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Abstract

In web search, users queries are formulated using only few
terms and term-matching retrieval functions could fail at re-
trieving relevant documents. Given a user query, the tech-
nique of query expansion (QE) consists in selecting related
terms that could enhance the likelihood of retrieving rele-
vant documents. Selecting such expansion terms is challeng-
ing and requires a computational framework capable of en-
coding complex semantic relationships. In this paper, we pro-
pose a novel method for learning, in a supervised way, se-
mantic representations for words and phrases. By embedding
queries and documents in special matrices, our model dis-
poses of an increased representational power with respect
to existing approaches adopting a vector representation. We
show that our model produces high-quality query expansion
terms. Our expansion increase IR measures beyond expansion
from current word-embeddings models and well-established
traditional QE methods.

Introduction
Traditional information retrieval (IR) models consider terms
as atomic units of information, disregarding the semantic
commonalities and the complex syntactic relationships in-
terweaving them in the discourse. One of the direct im-
plications of this strong assumption is the vocabulary mis-
match, i.e. a IR system could not retrieve documents which
express the same query concepts using different linguistic
expressions. For example, given a query chevrolet trucks, a
document containing chevy trucks could be missed even if
chevrolet and chevy are strictly related. A well-known, effec-
tive strategy to solve this issue is to perform query expansion
(QE) (Carpineto and Romano 2012), i.e. to expand the query
by adding semantically related terms or compound concepts,
which could be bigrams or longer phrases, i.e. chevy could
be an important expansion term. In this setting, it is crucial
to have a rich computational representation of the informa-
tion need for valuable expansion terms to be mined.

The tradition of creating continuous word embeddings
embodies the idea of folding sequences of terms into a “se-
mantic” space capturing their topical content. Generally, a
word embedding is a mathematical object associated to a
word lying in a hidden high-dimensional semantic space
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equipped with a metric. The metric can naturally encode se-
mantic or syntactic similarities between the corresponding
terms. A typical instantiation is to choose a vector embed-
ding for each term and estimate a similarity between terms
in the latent space by taking the inner product of their corre-
sponding embeddings (Deerwester et al. 1990). The mean-
ing of this similarity highly depends on how the embeddings
were obtained. Therefore, it is crucial to carve the semantic
space for the task at hand using some task-specific training
data (Bengio et al. 2006).

In this paper, we target at learning semantic represen-
tations of single terms and bigrams as a way to encode
valuable semantic relationships for expanding a user query.
Recently, a particularly successful way of selecting expan-
sion terms was to use correlation and statistical translation
models trained on aligned query / relevant document cor-
pus obtained by memorizing users’ clicks, i.e. clickthrough
data. We believe that a careful structured latent space has
several advantages over translation models. First, the infor-
mation need has an explicit representation in the concept
space, hence it is straightforward to ask questions about
the most similar terms given a query. Second, high-order
term co-occurrences would be automatically captured, thus
achieving better generalization. As a result of high-order
co-occurrences, we automatically embed in the same space
candidate terms both from relevant documents and similar
queries without additional effort. Finally, using task-specific
data, we learn the similarity function in such a way that
query representations lie in a neighbourhood of relevant doc-
ument terms, thus naturally increasing the likelihood of se-
lecting good expansion terms. To our knowledge, the util-
ity of semantic representations for query expansion purposes
has not been investigated yet.

We propose a new model capable of learning, from click-
through data, semantic representations for queries and arbi-
trary term or bigram concepts. Our model relies on the the-
oretical framework of the recently proposed Quantum Lan-
guage Modeling (QLM) for IR (Sordoni, Nie, and Bengio
2013). By employing such framework, our model embeds
documents and queries in a larger space than single terms
thus achieving higher semantic resolution without any com-
putational fallout. This is in stark contrast to existing ap-
proaches, which use simple vectors as term and query repre-
sentations. It is intuitive that text sequences should not lie in

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1586



the same semantic space as single terms, as their informative
content is higher. We will shed light on the theoretical im-
plications of this enlarged representation space by analyzing
our gradient updates. From an experimental standpoint, we
show that this increased semantic resolution is important for
query expansion purposes.

Related work
In this section, we briefly review the work which is close to
this paper. We organize the related work in two subsections:
query expansion approaches and semantic spaces.

Query expansion
Typical sources of query expansion terms are pseudo-
relevant documents (Xu and Croft 2000) or external static
resources, such as clickthrough data (Cui et al. 2002; Gao,
He, and Nie 2010; Gao and Nie 2012), Wikipedia (Arguello
et al. 2008) or ConceptNet (Kotov and Zhai 2012). A clas-
sical model based on pseudo-relevant documents was pro-
posed by Rocchio for the SMART retrieval system (Roc-
chio 1971). The new query vector is obtained by updat-
ing the original vector in the direction of the centroid of
pseudo-relevant documents and far away from non-relevant
ones. We will show that existing supervised embedding ap-
proaches perform similar embedding gradient updates. Our
model performs a refinement of those updates. Recently, at-
tention turned towards static resources which allow to avoid
multi-phase retrieval and noisy pseudo-relevant document
sets. In particular, clickthrough data has shown great suc-
cess as it can naturally bridge the gap from queries terms to
documents terms. Recently, Gao et al. (Gao and Nie 2012;
Gao, He, and Nie 2010) successfully performed QE by train-
ing a statistical translation model on clickthrough data and
showed that it performed better than a standard correlation
model (Cui et al. 2002).

Semantic spaces
In IR, the idea of using semantic term representations has
been first put forward by the advent of LSI (Deerwester et
al. 1990) and later by Probabilistic Latent Semantic Index-
ing (PLSI) (Hofmann 1999), Non-Negative Matrix Factor-
ization (NMF) (Lee and Seung 2000) and Latent Dirich-
let Allocation (LDA) (Blei et al. 2003). Although these
models are usually referred to as topic models, they can
be considered as implicitly learning semantic term repre-
sentations from document co-occurrence statistics. Neural-
Network Language Models (NLM) (Bengio et al. 2006) first
advanced the idea of explicitly learning word embeddings in
order to boost the performance of statistical Language Mod-
eling tasks. A notable amount of work followed these first
approaches in order to lower their computational require-
ments (Morin and Bengio 2005; Mnih and Kavukcuoglu
2013). Recently, (Mikolov et al. 2013) proposed the particu-
larly successful Skip-Gram word embedding model, com-
bining fast learning and accurate semantic resolution. In
general, very few embedding models have been used for
IR purposes. The most known are the recent Deep Struc-
tured Semantic Model (DSSM) (Huang et al. 2013) and Su-
pervised Semantic Indexing (SSI) (Bai et al. 2009). These

models learn embeddings by exploiting clickthrough data
and thus are related to our work. Both models try to learn
an embedding structure so as to maximize the final objective
function closely related to retrieval. However, the scoring
function and the representation paradigm are still inherited
from the vector space model (VSM) approach (Salton, Yang,
and Yu 1974) and thus differ from our approach: queries and
documents are represented as weighted word vectors and
then projected into a lower-dimensional vector space before
taking their inner product. Our model can be seen as using a
different scoring function and representation rationale which
allow documents and queries to have a richer representation
than single concepts. As our model shares many similarities
with SSI, we will describe this method in more details in the
next section.

Learning Concepts Embeddings
This section details our proposed approach for estimating
latent concept embeddings. We recall the notions behind the
SSI algorithm, shedding some light on its gradient updates
rationale. This will facilitate the task in highlighting the ma-
jor departures with respect to our model. In what follows,
we assume that we dispose of a dataset D = {(Ql, Dl)}Ll=1
composed of query / relevant document pairs. For all the pre-
sented models, the parameters to learn are the latent embed-
dings for each entry in a concept vocabulary V , containing
terms, bigrams or longer phrases, of size N . The unifying
rationale of all the models is to represents concepts, docu-
ments and queries in a latent space in order to maximize a
measure of similarity between Ql and Dl.

Supervised Semantic Indexing
Representation In SSI, the parameters to learn can be rep-
resented as a matrix U ∈ RK×N , where K is the dimen-
sionality of the latent embedding space and N the size of
the vocabulary. Each κ ∈ V can be represented as a one-hot
vector xκ = {δ1κ, . . . , δNκ}, where δij = 1 iff i = j. In this
way, the latent embedding of concept κ, x̃κ, can be easily
recovered by multiplying the parameter matrix by the one-
hot representation, x̃κ = Uxκ, x̃κ ∈ RK . In other words,
the latent embeddings x̃ are arranged in the columns of U ,
U:κ = x̃κ. Documents and queries are seen as unit-vectors in
the vocabulary space, i.e. q ∈ RN , ‖q‖2 = 1, where for ex-
ample qκ will be the frequency of occurrence κth concept in
the query. The latent queries and documents are represented
as linear combinations of concept embeddings which is the
same rationale behind the LSI linear projection model:

q̃ = Uq = Z−1
q

∑
κ∈Q

Uxκ = Z−1
q

∑
κ∈Q

x̃κ, (1)

where the sum is over all the concepts appearing in the query
and Zq is the normalization factor for q.

Scoring In order to produce a score for a document given a
query, SSI adopts a modification of the classical dot product
used in the classical VSM. Specifically, the scoring function
writes as:

sSSI(Q,D) = qT (UTU + I)d = q̃T d̃+ qT d. (2)

1587



SSI combines two scores obtained in different representation
spaces: the first one is the dot product on the latent space
and the second one is the dot product in the original space.
This way the model learns the tradeoff between using low
dimensional space and a classical term-based score.

Learning The parameter matrix U is learned by employ-
ing a margin ranking-loss which has already been used in
several learning-to-rank scenarios (Collobert et al. 2011):

LSSID (U) =
L∑
l=1

[1− sSSI(Ql, Dl) + sSSI(Ql, Dc)]+ (3)

where Dc is a non-relevant document for this query and
[y]+ = max(0, y) and 1 is called margin. This loss encour-
ages the model to keep the scores of relevant documents
greater than the scores of non-relevant ones at least by 1.
The loss is minimized through stochastic gradient descent
(SGD). Iteratively, one picks a random triplet (ql, dl, dc) and
update the parameters U by taking a gradient step for that
triplet. In order to gather more insights on how the model
behaves, we write the derivatives with respect to each of
the hidden embeddings appearing in the current update. De-
note x̃q, x̃d and x̃c the embedding of a concept appearing in
the query, relevant document and non-relevant document re-
spectively. The negative gradients for these parameters are:

−∂L
SSI
D

∂x̃q
≈ d̃l − d̃c, −

∂LSSID
∂x̃d

, ≈ q̃l,−
∂LSSID
∂x̃c

≈ −q̃l, (4)

where the approximation sign means up to a normaliza-
tion constant, i.e. the gradients should be multiplied re-
spectively by Z−1

ql
, Z−1

dl
and Z−1

c . By analyzing the gradi-
ent update step, we recognize the familiar form of Rocchio
query updates (Rocchio 1971). Each query word is moved
towards the direction of relevant documents and far from
non-relevant ones. As a by-product, the updated query rep-
resentation will point in that direction. We will see that the
updates of our model can be seen as a refinement of these
updates, where the contribution of the relevant and non-
relevant documents is weighted by its similarity to the query.

Quantum Entropy Minimization
In order to learn the latent embeddings, we stem from the
computational framework proposed by the recent Quantum
Language Modeling approach for IR (QLM) (Sordoni, Nie,
and Bengio 2013). This formal retrieval framework embeds
concepts into rank-one projectors. Documents and queries
are embedded into a special matrix called density matrix,
a well-known mathematical object in physics. The authors
show that this representation extends classical unigram lan-
guage models and can be used to capture richer information
than single terms from text excerpts. Given a query, docu-
ments are scored using a generalization of classical relative
entropy to matrix domains called quantum relative entropy.
Our contribution here is to show how it is possible to lever-
age the proposed representation and scoring function in or-
der to learn semantic representations for each concept. From
now on, we will call our model Quantum Entropy Minimiza-
tion (QEM).

Representation Stemming from the original QLM ap-
proach, we embed each concept in the vocabulary with a
rank-one projector Π̃κ. Rank-one projectors are projection
matrices onto one-dimensional subspaces. They are parame-
terized as outer products of unit-norm vectors, i.e. they have
only K free parameters, Π̃κ = x̃κx̃

T
κ , ‖x̃κ‖2 = 1. Hence,

we can still consider our latent embeddings as columns vec-
tors of a parameter matrix U ∈ RK×N , without entering
matrix domains. Also, our embeddings are normalized and
lie on the unit sphere.

Documents and queries are associated to a density matrix,
which can be understood as a convex combination of con-
cepts projectors. From a linear algebra perspective, a density
matrix W is symmetric, positive-semidefinite and of unitary
trace, W ∈ SK+ = {W : W ∈ RK×K ,W = WT ,W �
0,TrW = 1}. In QLM, the density matrix for a query (or a
document) is obtained by maximizing the following convex
log-likelihood form:

LQ(W ) =
∑
κ∈Q

log TrWΠκ, (5)

where the sum is over the number of concepts appearing
in the query. The maximization should be restricted to the
feasible set SK+ , i.e. the solution should be a proper density
matrix. The expression TrWΠκ can be considered as a sim-
ilarity between the query and the concept representations.
This maximization is difficult and has to be approximated
by iterative methods (Sordoni, Nie, and Bengio 2013).

In order to have a smooth analytic solution of Eq. 5, we
choose to approximate the objective by a linear Taylor’s ex-
pansion of log x around x = 1, log x ≈ x − 1. Hence, the
linear Taylor approximation LIQ(W ) of LQ(W ) writes as:

LIQ(W ) =
∑
κ∈Q

TrW Π̃κ (6)

up to a constant shift. In order to see what is the effect of this
approximation, note that 0 ≤ Tr W Π̃κ ≤ 1. The linear ap-
proximation cuts-off the infinity of the log function around
zero. Hence, the approximation is very accurate when the
density matrix is “around” Π̃, but badly underestimates the
loss when Tr W Π̃κ is low. As a result, the approximate ob-
jective could “forget” to represent some concepts in the doc-
uments, i.e. the objective could be high even if Tr W Π̃κ

is very low for some κ. Coming up with more accurate ap-
proximations is certainly an interesting way to improve the
model. For the purpose of this work however, we found that
this linear approximation works well in practice.

The maximization of Eq. 6 is performed by enforcing the
unit-trace constraint TrW = 1 through a Langrangian mul-
tiplier λ. We have:

LIQ(W ) =
∑
κ∈Q

TrW Π̃κ − λ (TrW − 1) (7)

We compute the gradient with respect to W and we set it
to zero obtaining λW =

∑
κ∈Q Π̃κ. By taking the trace on

both sides and exploiting the fact that for unit rank projectors
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Tr Π̃κ = 1, we find that the multiplier λ = NQ, the number
of concepts in the query. Therefore, the latent representation
W̃Q for the query Q can be written as:

W̃Q = NQ
−1

∑
κ∈Q

Π̃κ = NQ
−1

∑
κ∈Q

x̃κx̃
T
κ , (8)

As the combination of symmetric positive-definite matri-
ces is still positive-definite - see for example (Nielsen and
Chuang 2010) - the solution above is a valid maximizer of
LIQ(W ), i.e. W̃Q lies in the feasible set SK .

Considering the solution presented in Eq. 8, we see that
our model represents documents and queries as mixtures of
rank-one projectors. Contrary to existing embeddings mod-
els such as SSI, documents and queries lie in a larger space
than the concepts themselves. This is intuitively appealing
for it seems reductive to consider them as carrying the same
information as single concepts. In our model, this idea is
embodied by the notion of rank: concepts from the vocabu-
lary are embedded in rank-one matrices; as documents and
queries are mixtures of rank-one matrices, they can have
higher rank and tend to degenerate to rank-one matrices if
and only if the projectors for their component terms get
closer to each other, i.e. they all encode the same semantic
information.

Scoring Given a document density matrixWD and a query
density matrix WQ, both estimated through Eq. 8, QLM de-
fines the retrieval score for a document with respect to a
query with a generalization of the classical relative entropy
called quantum relative entropy:

s(Q,D) = TrWQ logWD, (9)

where log denotes the matrix logarithm, i.e. the classical log-
arithm applied to the matrix eigenvalues. In order to formu-
late a differentiable form of the scoring function, we expand
the matrix logarithm in Eq. 9 by its Taylor’s series around
IK , the identity matrix in RK×K . This is a common choice
for matrix logarithm (Nielsen and Chuang 2010). Truncating
to the linear expansion term we obtain:

logW ≈ logI W = W − IK . (10)

Hence, the first-order approximation of the matrix logarithm
is just the matrix itself, up to a constant shift. By substituting
the expression above in our scoring function we obtain our
linear approximation:

sQEM (Q,D) = TrWQ(WD − IK)
rank
= TrWQWD, (11)

where the rank equivalence is obtained by noting that the
constant shift does not depend on a particular document thus
cannot influence the relative rank of two documents with re-
spect to a given query. This scoring function is the general-
ization of dot product for symmetric matrices. However, in
the case of density matrices, sQEM (Q,D) is bounded and
ranges in [0, 1] (Nielsen and Chuang 2010).

Learning Similarly to SSI, we adopt margin-ranking loss
in order to train our model. In our case however, instead of

fixing the margin to 1, we consider it as an hyperparameter:

LQEMD (U) =
L∑
l=1

[m− sQEM (Ql, Dl) + sQEM (Ql, Dc)]+.

(12)
As our scoring function is bounded from above exactly by
1, parameterizing the margin is necessary. If the margin was
fixed to 1, the model would always suffer a loss. We also
choose to minimize our objective function by SGD. By ex-
ploiting the analytic approximate solution for the density
matrices in Eq. 8, we can rewrite our scoring function as:
sQEM (Q,D) = Z

∑
κ∈Q

∑
η∈D

Tr x̃κx̃Tκ x̃ηx̃
T
η

= Z
∑
κ∈Q

∑
η∈D

Tr x̃Tκ x̃ηx̃
T
η x̃κ (Linearity of trace)

= Z
∑
κ∈Q

∑
η∈D

(x̃Tκ x̃η)2, (Circular Property)

where the first inequality is given by the linearity of the
trace, the second one by the circular property of the trace
and Z = N−1

Q N−1
D . Working out the gradients is straight-

forward. Denote x̃ql , x̃dl and x̃dc the embedding of a con-
cept appearing in the query, in the relevant document and in
the non relevant document respectively. Our updates are:

−
∂LQEMD
∂ x̃q

≈ x̃Tq (W̃Dl
− W̃Dc

),

−
∂LQEMD
∂x̃d

≈ x̃Td W̃Q, −
∂LQEMD
∂x̃c

≈ −x̃Tc W̃Q, (13)

where the approximation sign means up to a normalization
constant, i.e. the gradients should be multiplied respectively
by 2N−1

Q , 2N−1
Dl

and 2N−1
Dc

. The updates look very similar
to the SSI updates except for a dot product, which appears
in the update. In order to gain more insight on what’s hap-
pening, let’s develop the update for x̃q by substituting the
density matrices with their explicit form in Eq. 8:

−∂L
QEM
D
∂x̃q

≈ N−1
Dl

∑
κ∈Dl

(x̃Tκ x̃q)x̃κ−N−1
Dc

∑
η∈Dc

(x̃Tη x̃q)x̃η. (14)

Differently from SSI, the update direction for a query con-
cept is not a static linear combination of relevant and non-
relevant document embeddings: our model does not require
x̃q to be near each of the concepts of the relevant document
x̃κ and far away each of the concepts of the non-relevant
document x̃η . Instead, x̃q is moved towards the region of
its nearest document concepts x̃κ and farther away from its
nearest non-relevant document concepts x̃η . Similarly to a
translation model, this has the effect of selecting which doc-
ument concepts the query concept should be aligned to: in
general the selection will be driven by co-occurrence pat-
terns. Interestingly, we also obtain a refinement of the Roc-
chio expansion method. The update direction for query ex-
pansion is obtained by weighting relevant and non-relevant
documents by their similarity to the query: we require the
query to be near to the most similar relevant documents
and far away from the most similar non-relevant documents,
which is intuitive and can help to filter out noise in the rele-
vance labels.
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Anchor Log # Anchors # κ # Uni # Big
WIKI 13,570,292 442,738 167,615 275,123

Table 1: Number of anchors, concepts, unigram and bigram
concepts in the anchor log used in the experiments.

Model p(κ|θE)

CTM
∑
η∈Q p(κ|η)p(η|θQ) ≈

∑
η∈Q p(κ|η)

SSI exp x̃Tκ q̃ ≈ exp
∑
η∈Q x̃

T
κ x̃η

QEM exp Tr W̃Q Π̃κ ≈ exp
∑
η∈Q(x̃Tκ x̃η)2

Table 2: Explicit parameterizations of the probability of an
expansion concept given the query for each of the models.

Experimental study
Experimental setup
All our experiments were conducted using the open source
Indri search engine (http://www.lemurproject.org). As query
expansion with external resources have shown to be effec-
tive for difficult web queries, we test the effectiveness of our
approach on the ClueWeb09B collection, a noisy web col-
lection containing 50,220,423 documents. We choose to use
the three set of topics of the TREC Web Track from 2010 to
2012 (topics 51-200). In addition to MAP, precision at top-
ranks is an important feature for query expansion models.
Hence, we also report NDCG@10 and the recent ERR@10,
which correlates better with click metrics than other editorial
metrics (Chapelle et al. 2009). The statistical significance
of differences in the performance of tested methods is de-
termined using a randomization test (Smucker, Allan, and
Carterette 2007) evaluated at α < 0.05.

Baselines We first propose to compare all our baselines
to a standard language modelling (LM) approach for IR,
which does not exploit query expansion techniques. In order
to provide a strong baseline performing traditional query ex-
pansion, we compare our model with the successful concept
translation model (CTM), which allows to find translations
from/to terms or longer phrases (Gao and Nie 2012). We also
propose to compare our model to SSI as it shares the same
learning rationale and was conceived for similar datasets.

Anchor log The studies asserting the efficiency of click-
through data for QE nearly all make use of proprietary query
logs (Gao and Nie 2012; Gao, He, and Nie 2010). In (Dang
and Croft 2010), the authors show that an anchor log made
of anchor text / title pairs can bring similar performance
to a real query log for query reformulation purposes. For
this paper, we built the anchor log from the high-quality
Wikipedia collection (http://www.wikipedia.org). Anchor
texts on Wikipedia have already been successfully used for
expansion purposes in (Arguello et al. 2008) for blog recom-
mendation task. In order to embed both terms and compound
concepts, we included all terms and bigrams occurring more
than 6 times in the corpus. Table 1 reports some statistics
about our paired corpus.

Query expansion In order to evaluate the effectiveness of
the proposed approach and the baselines, we perform QE

using the powerful KL-divergence framework (Zhai 2008).
KL has been used in numerous QE studies as a way of in-
tegrating expansion terms mined from a variety of external
resources (Kotov and Zhai 2012). Given a query language
model θQ and a document model θD, the documents in the
collection are scored according to the relative entropy:

sKL(Q,D) =
∑
κ∈V

p(κ|θQ) log p(κ|θD) (15)

where κ is an entry of the vocabulary. The process of QE
is obtained by smoothing the query language model with a
concept model θE obtained by external resources:

p(κ|θ̃Q) = λ p(κ|θQ) + (1− λ) p(κ|θE), (16)

which has the effect of assigning non-zero probability of an
expansion concept. The training of λ is discussed in more
details in the next section. In order to test the quality of the
mined expansion terms, it is necessary to parameterize the
probability p(κ|θE) for each of the tested models. These are
reported in Table 2. In CTM, the model θE is considered as
a mixture of translation probabilities corresponding to query
concepts where the translation probabilities p(κ|η) are esti-
mated on the anchor log and p(η|θQ) = N−1

Q is the uniform
query distribution. For all the latent models, we parameter-
ize the probability of a term given a query by employing a
softmax formulation, i.e. (Mikolov et al. 2013). The energy
is the similarity between a concept and a query which con-
jugates differently in the different models. In SSI, this simi-
larity is the inner product between the query and the concept
latent representations, i.e. x̃Tκ q̃. In QEM, we follow the for-
mulation in Eq. 6 and naturally consider the similarity of a
concept given a query as Tr W̃QΠ̃κ. Differently from SSI
and similarly to CTM, in our approach the contributions of
query terms are always positive, which reminds the basic ra-
tionale of successful approaches such as NMF or LDA.

Hyperparameter Selection A novelty of this work is that
we choose to train all the hyperparameters of the models
in order to optimize expansion performance measured with
MAP. In this paper, we use a random search recently pro-
posed in (Bergstra and Bengio 2012). Our procedure is de-
picted in Fig. 1. Given our anchor log D, we sample hyper
parameters Φ from a uniform distribution over a fine-grained
set of possible values ΩΦ. Clamping Φ, we train the model
parameters (embeddings or translation probabilities) on the
anchor log. We expand the original queries by selecting the
top-10 concepts according to the parameterization discussed
previously. Finally, we tune by grid-search the smoothing
parameter λ. We repeat the process n = 50 times in order
to have good chances to find minima of the hyperparameter
space. We report the results obtained by performing 5-fold
cross-validation. For all the models we cross-validate λ. For
all the embeddings model, we fix the number of latent di-
mensions to K = 100, the number of epochs to 3. For SSI,
we cross-validate the gradient step, while for QEM we in-
clude also the margin m.

Results
Table 3 resumes all our experimental results. First of all, we
note that all the expansion methods increase significantly on
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Method WT-10 WT-11 WT-12
nDCG@10 ERR@10 MAP nDCG@10 ERR@10 MAP nDCG@10 ERR@10 MAP

LM .0850 .0443 .1069 .1341 .0613 .0894 .0738 .1087 .1047
CTM .0954 .0494 .1128 .1278 .0611 .0936 .0837 .1144 .1095

SSI100 .0877 .0437 .1123 .1331 .0624 .0882 .1063 .1475 .1200
QEM100 .1091s .0583cs .1137 .1514cs .0727cs .1002s .1040c .1488c .1210c

(+14.3/+24.4) (+18/+33.4) (+0.7/+1.2) (+18.0/+13.7) (+19.0/+16.5) (+7.0/+13.6) (+24.2/-0.2) (+30.0/+.1) (+10.5/+.08)

Table 3: Evaluation of the performance for the four methods tested. Best results are highlighted in boldface. Numbers in
parentheses indicate relative improvement (%) over SSI and CTM. s, c means statistical significance over SSI and CTM.

(a) Training Phase
Q ← Train queries
For t = 1 . . . n

1. Φt ∼ Random(ΩΦ)
2.Mt ← Train(D, Φt)
3.QE ← Expand(Q,Mt)
4. λt ← Grid(QE , λ)
5. MAPΦt ← Search(QE , λt)
6. If MAPΦt ≥MAPΦ∗

5.1 Φ∗ = Φt, λ∗ = λt

Return Φ∗, λ∗

(a) Testing Phase
Q ← Test queries

1.M∗ ← Train(D, Φ∗)
2.QE ← Expand(Q,M∗)
3. MAPΦ∗ ← Search(QE , λ∗)
4. Return MAPΦ∗

Figure 1: Algorithms for training (a) and testing (b) the hy-
per parameters Φ of the expansion models directly on MAP.

the term-matching retrieval baseline LM. Our implementa-
tion of CTM trained on the high-quality Wikipedia anchor
logs has overall positive effects on the three reported mea-
sures and on the three collections of topics tested. CTM
increases considerably the precision at top-ranks, achiev-
ing relative improvements up to 13.4% on nDCG@10 and
11.51% on ERR@10 for WT-10 and WT-12. For WT-11,
CTM suffers non-significant losses with respect to LM on
precision-oriented measures while still achieving 4.69% rel-
ative improvement on MAP. Analyzing the average query
length on three collections of topics tested, we found for
WT-10, WT-11 and WT-12 respectively 1.979, 3.396 and
2.122. WT-11 queries are thus longer on average and re-
flect long-tail queries which are particularly difficult to ex-
pand because of the complex syntactic relationships between
terms in the query formulation. We then compared latent
semantic models with CTM. Experimental results confirm
that learned semantic spaces can be useful in encoding use-
ful relationships for query expansion. Even when fixing a
relatively low latent dimensionality, i.e. K = 100, SSI per-
forms as well as CTM on WT-10 while outperforming the
latter on WT-12 on all measures. QEM outperforms both SSI
and CTM yielding consistent improvements for all the top-
ics tested. It is interesting to note that SSI is not effective
on WT11 and actually degrades performance with respect to
the baseline LM nearly for all the measures reported. By rep-
resenting queries as linear combination of concepts embed-
dings, SSI seems to fail in capturing semantic content of rel-
atively long queries such as those found in WT-11. The fact
that QEM increases significantly all measures on those diffi-
cult topics brings evidence towards the usefulness of the en-
riched query representation space, capable of adequate mod-
elling of longer text sequences. It is also striking how QEM
can bring relative improvements both on SSI and CTM for
precision at top-ranks by at least 14% in WT-10 and 13%

for difficult WT-11 topics. This is especially important in
web search where top-ranks are most valuable for users. It
seems that QEM can select compact and focused expansion
concepts in order to increase the quality of top-ranked doc-
uments. On WT-12, the situation is more mitigated but still
QEM can bring improvements over CTM and SSI. Even if
not reported here, we conducted preliminary experiments by
choosing a more appropriate ranking loss such as proposed
in (Weston, Bengio, and Usunier 2011) and found that the
performance of QEM can be further increased by a signifi-
cant amount with respect to classical CTM and SSI. We also
found that varying the number of embedding dimensions did
not help on this particular dataset. We argue that this would
be useful for larger datasets and thus the automatic setting
of appropriate dimensions will be an interesting research in
the future.

Conclusion

Overall, we believe that the potential of latent semantic
model for encoding useful semantic relationship is real
and should be fostered by enriching query and document
representations. To this end, we proposed a new method
called Quantum Entropy Minimization (QEM), an embed-
ding model that allocates text sequences in a larger space
than their component terms. This is automatically encoded
in the notion of rank. Higher-rank objects encode broader
semantic information while unit-rank objects bring only lo-
calized semantic content. Experimental results show that our
model is useful in order to boost precision at top-ranks with
respect to a state-of-the-art expansion model and a recently
proposed semantic model. Particularly interesting was the
ability of our model to find useful expansion terms for longer
queries: we believe this is a direct consequence of the higher
semantic resolution allocated by our model. There are many
interesting directions for future research. One could find
more reasonable approximations both to the scoring func-
tion and the representation capable of bringing further im-
provements. Finally, we argue that incorporating existing ad-
vanced gradient descent procedures, refined loss functions
can certainly further increase the retrieval performance, well
beyond traditional query expansion methods.
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