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Abstract

The automatic discovery of a significant low-dimensional
feature representation from a given data set is a fundamental
problem in machine learning. This paper focuses specifically
on the development of the feature representation discovery
methods appropriate for high-dimensional and sparse data.
We formulate our feature representation discovery problem
as a variant of the semi-supervised learning problem, namely,
as an optimization problem over unsupervised data whose ob-
jective is evaluating the impact of each feature with respect
to modeling a target task according to the initial model con-
structed by using supervised data. The most notable charac-
teristic of our method is that it offers a feasible processing
speed even if the numbers of data and features are both in the
millions or even billions, and successfully provides a signif-
icantly small number of feature sets, i.e., fewer than 10, that
can also offer improved performance compared with those
obtained with the original feature sets. We demonstrate the
effectiveness of our method in experiments consisting of two
well-studied natural language processing tasks.

Introduction
The automatic discovery of a significant low-dimensional
feature representation from a given data set, which we re-
fer to as ‘feature representation discovery’, has been a long-
standing goal of machine learning research. Many different
feature representation discovery methods have already been
developed, and their usefulness has been demonstrated in
many areas of real data analysis, including text, speech, im-
age, and signal data processing. For example, PCA, SVD,
ICA, and modern variants (Van Der Maaten and Hinton
2008) are typical feature representation discovery meth-
ods that seek a low-dimensional representation via fea-
ture/data matrix decomposition. One example that directly
seeks sparse representation is sparse coding (Zhang et al.
2011). Standard clustering methods have also been utilized
to capture reduced representations, and have mainly been
applied to tasks with discrete feature spaces (Turian, Rati-
nov, and Bengio 2010). More recently, several new ideas
have been proposed including ‘word-codebook’ (Kuksa and
Qi 2010), which tries to capture an abstract of words as a
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low-dimensional real valued vector, and deep learning (Hin-
ton 2007), which seeks a representation that captures higher
level, abstract features of the given data using a multi-layer
neural network.

Let X be an M ×N feature/data matrix, where M is the
number of features, and N is the number of data points. In
this paper, we focus on a situation where the task at hand
is extremely large, i.e., M and N are both in the millions
or even billions. Today, we often encounter such large-scale
problems, especially in text processing and bio-informatics,
since the automated collection of (unsupervised) data is
rapidly increasing, and many fine-grained features must be
incorporated to improve task performance. Thus, developing
specialized algorithms suitable for dealing with large-scale
problems is an important research topic in machine learning.

The difficulty presented by large problems mainly origi-
nates in the computational cost of the solver algorithms. For
example, polynomial time algorithms are obviously infeasi-
ble when the numbers of features and/or data points are in
the millions. Another difficulty may derive from data spar-
sity, i.e., more than 90% or even 99% of the elements in ma-
trix X are zero, since, in general, large-scale problems tend
to be very sparse problems. Under this condition, for exam-
ple, PCA, ICA and their variants are essentially useless since
most of the data points are orthogonal to each other. Addi-
tionally, obtained new feature representations should satisfy
the condition that they can be calculated without incurring a
large additional computational cost.

Against this background, the goal of this paper is to
provide a feasible and appropriate method for tackling ex-
tremely large feature representation discovery problems.
First, we formulate our feature representation discovery
problem as a variant of a semi-supervised learning prob-
lem, namely, an optimization problem over unsupervised
data whose objective is to evaluate the impact of each fea-
ture with respect to modeling a target task according to the
initial model, which is constructed by using supervised data.
Our method has the following three main characteristics; (1)
it has the ability to handle a large number of data i.e., the
order of billions, since our method is designed to work in
distributed computing environments, (2) it can work appro-
priately even if the original feature set is an infinite set, and
(3) the resultant new feature representation generated by our
method consists of only a very small number of features, i.e.,
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fewer than 10, which are combinatorially generated from
original feature sets. Thus, our method is considered to be
suitable for large problems.

We evaluate the effectiveness of our method on two well-
studied natural language processing tasks, namely, depen-
dency parsing and named entity recognition. Our method
provides a feasible processing speed even when there are
billions of data points and features. Moreover, using a fused
feature set as the feature set for supervised learning signifi-
cantly improves the task performance compared with using
the original (canonical) feature set of the given target task.

Fused Feature Representation Discovery
Suppose we have feature set F , i.e., a canonical feature set
widely used in the target task. In this paper, we assume that
each feature is represented as a function. For example, F =

{fi(·)}|F|i=1, where fi(·) represents the i-th feature function,
and |F | represents the numbers of features in F . This paper
refers toF as the ‘original feature set’. Then, we define our
feature representation discovery problem as follows:

Definition 1 (Feature representation discovery). LetH rep-
resent a feature set. The problem of feature representation
discovery is to find a new (reduced and augmented) feature
setH from the original feature set F . We assume thatH im-
proves the task performance compared with using F even if
|H|≤|F|, and generally |H|�|F| for large |F|.

Fused Feature Representation To derive our task defini-
tion in detail, we first define a feasible value set SK :

Definition 2 (feasible value set). Suppose K is a finite pos-
itive integer (0<K<∞), and vk for all k are positive real
values (0< vk <∞), where vk−1 > vk. Then, we define a
finite set of values SK , which we call a feasible value set,
as: SK =

⋃K
k=1{vk} ∪ {0}.

For example, if K = 4, then SK=4 = {v1, v2, v3, v4, 0},
where v1 > v2 > v3 > v4 > 0. To simplify the discussion,
let us only consider the case where fi(·) ∈ F for all i are all
binary feature functions.

Assumption 3 (binary feature function1). fi(·) ∈ F for all
i only returns the value 0 or 1.

Then, we call the new feature set H proposed in this pa-
per a ‘fused feature set’ to distinguish it from other formu-
lations, and define it as follows:

Definition 4 (fused feature set H). Let us first determine
|H| explained above, and set |H| = K. Then, let Fk be the
k-th subset of F , where

⋃K+1
k=1 Fk = F and

⋂K+1
k=1 Fk = ∅

hold. Let F ′k = {δifi(·)|fi(·) ∈ Fk ⊆ F , δi ∈ {−1, 1}}.
Then, we define the fused feature set H induced from F as
H={hk(·)}Kk=1, where hk(·)=vk

∑
δf(·)∈F ′

k
δf(·).

The form of H defined by Def. 4 is essentially identical
to the several conventional methods such as PCA, namely,

1We note that our method can be extended to handle real value
features by utilizing the idea of weak hypotheses in the context of
boosting algorithms. We convert all the original features into binary
weak hypotheses before applying our method.

the form of the linear combination of the original features.
However, note that each f(·) is always assigned to only one
Fk. Thus, the problem of constructing H can be seen as
weighted hard clustering with a feature discard operation.
FK+1 indicates the set of discarded original features that
are not to considered with H. Moreover, H restricts to have
a single coefficient vk for the k-th fused feature inH. These
are the main distinguished properties of fused feature repre-
sentation from the conventional methods. The possible ad-
vantages of using a fused feature set are as follows; (1) it re-
tains a sparse feature representation if the original feature set
is sparse. (2) The memory required for keeping the mapping
function from the original feature set to the fused feature set
is relatively small even if the numbers of data and original
features are millions or billions. (3) According to Def. 4, the
calculation cost does not increase from that needed when
using the original feature set. These properties indicate that
the fused feature set is an appropriate representation when
the original feature set is very large.

Finally, the goal of this paper, namely to find a better fused
feature setH, can be interpreted as follows:
Definition 5 (fused feature representation discovery). The
problem of fused feature representation discovery is defined
as finding the three-tuple (P,v, δ), where P = (Fk)Kk=1 is
the feature partition, v= (vk)Kk=1 is their weights, and δ =

(δi)
|F|
i=1 is the sign of the corresponding original features.

Estimation of Impact of Features In accordance with
Def. 5, this section defines the (P,v, δ)-estimation problem
for the fused feature representation discovery. To obtain a
better (P,v, δ), we formulate the (P,v, δ)-estimation prob-
lem as a form of semi-supervised learning, which utilizes
both supervised dataDL and unsupervised dataD, assuming
that bothDL andD of the target task are available, where the
quantity of unsupervised data is considered to be very large,
whereas that of supervised data is relatively small.

In the first stage of preparation, we build an initial model
by using DL and a typical supervised learning method with
a canonical feature set, F . It is worth noting here that the
concept of using a supervised model as an initial model for
estimating a certain kind of ‘feature expectations’ over un-
supervised data has become a widely used technique in the
context of recently developed feature representation discov-
ery and semi-supervised learning methods (Druck and Mc-
Callum 2010; Suzuki et al. 2009; Kuksa and Qi 2010). Our
method follows their successful strategy.

Another assumption is that the target task can be decom-
posed into a set of binary decisions. Let Y be the total num-
ber of binary decisions in the target task, and y represent
an index of a binary decision, that is, 1 ≤ y ≤ Y . Then,
let r(x, y) represent the y-th binary decision of a given in-
put x obtained from the initial model. For example, if the
target problem is a Y -class classification problem, then it
can be represented as a set of Y -units of binary decisions.
In this case, r(x, y) indicates the decision of the y-th class
given input x, where

∑
y r(x, y) = 1. Moreover, a struc-

tured prediction problem is defined as the combination of
many small sub-problems. We can generally decompose it
into a set of many binary decisions. We define Y(x) as a set
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Figure 1: Example of making fused feature set whereK=2.

of all binary decisions given input x since the set of binary
decisions is determined independently by each input x with
the structured prediction problem. This paper refers to r̃(·)
as ‘reference function’, and r̃(x, y) = 2r(x, y)−1. We de-
fine the (P,v, δ)-estimation problem as a feature-wise loss
minimization problem that evaluates the sum of the squared
loss between the reference function and the parameterized
single feature function over given unsupervised data D;

(û, δ̂) = arg min
u,δ

{
O(u, δ;D)

}
O(u, δ;D) =

1

2

∑
i

∑
(x,y)

(
r̃(x, y)− uiδifi(x, y)

)2
+λ1||u||1 +

λ2
2
||u||22

subject to: u ≥ 0, δ ∈ {−1, 1}|F|, u ∈ S |F|K ,

(1)

where the solution is represented as û = (ûi)
|F|
i=1, and δ̂ =

(δ̂)
|F|
i=1, and

∑
(x,y) is an abbreviation of

∑
x∈D

∑
y∈Y(x).

An intuitive interpretation of the solution (û, δ̂) to this opti-
mization problem is the ‘impact’ of each feature on the de-
cision r̃(·) evaluated by the initial model. δ̂i = 1 is obtained
if fi(·) is correlated with the positive decision r̃(·) > 0,
and δ̂i = −1 if fi(·) is correlated with the negative decision
r̃(·) < 0. Moreover, ûi will take a large value if fi(·) has a
large impact on whether a decision is positive or negative.

Build Fused Feature Set after Optimization This sec-
tion describes how to generate a fused feature set H auto-
matically from the solution of the optimization (û, δ̂) ex-
plained in Eq. 1. By the effect of the constraint u ∈ S |F|K

in Eq. 1, the number of unique values in (ûi)
|F|
i=1 except for

zero is K (or less than K). Therefore, following Def. 2, we
assign the unique values of (ûi)

|F|
i=1 sorted in descending or-

der to {vk}Kk=1 except for zero. Next, we assign fi(·) to Fk
where their corresponding values, ûi and vk, are equivalent.
Namely, Fk can be written as: Fk = {fi(·)|fi(·) ∈ F , ûi =
vk}. Now, we can generate H since we can simply obtain
Fk and vk from û. Fig. 1 shows an example where K = 2.

Overall, our optimization process can be interpreted as
jointly weighting, selecting and grouping features via op-
timization in terms of the impact of each feature. Then, our
method fuses all the features at the same impact level into
one new feature. The intuition behind the fused feature rep-
resentation is that many solution variables of standard super-
vised learning often take very similar values when modeling
a target task with a large feature set. Given this fact, we as-
sume that no or limited negative effects occur even if we

Input: data:D, tunable parameters:ρ, η, εprimal, εdual

Initialize: u(1) = 0, δ(1) = 1, p(1) = 0, α(1) = 0, and t = 1.
Step1:

(u(t+1), δ(t+1)) = argmin
(u,δ)

{
O(u, δ;D,p(t),α(t))

}
(3)

Step2: p(t+1) = argmin
p
{O(p;u(t+1), δ(t+1),α(t))} (4)

Step3: α(t+1) =α(t) + ρη(u(t+1) − p(t+1)) (5)
Step4: return if the convergence conditions are satisfied,

or t← t+ 1 and go to Step1 otherwise.

Output: (p(t), δ(t))

Figure 2: Entire optimization framework of our method
based on ADMM (Boyd et al. 2011)

fuse the features that have ‘similar impact’ in terms of the
modeling of the target task.

Reformulation by Dual Decomposition
The previous section detailed our problem definition. This
section explains how to solve Eq. 1. The main consideration
is that Eq. 1 is essentially a combinatorial optimization prob-
lem because of the constraints δ∈{−1, 1}|F| and u∈S |F|K .
Thus, a naive algorithm may take exponential time against n
to obtain the solution. To derive a tractable optimization al-
gorithm, we leverage the dual decomposition and proximal
gradient techniques developed rapidly in recent years by the
machine learning community i.e., (Beck and Teboulle 2009;
Boyd et al. 2011). The important property in our case is that
it may allow us to decompose the intractable optimization
problem into two (or many) tractable sub-problems, which
are easily solvable. For example, (Zhong and Kwok 2012)
showed an interesting example where a computationally
hard combinatorial optimization problem in an optimization
with OSCAR regularizers can be vanished by decomposi-
tion derived with the help of proximal gradient methods. We
follow this idea, and reformulate Eq. 1 by using the dual de-
composition technique (Everett 1963):

(û, δ̂) = arg min
u,δ

{
O(u, δ;D)

}
O(u, δ;D) =

1

2

∑
i

∑
(x,y)

(
r̃(x, y)− uiδifi(x, y)

)2
+λ1||u||1 +

λ2
2
||u||22

subject to: u ≥ 0, δ ∈ {−1, 1}|F|,u = p,p ∈ S |F|K .

(2)

To solve the optimization in Eq. 2, we leverage ADMM sim-
ilarly to (Yang et al. 2012). Here, α represents dual variables
(or Lagrangian multipliers) for the equivalence constraint
u=p. The optimization problem in Eq. 2 can be converted
into a series of iterative optimization problems. A detailed
general derivation of ADMM in a general case can be found
in (Boyd et al. 2011). Fig. 2 shows the entire optimization
framework based on ADMM for Eq. 2. ADMM works by
iteratively computing one of the three optimization variable
sets u, p, and α while holding the other parameters fixed in
the iterations t = 1, 2, . . . until convergence.
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ADMM Step1, namely, Eq. 3 in Fig. 2 derived for Eq. 2,
can be written as follows:

(û, δ̂) = arg min
(u,δ)

{
O(u, δ;D,p,α)

}
O(u, δ;D,p,α) =

1

2

∑
i

∑
(x,y)

(
r̃(x, y)− uiδifi(x, y)

)2
+λ1||u||1 +

λ2
2
||u||22 + α(u− p) +

ρ

2
(u− p)2

subject to: u ≥ 0, δ ∈ {−1, 1}|F|.

(6)

Then, ADMM Step2 of Eq. 4 in Fig. 2 for our case can be
written in this form:

p̂ = arg minp{O(p;u,α)}
O(p;u,α) =

ρ

2

∑
i

(
pi − qi

)2
subject to: p ∈ S |F|K .

(7)

where qi = ui + αi

ρ . Note that ADMM Step3 in Fig. 2 is
identical to the original step for our case.

Basic Optimization Algorithm
So, to solve our problem Eq. 1, we must find an efficient way
to solve Eqs. 6 and 7. This section reveals that Eqs. 6 and 7
can be solved by linear and polynomial time algorithms with
no iterative estimations.

Step1: (u, δ)-update (Gradient Step) The optimal solu-
tion of Eq. 6, (û, δ̂), should hold ∂ui

O(û, δ̂;D,p,α) = 0,
that is, the partial derivatives of the objective in Eq. 6 with
respect to ui equal to zero. Since ∂ui

O(u, δ;D,p,α) =
−
∑

(x,y)(r̃(x, y)−uiδifi(x, y))(δifi(x, y))+λ1 +λ2ui+

αi + ρ(ui − pi), we obtain the following closed form:

ui =
δiRi − λ1 − αi + ρpi

Fi + λ2 + ρ
, where

Fi =
∑
(x,y)

fi(x, y), and Ri =
∑
(x,y)

r̃(x, y)fi(x, y).
(8)

Fi and Ri are obtained by the facts (δi)
2 = 1 and

(fi(x, y))2 = fi(x, y) derived from Def. 4 and Assump-
tion 3. Moreover, Fi + λ2 + ρ > 0 always holds from the
definitions of Fi > 0, λ2 ≥ 0 and ρ > 0 for the denomina-
tor of ui in Eq. 8. Therefore, if the numerator of ui in Eq. 8 is
equal to or less than 0, namely, δiRi − λ1 − αi + ρpi ≤ 0,
then ui = 0 always holds because of the constraint u ≥ 0.
Therefore, the optimal solution δ̂i can be easily selected2:

δ̂i =

{
+1 if Ri ≥ 0,
−1 otherwise . (9)

let [a]+ = max(0, a). Then, the optimal solution of ûi can
also be obtained by using δ̂i:

ûi =

[
δ̂iRi − λ1 − αi + ρpi

Fi + λ2 + ρ

]
+

. (10)

2Note that if δiRi − λ1 − αi + ρpi ≤ 0 holds for both δi = 1
and δi = −1, then the selection of δi has no effect on the objective.
This means that there are several optimal solutions that all give the
same objective values. An important point is that Eq. 9 provides at
least one of the optimal solutions.

As a result, (one of) the optimal solutions (û, δ̂) can be ob-
tained in a closed form. This indicates that we can always
obtain an exact solution for the optimization of Eq. 6 without
an iterative estimation, whose time complexity is O(|F|).

Step2: p-update (Projection Step) This section presents
an algorithm for obtaining the optimal solution of Step2. Ac-
cording to the relations pi = v ∈ SK for all i, Eq. 7 can be
rewritten in the following equivalent simple form:

ŜK = arg min
v∈SK

1

2

∑
i

(v − qi)2, (11)

Note that this equation and Eq. 7 are equivalent problems.
We can easily recover p̂ from ŜK by selecting the nearest
value in ŜK from qi for each p̂i. Eq. 11 is also known as
a one-dimensional K-means clustering problem (Wang and
Song 2011). Although one-dimensionalK-means clustering
is still a combinatorial optimization problem, a dynamic pro-
gramming based polynomial time exact algorithm called Ck-
means.1d.dp, is introduced in (Wang and Song 2011), whose
time and space complexities areO(KM2) andO(KM), re-
spectively. Note that, in our case, K = |H| and M = |F|.

Step4: Convergence Check For the convergence check
for Step4, we evaluate both primal and dual residuals as de-
fined in (Boyd et al. 2011), that is, 1

|F| ||u
(t+1)−p(t+1)||2 <

εprimal and 1
|F| ||α

(t+1) − α(t)||2 < εdual, with suitably small
εprimal and εdual. To force the optimization to always converge,
we gradually increase ρ from 1 to∞ in every iteration. This
brings Eq. 10 closer to ûi = pi. At this time, it is obvious
that the above primal and dual residuals both become 0. Fi-
nally, ADMM outputs (p(t), δ(t)) as a solution3.

Time and Space Complexities We iteratively calculate
Step1 through Step4 shown in Fig. 2 to solve Eq. 1. Let T
be the number of iterations. The time and space complexi-
ties for calculating Step1 areO(|D||F|) andO(|F|), respec-
tively. Similarly, O(|H||F|2) and O(|H||F|) for Step2, and
O(|F|) for both for Step3. Hence, the total time complexity
of our algorithm is O(T (|D||F|+ |H||F|2)).

Extensions for Large Data and Feature Sets
The previous section introduced the basic optimization al-
gorithm. This section focuses on describing the several im-
portant properties that allow us to substantially reduce the
computational cost, especially with large problems.

For Large Data sets
Property 1: Every gradient step can be calculated without
re-evaluation of data points.
proof: Fi and Ri can be calculated without u. This means
that it is not necessary to retain any data points during the
entire optimization process if we calculate and cache Fi and
Ri for all i before starting the optimization and use them
instead of the data point information.

3Note that u(t) is unnecessary since we substitute p(t) for u(t).
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As a result, the time complexity is reduced from
O(T (|D||F|+ |H||F|2)) toO(|D||F|+T |H||F|2). This re-
duction is extremely important for handling large data sets,
i.e., when |D| is millions or billions.
Property 2: The calculations of Fi and Ri for all i can be
decomposed into data-point-wise calculations.
proof: Eq. 8 showed that Fi and Ri consist only of the i-th
feature and reference functions. Moreover, Fi and Ri take
the form of a linear combination for every data point.

This property readily suggests the use of parallel compu-
tation. In fact, the Fi and Ri calculations are suitable for
the MapReduce model (Dean and Ghemawat 2008). Note
that Fi and Ri can be calculated in a single Map-Reduce
operation. This reduces the time complexity to O( |D||F|P +

T |H||F|2), where P is the parallelization number.

For Large Feature Sets
Property 3: The upper bound number of non-zero optimiza-
tion parameters in the optimal solution can be estimated be-
fore starting the optimization.
proof: According to Eq. 10, ûi = 0 always holds if δ̂iRi −
λ1 ≤ 0, since λ1 and δ̂iRi are both non-negative real value
constants during the optimization process. Moreover,αi = 0
and pi = 0 always hold in this situation since ûi = 0 always
holds for the solution of Step1. Thus, we can first judge
whether ûi will become zero, or possibly non-zero, before
starting the optimization process by evaluating whether or
not δ̂iRi − λ1 ≤ 0 is satisfied.

This property reveals that we can control the maximum
number of original features that map to fused features be-
fore starting the optimization process by controlling the λ1
setting. In a real implementation, we start by sorting |Ri| for
all i in descending order, and then set λ1 as the (|F̄ | + 1)-
st largest |Ri| if we want to restrict the |F̄ | parameters so
that they are non-zero at most. This procedure can also re-
duce the computational cost. This is because if we already
know that ûi = 0, we can drop parameter ui from the opti-
mization. Let |F̄ | be the number of parameters that are pos-
sibly non-zero, where |F̄ | ≤ |F|. The time complexity be-
comes O( |D||F|P +T |H||F̄ |2). Note that ûi = 0 occurs even
if |Ri| > λ1 because of the effect of the procedure for Step2.

In addition, by controlling λ1, we can possibly handle an
infinite number of original features. Our method only con-
siders top-|F̄ | features. Therefore, there is no need to define
the total number of features.

Lower complexity 1DK-means clustering In actual use,
the O(KM2) time complexity is insufficient when M is
very large i.e., M = |F| > 1, 000, 000. We attempt to mod-
ify the algorithm to reduce the time complexity.

Proposition 6. Let q′ = (q′1, . . . , q
′
M ) be q sorted in the

ascending order. Let ci,j represent a cluster consisting of
the data points from q′i to q′j , and µ̄i,j be its centroid. As-
sume that we obtain the optimal cluster set (ĉ1,i, . . . , ĉj,M )
of 1D K-means clustering. Moreover, we define µ̄i,j,k =
1
2 (µ̄i,j−1 + µ̄j,k). Then, q′j−1 and q′j , which are the right-
most or leftmost data points of two adjacent optimal clus-

ters ĉi,j−1 and ĉj,k, always maintain the following relation;
q′j−1 ≤ µ̄i,j,k ≤ q′j .
proof: µ̄i,j,k essentially represents the middle of two ad-
jacent optimal cluster centroids. If µ̄i,j,k < q′j−1, then
the point q′j−1 has to be included in the cluster ĉj,k since
(q′j−1− µ̄i,j−1)2 > (q′j−1− µ̄j,k)2. Similarly, if q′j < µ̄i,j,k
then q′j−1 has to be included in the cluster ĉi,j−1. There-
fore, in these two cases, the optimal clustering condition
is violated. In contrast, if q′j−1 ≤ µ̄i,j,k ≤ q′j holds, then
(q′j−1 − µ̄i,j−1)2 ≤ (q′j−1 − µ̄j,k)2, and (q′j − µ̄i,j−1)2 ≥
(q′j − µ̄j,k)2 are always satisfied.

We can significantly speed up Step2 by using Prop. 6. We
introduce a binary search procedure. This procedure sim-
ply attempts to find a point q′k that satisfies the condition
in Prop. 6, that is, q′j−1 ≤ q′k ≤ q′j , and does not per-
form the calculation if q′k does not satisfy the above rela-
tion. As a result, the total time complexity is reduced to
O(KM logM) from O(KM2). The time complexity fi-
nally becomes O( |D||F|P + T |H||F̄ | log |F̄ |).

Experiments
We conducted experiments on the data sets of two well-
studied natural language processing (NLP) tasks, namely
named entity recognition (NER) and dependency parsing
(DEPAR). Wee simply followed the experimental settings
described in previous studies providing state-of-the-art re-
sults, i.e., (Suzuki and Isozaki 2008) for NER, and (Koo,
Carreras, and Collins 2008) for DEPAR.

We gathered 150 million data points (sentences) from the
LDC corpus, that is, |D|=150M. The total numbers of orig-
inal feature sets appearing in D reached 20 and 6 billion,
namely |F| = 20B and |F| = 6B, for NER and DEPER,
respectively. These features are automatically generated by
using canonical feature templates, which have been widely
used in previous studies, over the |D| = 150M unsuper-
vised data. These feature sets are used as the input of our
feature representation discovery. Similarly, the total num-
bers of original features that appeared in the supervised data,
DL, were 47M for NER and 260M for DEPER. We selected
CRF (Lafferty, McCallum, and Pereira 2001) for NER, and
the online structured output learning version of the Passive-
Aggressive algorithm (ostPA) (Crammer et al. 2006) for DE-
PAR as a supervised learning algorithm to build both the ini-
tial and final models.

In outline, our experimental procedure is as follows; (1)
We build an initial model using F extracted only from DL.
(2) We calculate Fi and Ri for all i over a MapReduce sys-
tem. (3) We discard features according to Prop. 3 since 20
and 6 billion features are too many, and most of them are
possibly redundant and useless. We retain 4.7M and 26M
features, which amounts to 10% of F extracted only from
DL, and all the remaining features are discarded from the
input of our method. (4) We construct a fused feature set H
using our method with various settings of K. (5) We build a
final model usingH.

Finally, we evaluate both the initial and final models. The
task performance was evaluated in terms of complete sen-
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Figure 3: (a): Relation between elapsed time and number of
optimization variables in Step2 when K = 8. (b): Learning
curve against the quantity of unsupervised data.

tence accuracy (COMP), the Fβ=1 score (F-sc) for NER,
and the unlabeled attachment score (UAS) for DEPAR for
comparison with previous studies.

Efficiency of proposed algorithms We estimate that it
would take roughly 5,877 hours (approximately 245 days) to
calculate a single gradient step for all the DEPAR data (we
did not attempt this). Obviously, this is unacceptable. On the
other hand, the total run time of our method on the DEPAR
data was, as one example, about 15 hours, where approxi-
mately 14 hours were taken for calculating the gradient step
with 512 nodes of our MapReduce system (Property 2), and
the additional 1 hour was spent on the iterative estimation
of Step1 through Step4. Note that our method requires only
one costly gradient step calculation (Property 1). We believe
this is a reasonable run time given the massive quantity of
data being processed.

In addition, we confirmed that the run times of |H| in the
test phase were nearly equivalent but no more than those
of |F|. These results are essentially the positive results for
showing the advantage of our fused feature representation.

Effectiveness of Prop. 6 The remaining time consum-
ing part of our algorithm against |F| = M is Step2.
Fig. 3 (a) shows the effectiveness of our algorithm based
on Prop. 6 (CK1d.dp++). For example, our algorithm took
less than 0.1 sec for 100K variables while the original al-
gorithm (Wang and Song 2011) took 97.24 sec (CK1d.dp).
Moreover, CK1d.dp++ successfully worked with 10M vari-
ables within 10 sec. It is worth noting here that, empirically,
the actual elapsed time of our modified algorithm had a near
linear relation against the M increase, although the time
complexity was O(KM logM).

Learning curve Fig. 3 (b) shows the learning curves of
our method with respect to the number of unsupervised data
in our NER experiments. The x-axis shows the logarithmic
values of unsupervised data size (the scale is millions). Each
line indicates the performance change when we increased
the unsupervised data in a situation where we fixed the num-
ber of fused features obtained with our method. It is clear
that better performance is achieved as the unsupervised data
size increases in any setting. This constitutes good evidence
for the importance of handling as much data as possible to
achieve performance improvement, and the importance of
using a feasible algorithm with the large data set.

Table 1: Comparison with previous top-line systems.
NER system COMP F-sc |D| |F| |H|
supervised (L2-CRF) 79.10 85.08 0 47M –
(Suzuki and Isozaki 2008) N/A 89.92 ≈50M N/A –
(Lin and Wu 2009) N/A 90.90 ≈30B N/A –
our method 84.50 89.04 150M 20B 16

83.58 88.78 150M 20B 8
83.09 88.39 150M 20B 2

Dependency parser COMP UAS |D| |F| |H|
supervised (ostPA) 47.60 92.82 0 260M –
(Martins et al. 2010) N/A 93.26 0 55M –
(Koo et al. 2008) N/A 93.16 ≈2.5M N/A –
(Suzuki et al. 2009) N/A 93.79 ≈150M N/A –
(Chen et al.2013) 51.36 93.77 ≈2.5M 27M –
our method 50.58 93.85 150M 6B 16

49.71 93.68 150M 6B 8
48.22 92.90 150M 6B 2

Quality evaluation Table 1 summarizes the performance
of our method and the current top-line NER and DEPAR
systems constructed by supervised (first row) and semi-
supervised learning (second row). We emphasize that the
numbers of features obtained by our method were much
smaller than those of the original feature sets. These results
indicate that our method has the ability to provide meaning-
ful low-dimensional feature representations from extremely
large data and feature sets. Interestingly, our method also
matched or even outperformed the baseline for |H| = 2.
These results revealed that it is possible to obtain a state-of-
the-art performance with a very small number of parameters
if we can build an appropriate feature set.

In addition, our method achieved the same level of results
as a recently developed top-line semi-supervised learning
system. We believe that our method is a promising approach
for real applications since it is very simple, and highly suited
to handling larger data sets.

Conclusion

This paper discussed feature representation discovery prob-
lems with a specific focus on extremely large data and fea-
ture sets. Our method basically consists of three parts. The
first is a novel definition of reduced feature representation,
which we call fused feature representation. The second is
a definition of the problem, which essentially evaluates the
impact of each feature on modeling the target task. The third
is the addition of a clustering constraint to the optimiza-
tion process, which realizes the joint weighting, selection
and grouping of the features via optimization. We also intro-
duced a tractable algorithm for large problems; its time com-
plexity was finally reduced to O( |D||F|P + T |H||F̄ | log |F̄ |).
The experimental results were promising, and provided sev-
eral instances that confirmed the impact of feature represen-
tation discovery algorithms tuned for large-scale problems
such as our method.
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