. of ICML. 
 

1606

http://books.nips.cc/
http://books.nips.cc/
http://books.nips.cc/



