
Learning Scripts as Hidden Markov Models

J. Walker Orr, Prasad Tadepalli, Janardhan Rao Doppa,
Xiaoli Fern, Thomas G. Dietterich

{orr,tadepall,doppa,xfern,tgd}@eecs.oregonstate.edu
School of EECS, Oregon State Univserity, Corvallis OR 97331

Abstract

Scripts have been proposed to model the stereotypical
event sequences found in narratives. They can be ap-
plied to make a variety of inferences including filling
gaps in the narratives and resolving ambiguous refer-
ences. This paper proposes the first formal framework
for scripts based on Hidden Markov Models (HMMs).
Our framework supports robust inference and learn-
ing algorithms, which are lacking in previous cluster-
ing models. We develop an algorithm for structure and
parameter learning based on Expectation Maximization
and evaluate it on a number of natural datasets. The re-
sults show that our algorithm is superior to several in-
formed baselines for predicting missing events in partial
observation sequences.

1 Introduction
Scripts were developed as a means of representing stereo-
typical event sequences and interactions in narratives. The
benefits of scripts for encoding common sense knowledge,
filling in gaps in a story, resolving ambiguous references,
and answering comprehension questions have been amply
demonstrated in the early work in natural language under-
standing (Schank and Abelson 1977). The earliest attempts
to learn scripts were based on explanation-based learning,
which can be characterized as example-guided deduction
from first principles (DeJong 1981; DeJong and Mooney
1986). While this approach is successful in generalizing
from a small number of examples, it requires a strong do-
main theory, which limits its applicability.

More recently, some new graph-based algorithms for in-
ducing script-like structures from text have emerged. “Nar-
rative Chains” is a narrative model similar to Scripts (Cham-
bers and Jurafsky 2008). Each Narrative Chain is a di-
rected graph indicating the most frequent temporal relation-
ship between the events in the chain. Narrative Chains are
learned by a novel application of pairwise mutual informa-
tion and temporal relation learning. Another graph learn-
ing approach employs Multiple Sequence Alignment in con-
junction with a semantic similarity function to cluster se-
quences of event descriptions into a directed graph (Regneri,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Koller, and Pinkal 2010). More recently still, graphical mod-
els have been proposed for representing script-like knowl-
edge, but these lack the temporal component that is central to
this paper and to the early script work. These models instead
focus on learning bags of related events (Chambers 2013;
Kit Cheung, Poon, and Vanderwende 2013).

While the above approches demonstrate the learnability
of script-like knowledge, they do not offer a probabilis-
tic framework to reason robustly under uncertainty taking
into account the temporal order of events. In this paper
we present the first formal representation of scripts as Hid-
den Markov Models (HMMs), which support robust infer-
ence and effective learning algorithms. The states of the
HMM correspond to event types in scripts, such as entering
a restaurant or opening a door. Observations correspond to
natural language sentences that describe the event instances
that occur in the story, e.g., “John went to Starbucks. He
came back after ten minutes.” The standard inference algo-
rithms, such as the Forward-Backward algorithm, are able to
answer questions about the hidden states given the observed
sentences, for example, “What did John do in Starbucks?”

There are two complications that need to be dealt with to
adapt HMMs to model narrative scripts. First, both the set
of states, i.e., event types, and the set of observations are not
pre-specified but are to be learned from data. We assume that
the set of possible observations and the set of event types to
be bounded but unknown. We employ the clustering algo-
rithm proposed in (Regneri, Koller, and Pinkal 2010) to re-
duce the natural language sentences, i.e., event descriptions,
to a small set of observations and states based on their Word-
net similarity.

The second complication of narrative texts is that many
events may be omitted either in the narration or by the event
extraction process. More importantly, there is no indica-
tion of a time lapse or a gap in the story, so the standard
forward-backward algorithm does not apply. To account for
this, we allow the states to skip generating observations with
some probability. This kind of HMMs, with insertions and
gaps, have been considered previously in speech processing
(Bahl, Jelinek, and Mercer 1983) and in computational biol-
ogy (Krogh et al. 1994). We refine these models by allowing
state-dependent missingness, without introducing additional
“insert states” or “delete states” as in (Krogh et al. 1994). In
this paper, we restrict our attention to the so-called “Left-to-

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1565

Figure 1: A portion of a learned “Answer the Doorbell”
script

Right HMMs” which have acyclic graphical structure with
possible self-loops, as they support more efficient inference
algorithms than general HMMs and suffice to model most of
the natural scripts.

We consider the problem of learning the structure and pa-
rameters of scripts in the form of HMMs from sequences of
natural language sentences. Our solution to script learning
is a novel bottom-up method for structure learning, called
SEM-HMM, which is inspired by Bayesian Model Merging
(BMM) (Stolcke and Omohundro 1994) and Structural Ex-
pectation Maximization (SEM) (Friedman 1998). It starts
with a fully enumerated HMM representation of the event
sequences and incrementally merges states and deletes edges
to improve the posterior probability of the structure and the
parameters given the data. We compare our approach to sev-
eral informed baselines on many natural datasets and show
its superior performance. We believe our work represents the
first formalization of scripts that supports probabilistic infer-
ence, and paves the way for robust understanding of natural
language texts.

2 Problem Setup
Consider an activity such as answering the doorbell. An ex-
ample HMM representation of this activity is illustrated in
Figure 1. Each box represents a state, and the text within is
a set of possible event descriptions (i.e., observations). Each
event description is also marked with its conditional prob-
ability. Each edge represents a transition from one state to
another and is annotated with its conditional probability.

In this paper, we consider a special class of HMMs with
the following properties. First, we allow some observations
to be missing. This is a natural phenomenon in text, where
not all events are mentioned or extracted. We call these null
observations and represent them with a special symbol λ.
Second, we assume that the states of the HMM can be or-
dered such that all transitions take place only in that order.
These are called Left-to-Right HMMs in the literature (Ra-
biner 1990; Bahl, Jelinek, and Mercer 1983). Self-transitions
of states are permitted and represent “spurious” observations
or events with multi-time step durations. While our work can
be generalized to arbitrary HMMs, we find that the Left-to-
Right HMMs suffice to model scripts in our corpora.

Formally, an HMM is a 4-tuple (Q,T,O,Ω), where Q is
a set of states, T (q′|q) is the probability of transition from
q to q′, O is a set of possible non-null observations, and

Ω(o|q) is the probability of observing o when in state q1,
where o ∈ O ∪ {λ}, and qn is the terminal state. An HMM
is Left-to-Right if the states of the HMM can be ordered
from q0 thru qn such that T (qj |qi) is non-zero only if i ≤ j.
We assume that our target HMM is Left-to-Right. We index
its states according to a topological ordering of the transi-
tion graph. An HMM is a generative model of a distribution
over sequences of observations. For convenience w.l.o.g. we
assume that each time it is “run” to generate a sample, the
HMM starts in the same initial state q0, and goes through
a sequence of transitions according to T until it reaches the
same final state qn, while emitting an observation inO∪{λ}
in each state according to Ω. The initial state q0 and the fi-
nal state qn respectively emit the distinguished observation
symbols, “<” and “>” in O, which are emitted by no other
state. The concatenation of observations in successive states
consitutes a sample of the distribution represented by the
HMM. Because the null observations are removed from the
generated observations, the length of the output string may
be smaller than the number of state transitions. It could also
be larger than the number of distinct state transitions, since
we allow observations to be generated on the self transitions.
Thus spurious and missing observations model insertions
and deletions in the outputs of HMMs without introducing
special states as in profile HMMs (Krogh et al. 1994).

In this paper we address the following problem. Given a
set of narrative texts, each of which describes a stereotypi-
cal event sequence drawn from a fixed but unknown distri-
bution, learn the structure and parameters of a Left-to-Right
HMM model that best captures the distribution of the event
sequences. We evaluate the algorithm on natural datasets
by how well the learned HMM can predict observations re-
moved from the test sequences.

3 HMM-Script Learning
At the top level, the algorithm is input a set of documents
D, where each document is a sequence of natural language
sentences that describes the same stereotypical activity. The
output of the algorithm is a Left-to-Right HMM that repre-
sents that activity.

Our approach has four main components, which are de-
scribed in the next four subsections: Event Extraction, Pa-
rameter Estimation, Structure Learning, and Structure Scor-
ing. The event extraction step clusters the input sentences
into event types and replaces the sentences with the cor-
responding cluster labels. After extraction, the event se-
quences are iteratively merged with the current HMM in
batches of size r starting with an empty HMM. Structure
Learning then merges pairs of states (nodes) and removes
state transitions (edges) by greedy hill climbing guided by
the improvement in approximate posterior probability of the
HMM. Once the hill climbing converges to a local opti-
mum, the maxmimum likelihood HMM parameters are re-
estimated using the EM procedure based on all the data seen
so far. Then the next batch of r sequences are processed. We
will now describe these steps in more detail.

1Ω can be straightforwardly generalized to depend on both of
the states in a state transition.

1566

3.1 Event Extraction
Given a set of sequences of sentences, the event extraction
algorithm clusters them into events and arranges them into
a tree structured HMM. For this step, we assume that each
sentence has a simple structure that consists of a single verb
and an object. We make the further simplifying assumption
that the sequences of sentences in all documents describe the
events in temporal order. Although this assumption is often
violated in natural documents, we ignore this problem to fo-
cus on script learning. There have been some approaches in
previous work that specifically address the problem of infer-
reing temporal order of events from texts, e.g., see (Ragha-
van, Fosler-Lussier, and Lai 2012).

Given the above assumptions, following (Regneri, Koller,
and Pinkal 2010), we apply a simple agglomerative clus-
tering algorithm that uses a semantic similarity function
over sentence pairs Sim(S1, S2) given by w1PS(V1, V2) +
w2PS(O1, O2), where Vi is the verb and Oi is the object in
the sentence Si. Here PS(w, v) is the path similarity metric
from Wordnet (Miller 1995). It is applied to the first verb
(preferring verbs that are not stop words) and to the ob-
jects from each pair of sentences. The constants w1 and w2

are tuning parameters that adjust the relative importance of
each component. Like (Regneri, Koller, and Pinkal 2010),
we found that a high weight on the verb similarity was im-
portant to finding meaningful clusters of events. The most
frequent verb in each cluster is extracted to name the event
type that corresponds to that cluster.

The initial configuration of the HMM is a Prefix Tree Ac-
ceptor, which is constructed by starting with a single event
sequence and then adding sequences by branching the tree
at the first place the new sequence differs from it (Dupont,
Miclet, and Vidal 1994; Seymore, McCallum, and Rosen-
feld 1999). By repeating this process, an HMM that fully
enumerates the data is constructed.

3.2 Parameter Estimation with EM
In this section we describe our parameter estimation meth-
ods. While parameter estimation in this kind of HMM was
treated earlier in the literature (Rabiner 1990; Bahl, Jelinek,
and Mercer 1983), we provide a more principled approach
to estimate the state-dependent probability of λ transitions
from data without introducing special insert and delete states
(Krogh et al. 1994). We assume that the structure of the
Left-to-Right HMM is fixed based on the preceding struc-
ture learning step, which is described in Section 3.3.

The main difficulty in HMM parameter estimation is that
the states of the HMM are not observed. The Expectation-
Maximization (EM) procedure (also called the Baum-Welch
algorithm in HMMs) alternates between estimating the hid-
den states in the event sequences by running the Forward-
Backward algorithm (the Expectation step) and finding the
maximum likelihood estimates (the Maximization step) of
the transition and observation parameters of the HMM
(Baum et al. 1970). Unfortunately, because of the λ-
transitions the state transitions of our HMM are not nec-
essarily aligned with the observations. Hence we explicitly
maintain two indices, the time index t and the observation
index i. We define αqj (t, i) to be the joint probability that

the HMM is in state qj at time t and has made the obser-
vations ~o0,i. This is computed by the forward pass of the
algorithm using the following recursion. Equations 1 and 2
represent the base case of the recursion, while Equation 3
represents the case for null observations. Note that the ob-
servation index i of the recursive call is not advanced unlike
in the second half of Equation 3 where it is advanced for
a normal observation. We exploit the fact that the HMM is
Left-to-Right and only consider transitions to j from states
with indices k ≤ j. The time index t is incremented starting
0, and the observation index i varies from 0 thru m.

αq0(0, 0) = 1 (1)
∀j > 0, αqj (0, 0) = 0 (2)

αqj (t, i) =
∑

0≤k≤j

T (qj |qk){Ω(λ|qj)αqk (t− 1, i) (3)

+ Ω(oi|qj)αqk (t− 1, i− 1)}
The backward part of the standard Forward-Backward al-

gorithm starts from the last time step τ and reasons back-
wards. Unfortunately in our setting, we do not know τ—
the true number of state transitions—as some of the obser-
vations are missing. Hence, we define βqj (t, i) as the con-
ditional probability of observing ~oi+1,m in the remaining t
steps given that the current state is qj . This allows us to in-
crement t starting from 0 as recursion proceeds, rather than
decrementing it from τ .

βqn(0,m) = 1 (4)
∀j < n, βqj (0,m) = 0 (5)

βqj (t, i) =
∑
j≤k

T (qk|qj){Ω(λ|qk)βqk (t− 1, i) (6)

+ Ω(oi+1|qk)βqk (t− 1, i+ 1)}
Equation 7 calculates the probability of the observation

sequence z = P (~o), which is computed by marginalizing
αq(t,m) over time t and state q and setting the second index
i to the length of the observation sequencem. The quantity z
serves as the normalizing factor for the last three equations.

z = P (~o) =
∑
q∈Q

∑
t

αq(t,m) (7)

γq(t, i) = P (q|~o) = z−1
∑
τ

αq(t, i)βq(τ − t, i) (8)

δq,q′↑λ(t) = P (q → q′, λ|~o) = z−1T (q′|q)Ω(λ|q′) (9)∑
τ

∑
i

{αq(t, i)βq′(τ − t− 1, i)}

∀o ∈ Ω, δq,q′↑o(t) = P (q → q′, o|~o) (10)

= z−1T (q′|q)Ω(o|q′)∑
τ

∑
i

{αq(t, i)I(oi+1 = o)βq′(τ − t− 1, i+ 1)}

Equation 8, the joint distribution of the state and obser-
vation index γ at time t is computed by convolution, i.e.,
multiplying the α and β that correspond to the same time
step and the same state and marginalizing out the length of
the state-sequence τ . Convolution is necessary, as the length
of the state-sequence τ is a random variable equal to the sum
of the corresponding time indices of α and β.

Equation 9 computes the joint probability of a state-
transition associated with a null observation by first multi-
plying the state transition probability by the null observa-
tion probability given the state transition and the appropriate

1567

α and β values. It then marginalizes out the observation in-
dex i. Again we need to compute a convolution with respect
to τ to take into account the variation over the total number
of state transitions. Equation 10 calculates the same prob-
ability for a non-null observation o. This equation is simi-
lar to Equation 9 with two differences. First, we ensure that
the observation is consistent with o by multiplying the prod-
uct with the indicator function I(oi+1 = o) which is 1 if
oi+1 = o and 0 otherwise. Second, we advance the observa-
tion index i in the β function.

Since the equations above are applied to each individual
observation sequence, α, β, γ, and δ all have an implicit in-
dex s which denotes the observation sequence and has been
omitted in the above equations. We will make it explicit be-
low and calculate the expected counts of state visits, state
transitions, and state transition observation triples.

∀q ∈ Q,C(q) =
∑
s,t,i

γq(s, t, i) (11)

∀q, q′ ∈ Q,C(q → q′) =
∑

s,t,o∈Ω
⋃
{λ}

δq,q′↑o(s, t) (12)

∀q, q′ ∈ Q, o ∈ Ω
⋃
{λ}, (13)

C(q, q′ ↑ o) =
∑
s,t

δq,q′↑o(s, t)

Equation 11 counts the total expected number of visits
of each state in the data. Also, Equation 12 estimates the
expected number of transitions between each state pair. Fi-
nally, Equation 13 computes the expected number of obser-
vations and state-transitions including null transitions. This
concludes the E-step of the EM procedure.

The M-step of the EM procedure consists of Maximum
Aposteriori (MAP) estimation of the transition and observa-
tion distributions is done assuming an uninformative Dirich-
let prior. This amounts to adding a pseudocount of 1 to each
of the next states and observation symbols. The observation
distributions for the initial and final states q0 and qn are fixed
to be the Kronecker delta distributions at their true values.

T̂ (q′|q) =
C(q → q′) + 1

[C(q) +
∑
p′∈Q 1]

(14)

Ω̂(o|q′) =

∑
q C(q, q′ ↑ o) + 1∑

o′{
∑
q C(q, q′ ↑ o′)}+ 1

(15)

The E-step and the M-step are repeated until convergence
of the parameter estimates.

3.3 Structure Learning
We now describe our structure learning algorithm, SEM-
HMM. Our algorithm is inspired by Bayesian Model Merg-
ing (BMM) (Stolcke and Omohundro 1994) and Structural
EM (SEM) (Friedman 1998) and adapts them to learning
HMMs with missing observations. SEM-HMM performs a
greedy hill climbing search through the space of acyclic
HMM structures. It iteratively proposes changes to the struc-
ture either by merging states or by deleting edges. It evalu-
ates each change and makes the one with the best score. An
exact implementation of this method is expensive, because,
each time a structure change is considered, the MAP param-
eters of the structure given the data must be re-estimated.

One of the key insights of both SEM and BMM is that this
expensive re-estimation can be avoided in factored models
by incrementally computing the changes to various expected
counts using only local information. While this calculation
is only approximate, it is highly efficient.

During the structure search, the algorithm considers every
possible structure change, i.e., merging of pairs of states and
deletion of state-transitions, checks that the change does not
create cycles, evaluates it according to the scoring function
and selects the best scoring structure. This is repeated until
the structure can no longer be improved (see Algorithm 1).

Algorithm 1
procedure LEARN(Model M , Data D, Changes S)

while NotConverged do
M = AcyclicityFilter (S(M))
M∗ = argmaxM′∈MP (M ′|D)
if P (M∗|D) ≤ P (M |D) then

return M
else

M = M∗

end if
end while

end procedure

The Merge States operator creates a new state from the
union of a state pair’s transition and observation distribu-
tions. It must assign transition and observation distributions
to the new merged state. To be exact, we need to redo the
parameter estimation for the changed structure. To compute
the impact of several proposed changes efficiently, we as-
sume that all probabilistic state transitions and trajectories
for the observed sequences remain the same as before except
in the changed parts of the structure. We call this “locality of
change” assumption, which allows us to add the correspond-
ing expected counts from the states being merged as shown
below.

C(r) = C(p) + C(q)

C(r → s) = C(p→ s) + C(q → s)

C(s→ r) = C(s→ p) + C(s→ q)

C(r, s ↑ o) = C(p, s ↑ o) + C(q, s ↑ o)
C(s, r ↑ o) = C(s, p ↑ o) + C(s, q ↑ o)

The second kind of structure change we consider is edge
deletion and consists of removing a transition between two
states and redistributing its evidence along the other paths
between the same states. Again, making the locality of
change assumption, we only recompute the parameters of
the transition and observation distributions that occur in the
paths between the two states. We re-estimate the parameters
due to deleting an edge (qs, qe), by effectively redistributing
the expected transitions from qs to qe, C(qs → qe), among
other edges between qs and qe based on the parameters of
the current model.

This is done efficiently using a procedure similar to the
Forward-Backward algorithm under the null observation se-
quence. Algorithm 3.3 takes the current model M , an edge
(qs → qe), and the expected count of the number of transi-
tions from qs to qe, N = C(qs → qe), as inputs. It updates

1568

the counts of the other transitions to compensate for remov-
ing the edge between qs and qe. It initializes the α of qs
and the β of qe with 1 and the rest of the αs and βs to 0.
It makes two passes through the HMM, first in the topolog-
ical order of the nodes in the graph and the second in the
reverse topological order. In the first, “forward” pass from
qs to qe, it calculates the α value of each node qi that repre-
sents the probability that a sequence that passes through qs
also passes through qi while emitting no observation. In the
second, “backward” pass, it computes the β value of a node
qi that represents the probability that a sequence that passes
through qi emits no observation and later passes through qe.
The product of α(qi) and β(qi) gives the probability that qi
is passed through when going from qs to qt and emits no
observation. Multiplying it by the expected number of tran-
sitions N gives the expected number of additional counts
which are added toC(qi) to compensate for the deleted tran-
sition (qs → qe). After the distribution of the evidence, all
the transition and observation probabilities are re-estimated
for the nodes and edges affected by the edge deletion

Algorithm 2 Forward-Backward algorithm to delete an edge
and re-distribute the expected counts.

procedure DELETEEDGE(ModelM , edge (qs → qe), countN)
∀is.t.s ≤ i ≤ e, α(qi) = β(qi) = 0
α(qs) = β(qe) = 1
for i = s+ 1 to e do

for all qp ∈ Parents(qi) do
α(qp → qi) = α(qp)T (qi|qp)Ω(λ|qi)
α(qi) = α(qi) + α(qp → qi)

end for
end for
for i = e− 1 downto s do

for all qc ∈ Children(qi) do
β(qi → qc) = β(qc)T (qc|qi)Ω(λ|qc)
C(qi → qc) = C(qi → qc) + α(qi → qc)β(qi →

qc)N
C(qi) = C(qi) + C(qi → qc)
β(qi) = β(qi) + β(qi → qc)

end for
end for

end procedure

In principle, one could continue making incremental
structural changes and parameter updates and never run EM
again. This is exactly what is done in Bayesian Model Merg-
ing (BMM) (Stolcke and Omohundro 1994). However, a se-
ries of structural changes followed by approximate incre-
mental parameter updates could lead to bad local optima.
Hence, after merging each batch of r sequences into the
HMM, we re-run EM for parameter estimation on all se-
quences seen thus far.

3.4 Structure Scoring
We now describe how we score the structures produced
by our algorithm to select the best structure. We employ
a Bayesian scoring function, which is the posterior proba-
bility of the model given the data, denoted P (M |D). The
score is decomposed via Bayes Rule (i.e., P (M |D) ∝

P (M)P (D|M))), and the denominator is omitted since it
is invariant with regards to the model.

Since each observation sequence is independent of the
others, the data likelihood P (D|M) = Π~o∈DP (~o) is cal-
culated using the Forward-Backward algorithm and Equa-
tion 7 in Section 3.2. Because the initial model fully enu-
merates the data, any merge can only reduce the data likeli-
hood. Hence, the model prior P (M) must be designed to en-
courage generalization via state merges and edge deletions
(described in Section 3.3). We employed a prior with three
components: the first two components are syntactic and pe-
nalize the number of states |Q| and the number of non-zero
transitions |T | respectively. The third component penalizes
the number of frequently-observed semantic constraint vio-
lations |C|. In particular, the prior probabilty of the model
P (M) = 1

Z exp(−(κq|Q|+ κt|T |+ κc|C|)). The κ param-
eters assign weights to each component in the prior.

The semantic constraints are learned from the event se-
quences for use in the model prior. The constraints take the
simple form “X never follows Y .” They are learned by gen-
erating all possible such rules using pairwise permutations
of event types, and evaluating them on the training data.
In particular, the number of times each rule is violated is
counted and a z-test is performed to determine if the vio-
lation rate is lower than a predetermined error rate. Those
rules that pass the hypothesis test with a threshold of 0.01
are included. When evaluating a model, these contraints are
considered violated if the model could generate a sequence
of observations that violates the constraint.

Also, in addition to incrementally computing the
transition and observation counts, C(r → s) and
C(r, s ↑ o), the likelihood, P (D|M) can be incre-
mentally updated with structure changes as well. Note
that the likelihood can be expressed as P (D|M) =∏

q,r∈Q

∏
o∈O T (r|q)C(q→r)Ω(o|r)C(q,r↑o) when the state

transitions are observed. Since the state transitions are not
actually observed, we approximate the above expression by
replacing the observed counts with expected counts. Further,
the locality of change assumption allows us to easily calcu-
late the effect of changed expected counts and parameters
on the likelihood by dividing it by the old products and mul-
tiplying by the new products. We call this version of our
algorithm SEM-HMM-Approx.

4 Experiments and Results
We now present our experimental results on SEM-HMM and
SEM-HMM-Approx. The evaluation task is to predict miss-
ing events from an observed sequence of events. For compar-
ison, four baselines were also evaluated. The “Frequency”
baseline predicts the most frequent event in the training set
that is not found in the observed test sequence. The “Condi-
tional” baseline predicts the next event based on what most
frequently follows the prior event. A third baseline, referred
to as “BMM,” is a version of our algorithm that does not
use EM for parameter estimation and instead only incremen-
tally updates the parameters starting from the raw document
counts. Further, it learns a standard HMM, that is, with no λ
transitions. This is very similar to the Bayesian Model Merg-

1569

Batch Size r 2 5 10
SEM-HMM 42.2% 45.1% 46.0%
SEM-HMM Approx. 43.3% 43.5% 44.3%
BMM + EM 41.1% 41.2% 42.1%
BMM 41.0% 39.5% 39.1%
Conditional 36.2%
Frequency 27.3%

Table 1: The average accuracy on the OMICS domains

Example 1 Example 2
Hear the doorbell. Listen for the doorbell.
Walk to the door. Go towards the door.
Open the door. Open the door.
Allow the people in. Greet the vistor.
Close the door. See what the visitor wants.

Say goodbye to the visitor.
Close the door.

Table 2: Examples from the OMICS “Answer the Doorbell”
task with event triggers underlined

ing approach for HMMs (Stolcke and Omohundro 1994).
The fourth baseline is the same as above, but uses our EM
algorithm for parameter estimation without λ transitions. It
is referred to as “BMM + EM.”

The Open Minds Indoor Common Sense (OMICS) cor-
pus was developed by the Honda Research Institute and is
based upon the Open Mind Common Sense project (Gupta
and Kochenderfer 2004). It describes 175 common house-
hold tasks with each task having 14 to 122 narratives de-
scribing, in short sentences, the necessary steps to complete
it. Each narrative consists of temporally ordered, simple sen-
tences from a single author that describe a plan to accom-
plish a task. Examples from the “Answer the Doorbell” task
can be found in Table 2. The OMICS corpus has 9044 indi-
vidual narratives and its short and relatively consistent lan-
guage lends itself to relatively easy event extraction.

The 84 domains with at least 50 narratives and 3 event
types were used for evaluation. For each domain, forty per-
cent of the narratives were withheld for testing, each with
one randomly-chosen event omitted. The model was evalu-
ated on the proportion of correctly predicted events given the
remaining sequence. On average each domain has 21.7 event
types with a standard deviation of 4.6. Further, the average
narrative length across domains is 3.8 with standard devi-
ation of 1.7. This implies that only a frcation of the event
types are present in any given narrative. There is a high
degree of omission of events and many different ways of
accomplishing each task. Hence, the prediction task is rea-
sonably difficult, as evidenced by the simple baselines. Nei-
ther the frequency of events nor simple temporal structure
is enough to accurately fill in the gaps which indicates that
most sophisticated modeling such as SEM-HMM is needed.

The average accuracy across the 84 domains for each
method is found in Table 1. On average our method signifi-
cantly out-performed all the baselines, with the average im-
provement in accuracy across OMICS tasks between SEM-

HMM and each baseline being statistically significant at a
.01 level across all pairs and on sizes of r = 5 and r = 10
using one-sided paired t-tests. For r = 2 improvement was
not statistically greater than zero. We see that the results
improve with batch size r until r = 10 for SEM-HMM
and BMM+EM, but they decrease with batch size for BMM
without EM. Both of the methods which use EM depend
on statistics to be robust and hence need a larger r value
to be accurate. However for BMM, a smaller r size means
it reconciles a couple of documents with the current model
in each iteration which ultimately helps guide the structure
search. The accuracy for “SEM-HMM Approx.” is close to
the exact version at each batch level, while only taking half
the time on average.

5 Conclusions
In this paper, we have given the first formal treatment of
scripts as HMMs with missing observations. We adapted
the HMM inference and parameter estimation procedures
to scripts and developed a new structure learning algo-
rithm, SEM-HMM, based on the EM procedure. It improves
upon BMM by allowing for λ transitions and by incorpo-
rating maximum likelihood parameter estimation via EM.
We showed that our algorithm is effective in learning scripts
from documents and performs better than other baselines
on sequence prediction tasks. Thanks to the assumption of
missing observations, the graphical structure of the scripts is
usually sparse and intuitive. Future work includes learning
from more natural text such as newspaper articles, enrich-
ing the representations to include objects and relations, and
integrating HMM inference into text understanding.

Acknowledgments
We would like to thank Nate Chambers, Frank Ferraro,
and Ben Van Durme for their helpful comments, criticism,
and feedback. Also we would like to thank the SCALE
2013 workshop. This work was supported by the DARPA
and AFRL under contract No. FA8750-13-2-0033. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the DARPA, the AFRL, or
the US government.

References
Bahl, L. R.; Jelinek, F.; and Mercer, R. L. 1983. A maximum
likelihood approach to continuos speech recognition. IEEE
Transactions in Pattern Analysis and Machine Intelligence
(PAMI) 5(2):179–190.
Baum, L. E.; Petrie, T.; Soules, G.; and Weiss, N. 1970. A
maximization technique occurring in the statistical analysis
of probabilistic functions of markov chains. The Annals of
Mathematical Statistics 41(1):164–171.
Chambers, N., and Jurafsky, D. 2008. Unsupervised learn-
ing of narrative event chains. In Proceedings of the 46th
Annual Meeting of the Association for Computational Lin-
guistics (ACL), 789–797.

1570

Chambers, N. 2013. Event schema induction with a prob-
abilistic entity-driven model. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language
Processing, 1797–1807.
DeJong, G., and Mooney, R. 1986. Explanation-based learn-
ing: An alternative view. Machine learning 1(2):145–176.
DeJong, G. 1981. Generalizations based on explanations. In
Proceedings of the Seventh International Joint Conference
on Artificial Intelligence (IJCAI), 67–69.
Dupont, P.; Miclet, L.; and Vidal, E. 1994. What is the
search space of the regular inference? In Grammatical In-
ference and Applications. Springer. 25–37.
Friedman, N. 1998. The Bayesian structural EM algorithm.
In Proceedings of the Fourteenth conference on Uncertainty
in artificial intelligence, 129–138. Morgan Kaufmann Pub-
lishers Inc.
Gupta, R., and Kochenderfer, M. J. 2004. Common sense
data acquisition for indoor mobile robots. In AAAI, 605–610.
Kit Cheung, J. C.; Poon, H.; and Vanderwende, L. 2013.
Probabilistic frame induction. In Proceedings of Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies
(NAACL:HLT), 837–846.
Krogh, A.; Brown, M.; Mian, I. S.; Sjolander, K.; and Haus-
sler, D. 1994. Hidden markov models in computational bi-
ology. Journal of Molecular Biology 1501–1531.
Miller, G. A. 1995. WordNet: a lexical database for english.
Communications of the ACM 38(11):39–41.
Rabiner, L. R. 1990. A tutorial on hidden Markov models
and selected applications in speech recognition. 267–296.
Raghavan, P.; Fosler-Lussier, E.; and Lai, A. M. 2012.
Learning to temporally order medical events in clinical text.
In Proceedings of the 46th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), 70–74.
Regneri, M.; Koller, A.; and Pinkal, M. 2010. Learning
script knowledge with web experiments. In Proceedings of
the 48th Annual Meeting of the Association for Computa-
tional Linguistics, 979–988. Association for Computational
Linguistics.
Schank, R., and Abelson, R. 1977. Scripts, plans, goals
and understanding: An inquiry into human knowledge struc-
tures. Lawrence Erlbaum Publishers.
Seymore, K.; McCallum, A.; and Rosenfeld, R. 1999.
Learning hidden Markov model structure for information
extraction. In AAAI Workshop on Machine Learning for In-
formation Extraction, 37–42.
Stolcke, A., and Omohundro, S. M. 1994. Best-first model
merging for hidden Markov model induction. arXiv preprint
cmp-lg/9405017.

1571

