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Abstract
Transfer learning considers related but distinct tasks
defined on heterogenous domains and tries to transfer
knowledge between these tasks to improve generaliza-
tion performance. It is particularly useful when we do
not have sufficient amount of labeled training data in
some tasks, which may be very costly, laborious, or
even infeasible to obtain. Instead, learning the tasks
jointly enables us to effectively increase the amount of
labeled training data. In this paper, we formulate a ker-
nelized Bayesian transfer learning framework that is a
principled combination of kernel-based dimensionality
reduction models with task-specific projection matrices
to find a shared subspace and a coupled classification
model for all of the tasks in this subspace. Our two
main contributions are: (i) two novel probabilistic mod-
els for binary and multiclass classification, and (ii) very
efficient variational approximation procedures for these
models. We illustrate the generalization performance of
our algorithms on two different applications. In com-
puter vision experiments, our method outperforms the
state-of-the-art algorithms on nine out of 12 benchmark
supervised domain adaptation experiments defined on
two object recognition data sets. In cancer biology ex-
periments, we use our algorithm to predict mutation
status of important cancer genes from gene expression
profiles using two distinct cancer populations, namely,
patient-derived primary tumor data and in-vitro-derived
cancer cell line data. We show that we can increase
our generalization performance on primary tumors us-
ing cell lines as an auxiliary data source.

1 Introduction
In many real-life applications, obtaining sufficient amount of
labeled training data to have a reliable predictor may be very
costly, laborious, or even infeasible. Instead, we can make
use of labeled training data available from related tasks to
increase our generalization performance. Transfer learning
(also known as domain adaptation or cross-domain learning)
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aims to transfer knowledge between related tasks defined on
heterogenous domains (Pan and Yang 2010). Heterogeneity
may be due to different feature representations or data dis-
tributions over the same set of features. This setup is signifi-
cantly different from multitask learning where we are given
tasks with data points from the same feature representation
(Caruana 1997; Argyriou, Evgeniou, and Pontil 2008).

Transfer learning algorithms are well-suited for natural
language processing, computer vision, and computational
biology applications due to their inherent suitability for
knowledge transfer. For example, text collections from dif-
ferent languages, image collections from different types of
recording devices, or biospecimen collections from different
tissue types are natural candidates for transfer learning.

1.1 Related Work
Blitzer, McDonald, and Pereira (2006) find correspondences
among features from different tasks and learn a shared fea-
ture space using these correspondences. Daumé III (2007)
replicates input features to produce shared and domain-
specific features, which are jointly fed into a supervised
method to perform domain adaptation implicitly. Jiang et
al. (2008) formulate a support vector machine (SVM; Vap-
nik 1998) model that uses support vectors of the source do-
main to improve the generalization performance on the tar-
get domain. Duan et al. (2009; 2010) learn a cross-domain
kernel function and an SVM model by jointly minimizing
the structural risk of the classifier and the mismatch between
data distributions of the two domains. Bergamo and Torre-
sani (2010) exploit strongly-labeled target domain data to
improve labeling of weakly-labeled source domain hence to
improve knowledge transfer between the two domains using
a transductive SVM model.

Dai et al. (2009) use a risk minimization framework that
couples two Markov chains defined on labels and features of
the source and target domains with different feature repre-
sentations. Hoffman et al. (2013) learn a linear transforma-
tion to map target domain data points into the source domain
and a multiclass classifier in the source domain jointly using
a coupled optimization problem.

Gopalan, Li, and Chellappa (2011) propose a manifold
learning approach that maps labeled data from source do-
main and unlabeled data from target domain on the Grass-
mann manifold to learn a classifier there. Gong et al. (2012)
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formulate a geodesic flow kernel to directly exploit intrin-
sic structures of computer vision data sets when transferring
knowledge between the domains.

Ben-David et al. (2007) learn a shared subspace by max-
imizing the margin on the labeled source domain data and
minimizing the distance between the data distributions of
the two domains. Argyriou, Maurer, and Pontil (2008) di-
vide image classification tasks into groups and learn a shared
subspace for each group to transfer knowledge. Saenko et
al. (2010) learn a nonlinear transformation to find a shared
subspace by mapping two data points from different do-
mains as close as possible if they are from the same class
and as distant as possible otherwise. Kulis, Saenko, and Dar-
rell (2011) generalize the same idea to the asymmetric set-
ting (i.e., different feature representations). Pan et al. (2011)
find low-dimensional latent representations for data points
from different domains in a shared subspace by minimizing
the maximum mean discrepancy between domains and max-
imizing the dependence between labels and latent features.

Bahadori, Liu, and Zhang (2011) give a transduc-
tive large-margin optimization algorithm that projects data
points from the source and target domains into a shared sub-
space by minimizing reconstruction and prediction losses
jointly. Duan, Xu, and Tsang (2012) map data points from
different domains into a shared subspace using separate
projection matrices and augment the projected data points
with original features before feeding them into a super-
vised learning algorithm such as an SVM. Han, Liao, and
Carin (2012) formulate a probabilistic model that generates
the original features of heterogeneous domains from their
latent representations in a shared subspace and learns a joint
probit classifier in this subspace.

1.2 Our Contribution
Previous methods have been proposed for transfer learning,
but none of them offers a fully Bayesian solution to do-
main adaptation on heterogenous domains in a discrimina-
tive setting. In this paper, we choose to find a shared sub-
space between the tasks using task-specific kernel-based di-
mensionality reduction models (Schölkopf and Smola 2002;
Shawe-Taylor and Cristianini 2004) and to learn a coupled
linear classifier in this subspace by combining these two
steps with a fully Bayesian framework. Our formulation
shares some similarities:

(i) with Kulis, Saenko, and Darrell (2011) and Pan et
al. (2011) due to the shared subspace between do-
mains,

(ii) with Hoffman et al. (2013) due to the coupled classi-
fier,

(iii) with Bahadori, Liu, and Zhang (2011), Duan, Xu, and
Tsang (2012), and Han, Liao, and Carin (2012) due to
both parts.

We discuss the differences between our method and these
methods in Section 2.5 after giving a detailed description of
our method, which can also be interpreted as the generaliza-
tion of the relevance vector machine (RVM; Tipping 2001)
to transfer learning setup.
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Figure 1: Flowchart of kernelized transfer learning for bi-
nary classification.

1.3 Preliminaries and Notation
We assume that there are T related binary classification tasks
but their data points come from heterogeneous domains,
namely, X1,X2, . . . ,XT . For each task, we are given an in-
dependent and identically distributed sample Xt = {xt,i 2
Xt}i2It and a label vector yt = {yt,i 2 {�1,+1}}i2It ,
where It gives the indices of data points in task t. There is
a task-specific kernel function for each task to define sim-
ilarities between the data points, i.e., kt : Xt ⇥ Xt ! R,
which is used to calculate the corresponding kernel matrix
Kt = {kt(xt,i,xt,j)}i2It,j2It .

Figure 1 illustrates the method we propose to learn a con-
joint model across the tasks; it is composed of two main
parts: (i) projecting data points from different tasks into a
shared subspace using a separate kernel-based dimensional-
ity reduction model for each task and (ii) performing cou-
pled binary classification in this subspace using a common
set of classification parameters. We first briefly explain these
two parts and introduce the notation used.

We first perform feature extraction using the input kernel
matrices {Kt 2 RNt⇥Nt}Tt=1 and the task-specific projec-
tion matrices {At 2 RNt⇥R}Tt=1, where Nt is the number
of data points in task t and R is the subspace dimensionality.
After the projection, we obtain the hidden representations of
data points in the shared subspace, i.e., {Ht = A>

t Kt}Tt=1.
Using a kernel-based formulation has two main implica-
tions: (i) We can apply our method to tasks with very high di-
mensional representations. (ii) We can learn better subspaces
using nonlinear or domain-specific kernel functions.

The coupled classification part calculates the predicted
outputs {f t = H>

t w+1b}Tt=1 in the shared subspace using
the same set of classification parameters {b 2 R,w 2 RR}.
These outputs are mapped to labels by looking at their signs.

2 Kernelized Bayesian Transfer Learning
We formulate a probabilistic model, called kernelized
Bayesian transfer learning (KBTL), for the method de-
scribed earlier. We can derive a very efficient inference algo-
rithm using variational approximation because our method
combines the kernel-based dimensionality reduction and
coupled binary classification parts with a fully conjugate
probabilistic model.

Figure 2 gives the graphical model of KBTL with hyper-
parameters, priors, latent variables, and model parameters.
As described earlier, the main idea can be summarized as:
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Figure 2: Graphical model of kernelized Bayesian transfer
learning for binary classification.

(i) to find hidden representations for the data points of all
tasks by mapping them into a shared subspace with the help
of kernel matrices and task-specific projection matrices and
(ii) to perform coupled binary classification in this subspace
using a common set of classification parameters.

There are some additions to the notation described ear-
lier: The Nt ⇥R matrix of priors for the entries of the task-
specific projection matrix At is denoted by ⇤t. The R ⇥ 1

vector of priors for the classification parameters w is de-
noted by ⌘. The prior for the bias parameter b is denoted
by �. For these three priors, there are three sets of hyper-
parameters, namely, {↵�,��}, {↵⌘,�⌘}, and {↵� ,��}. The
standard deviation for the hidden representations is given as
�h. As short-hand notations, the hyper-parameters are de-
noted by ⇣ = {↵⌘,�⌘,↵� ,�� ,↵�,��,�h, ⌫}, the priors by
⌅ = {�,⌘, {⇤t}Tt=1}, and the latent variables and model
parameters by ⇥ = {b,w, {f t,At,Ht}Tt=1}. Dependence
on ⇣ is omitted for clarity throughout the manuscript.

The distributional assumptions of the kernel-based di-
mensionality reduction part are defined as

�i
t,s ⇠ G(�i

t,s;↵�,��) 8(t, i, s)
ait,s|�i

t,s ⇠ N (ait,s; 0, (�
i
t,s)

�1
) 8(t, i, s)

hs
t,i|at,s,kt,i ⇠ N (hs

t,i;a
>
t,skt,i,�

2
h) 8(t, s, i),

where the superscript indexes the rows and the subscript in-
dexes the columns. N (·;µ,⌃) represents the normal distri-
bution with the mean vector µ and the covariance matrix
⌃. G(·;↵,�) denotes the gamma distribution with the shape
parameter ↵ and the scale parameter �.

The coupled binary classification part has the following
distributional assumptions:

� ⇠ G(�;↵� ,��)

b|� ⇠ N (b; 0, ��1
)

⌘s ⇠ G(⌘s;↵⌘,�⌘) 8s
ws|⌘s ⇠ N (ws; 0, ⌘

�1
s ) 8s

ft,i|b,w,ht,i ⇠ N (ft,i;w
>
ht,i + b, 1) 8(t, i)

yt,i|ft,i ⇠ �(ft,iyt,i > ⌫) 8(t, i),

where the predicted outputs {f t}Tt=1, similar to the discrim-
inant outputs in SVMs, are introduced to make the infer-
ence procedures efficient (Albert and Chib 1993). The non-
negative margin parameter ⌫ is introduced to resolve the
scaling ambiguity and to place a low-density region between

two classes, similar to the margin idea in SVMs, which is
generally used for semi-supervised learning (Lawrence and
Jordan 2005). �(·) represents the Kronecker delta function
that returns 1 if its argument is true and 0 otherwise.

2.1 Inference Using Variational Bayes
To obtain an efficient inference mechanism, we formu-
late a deterministic variational approximation instead of a
Gibbs sampling approach, which is computationally expen-
sive (Gelfand and Smith 1990). The variational methods use
a lower bound on the marginal likelihood using an ensemble
of factored posteriors to find the joint parameter distribution
(Beal 2003). We can write the factorable ensemble approxi-
mation of the required posterior as

p(⇥,⌅|{Kt,yt}Tt=1) ⇡ q(⇥,⌅) =

TY

t=1

⇥
q(⇤t)q(At)q(Ht)

⇤
q(�)q(⌘)q(b,w)

TY

t=1

q(f t)

and define each factor in the ensemble just like its full con-
ditional distribution:

q(⇤t) =

Y

i2It

RY

s=1

G(�i
t,s;↵(�

i
t,s),�(�

i
t,s))

q(At) =

RY

s=1

N (at,s;µ(at,s),⌃(at,s))

q(Ht) =

Y

i2It

N (ht,i;µ(ht,i),⌃(ht,i))

q(�) = G(�;↵(�),�(�))

q(⌘) =
RY

s=1

G(⌘s;↵(⌘s),�(⌘s))

q(b,w) = N
✓

b
w

�
;µ(b,w),⌃(b,w)

◆

q(f t) =

Y

i2It

T N (ft,i;µ(ft,i),⌃(ft,i), ⇢(ft,i)),

where ↵(·), �(·), µ(·), and ⌃(·) denote the shape parame-
ter, the scale parameter, the mean vector, and the covariance
matrix for their arguments, respectively. T N (·;µ,⌃, ⇢(·))
denotes the truncated normal distribution with the mean vec-
tor µ, the covariance matrix ⌃, and the truncation rule ⇢(·)
such that T N (·;µ,⌃, ⇢(·)) / N (·;µ,⌃) if ⇢(·) is true and
T N (·;µ,⌃, ⇢(·)) = 0 otherwise.

We can bound the marginal likelihood using Jensen’s in-
equality:

log p({yt}Tt=1|{Kt}Tt=1) �
Eq(⇥,⌅)

⇥
log p({yt}Tt=1,⇥,⌅|{Kt}Tt=1)

⇤

� Eq(⇥,⌅)

⇥
log q(⇥,⌅)

⇤

and optimize this bound by maximizing with respect to each
factor separately until convergence. The approximate poste-
rior distribution of a specific factor ⌧ can be found as

q(⌧ ) / exp

⇣
Eq({⇥,⌅}\⌧)

⇥
log p({yt}

T
t=1,⇥,⌅|{Kt}Tt=1)

⇤⌘
.
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For our proposed model, thanks to the conjugacy, the result-
ing approximate posterior distribution of each factor follows
the same distribution as the corresponding factor.

2.2 Inference Details for Binary Classification
The approximate posterior distributions of the precision pri-
ors can be updated as

↵(�i
t,s) = ↵� + 1/2

�(�i
t,s) =

�
1/�� +

⌦
(ait,s)

2
↵
/2
��1

↵(�) = ↵� + 1/2

�(�) =
�
1/�� +

⌦
b2
↵
/2
��1

↵(⌘s) = ↵⌘ + 1/2

�(⌘s) =
�
1/�⌘ +

⌦
w2

s

↵
/2
��1

,

where hg(·)i denotes the posterior expectation as usual, i.e.,
Eq(·)[g(·)].

The approximate posterior distributions of the task-
specific projection matrices can be updated as

⌃(at,s) =
�
diag(h�t,si) +KtK

>
t /�

2
h

��1

µ(at,s) = ⌃(at,s)
�
Kt

⌦
(h

s
t )

>↵/�2
h

�

and the approximate posterior distribution of the hidden rep-
resentation for each data point can be updated as

⌃(ht,i) =
�
I/�2

h +

⌦
ww

>↵��1

µ(ht,i) = ⌃(ht,i)
�⌦
A>

t

↵
kt,i/�

2
h + hft,iihwi � hbwi

�
.

Note that the bias parameter b and the vector of weight pa-
rameters w are shared across the tasks.

The joint approximate posterior distribution of b and w

can be updated as

⌃(b,w) =

2

664
h�i+

TP
t=1

Nt

TP
t=1

1>⌦H>
t

↵

TP
t=1

hHti1 diag(h⌘i) +
TP

t=1

⌦
HtH

>
t

↵

3

775

�1

µ(b,w) = ⌃(b,w)

2

664

TP
t=1

1>hf ti
TP

t=1
hHtihf ti

3

775,

where it can be seen that the inference mechanism transfers
information between the tasks because they update q(b,w)

all together.
The approximate posterior distribution of the predicted

outputs can be updated as

⌃(ft,i) = 1

µ(ft,i) =
⌦
w

>↵hht,ii+ hbi
⇢(ft,i) , ft,iyt,i > ⌫,

where we can fortunately calculate the expectation of the
truncated normal distribution in closed-form.
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Figure 3: Graphical model of kernelized Bayesian transfer
learning for multiclass classification.

2.3 Prediction
We can replace p(At|{Ku,yu}Tu=1) with its approximate
posterior distribution q(At) and obtain the predictive distri-
bution of the hidden representation ht,? for a new data point
xt,? as

p(ht,?|kt,?, {Ku,yu}Tu=1) =

RY

s=1

N (hs
t,?;µ(at,s)

>
kt,?,�

2
h + k

>
t,?⌃(at,s)kt,?).

The predictive distribution of the predicted output ft,? can
also be found by replacing p(b,w|{Kt,yt}Tt=1) with its ap-
proximate posterior distribution q(b,w):

p(ft,?|ht,?, {Ku,yu}Tu=1) =

N
✓
ft,?;µ(b,w)

>


1

ht,?

�
, 1 + [

1 ht,?]⌃(b,w)


1

ht,?

�◆

and the predictive distribution of the class label yt,? can be
found using the predicted output distribution:

p(yt,? = +1|ft,?, {Ku,yu}Tu=1) = Z�1
t,?�

✓
µ(ft,?)� ⌫

⌃(ft,?)

◆
,

where Zt,? is the normalization coefficient calculated for the
test data point, and �(·) is the standardized normal cumula-
tive distribution function.

2.4 Multiclass Classification
In multiclass classification, we consider classification prob-
lems with more than two classes (i.e., K > 2). The most
straightforward strategy is to train a distinct classifier for
each class that separates this particular class from the re-
maining ones (i.e., one-versus-all classification). However,
if we use our proposed method in such a setup, we would
have different hidden representations for each class. Instead,
we choose to learn a shared subspace for all classes and to
apply one-versus-all classification strategy in this subspace.

Figure 3 gives the graphical model of KBTL for multi-
class classification. There is a shared hidden representation
space across the classes but each class has its own set of
classification parameters {bc 2 R,wc 2 RR} with their
corresponding priors.
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The distributional assumptions of the coupled classifica-
tion part are modified as

�c ⇠ G(�c;↵� ,��) 8c
bc|�c ⇠ N (bc; 0, �

�1
c ) 8c

⌘c,s ⇠ G(⌘c,s;↵⌘,�⌘) 8(c, s)
wc,s|⌘c,s ⇠ N (wc,s; 0, ⌘

�1
c,s ) 8(c, s)

ft,c,i|bc,wc,ht,i ⇠ N (ft,c,i;w
>
c ht,i + bc, 1) 8(t, c, i)

yt,c,i|ft,c,i ⇠ �(ft,c,iyt,c,i > ⌫) 8(t, c, i).
By modifying the update equations of KBTL for

binary classification, we can derive the update equa-
tions for the approximate posterior distributions of the
classification parameters and predicted outputs, namely,
{q(�c), q(⌘c), q(bc,wc)}Kc=1 and {q(f t,c)}

T,K
t=1,c=1, as

↵(�c) = ↵� + 1/2

�(�c) =
�
1/�� +

⌦
b2c
↵
/2

��1

↵(⌘c,s) = ↵⌘ + 1/2

�(⌘c,s) =
�
1/�⌘ +

⌦
w2

c,s

↵
/2

��1

⌃(bc,wc) =

2

664
h�ci+

TP
t=1

Nt

TP
t=1

1>⌦H>
t

↵

TP
t=1

hHti1 diag(h⌘ci) +
TP

t=1

⌦
HtH

>
t

↵

3

775

�1

µ(bc,wc) = ⌃(bc,wc)

2

664

TP
t=1

1>⌦f t,c

↵

TP
t=1

hHti
⌦
f t,c

↵

3

775

⌃(ft,c,i) = 1

µ(ft,c,i) =
D
w>

c

E
hht,ii+ hbci

⇢(ft,c,i) , ft,c,iyt,c,i > ⌫.

The covariance update equation for the approximate pos-
terior distribution of the hidden representation for each data
point can be written as

⌃(ht,i) =

 
I/�2

h +

KX

c=1

⌦
wcw

>
c

↵
!�1

and the mean update equation can be given as

µ(ht,i) =

⌃(ht,i)

 
⌦
A>

t

↵
kt,i/�

2
h +

KX

c=1

�
hft,c,iihwci � hbcwci

�
!
,

where we use the classification parameters of all classes to-
gether. The update equations of the task-specific projection
matrices and their priors remain intact.

2.5 Comparison to Related Work
Kulis, Saenko, and Darrell (2011) and Pan et al. (2011) first
perform dimensionality reduction to find a shared subspace
and then learn a classifier in this subspace. The dimensional-
ity reduction step has its own target function different from

the one that the classifier in the shared subspace uses. Hence,
coupled training of these two steps as we do in our method
may improve the overall system performance.

Hoffman et al. (2013) map data points from the source
domain into the target domain, which requires learning a
very large projection matrix for high-dimensional feature
representations, which can be avoided by projecting both
domains into low-dimensional spaces using, for example,
principal component analysis (PCA) at the cost of informa-
tion loss, whereas our method can work directly with high-
dimensional feature representations using the kernel trick.

Bahadori, Liu, and Zhang (2011) and Duan, Xu, and
Tsang (2012) combine dimensionality reduction and clas-
sification steps by formulating joint optimization problems,
which are non-convex requiring time-consuming alternat-
ing optimization strategies and are limited to two domains,
whereas our method can use more than two domains and is
able to produce probabilistic outputs.

Han, Liao, and Carin (2012) formulate a generative
model, which is limited to low-dimensional problems and is
able to produce linear mappings due to its generative nature,
and find a maximum a posteriori estimate of model parame-
ters using an expectation-maximization algorithm. However,
our discriminative model is able to scale to high-dimensional
problems and to find nonlinear mappings using the kernel
trick. Our method finds a full-Bayesian solution for its pa-
rameters using a variational approximation algorithm.

3 Experiments
We first test our new algorithm KBTL on 12 benchmark
domain adaptation experiments derived from two computer
vision data sets to illustrate its generalization performance
and compare its results to previously reported results on
these experiments. We then perform transfer learning ex-
periments with heterogeneous populations for two different
cancer types to show the suitability of our algorithm in a
challenging and nonstandard application scenario. Our Mat-
lab implementations for binary and multiclass classification
are available at https://github.com/mehmetgonen/kbtl.

3.1 Computer Vision Experiments
In this first set of experiments, we use Office (Saenko
et al. 2010) and Caltech-256 (Griffin, Holub, and Per-
ona 2007) data sets. Office data set contains images of
office objects from 31 different categories (e.g., calculator,
keyboard, monitor, mug, etc.) under three distinct domains:
amazon, webcam, and dslr. The images from different
domains have varying characteristics such as illumination
and background. For example, amazon domain has “con-
trolled” product images containing a single and centered ob-
ject usually on a white background, whereas webcam and
dslr domains have “uncontrolled” images with lighting
variations and background changes. Heterogeneity of im-
ages across the domains can easily be seen from Figure 4 for
amazon, webcam, and dslr domains. Caltech-256
data set contains images from 256 categories under a diverse
set of lighting conditions, poses, and backgrounds.

In our experiments, we use the ten common categories
(i.e., backpack, bicycle, calculator, headphones, keyboard,
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Figure 4: Sample images from amazon, webcam, and dslr domains in Office data set of Saenko et al. (2010).

Table 1: Multiclass classification accuracies for supervised domain adaptation experiments on the object recognition data sets.
The results for six baseline algorithms are directly taken from Hoffman et al. (2013). The results of KBTL(L) and KBTL(G)
are marked in bold face if they are better than all of the baseline algorithms.

Source Target SVMS SVMT ARCT HFA GFK MMDT KBTL(L) KBTL(G)

webcam amazon 35.7±0.4 45.6±0.7 43.4±0.5 45.9±0.7 44.1±0.4 47.7±0.9 52.2±0.8 53.4±0.8
dslr amazon 34.0±0.3 45.7±0.9 42.5±0.5 45.8±0.9 45.7±0.6 46.9±1.0 50.9±0.8 51.9±0.9
caltech amazon 35.9±0.4 45.3±0.9 44.1±0.6 45.5±0.9 44.7±0.8 49.4±0.8 52.4±1.1 52.9±1.0

amazon webcam 33.9±0.7 62.4±0.9 55.7±0.9 61.8±1.1 58.6±1.0 64.6±1.2 69.0±1.0 69.8±1.1
dslr webcam 74.3±0.5 62.1±0.8 78.3±0.5 62.1±0.7 76.5±0.5 74.1±0.8 69.1±0.9 70.0±1.0
caltech webcam 30.8±1.1 60.3±1.0 55.9±1.0 60.5±0.9 63.7±0.8 63.8±1.1 67.0±1.1 68.5±1.2

amazon dslr 35.0±0.8 55.9±0.8 50.2±0.7 52.7±0.9 50.7±0.8 56.7±1.3 57.8±1.1 57.6±1.1
webcam dslr 66.6±0.7 55.1±0.8 71.3±0.8 51.7±1.0 70.5±0.7 67.0±1.1 60.8±1.0 61.8±1.3
caltech dslr 35.6±0.7 55.8±0.9 50.6±0.8 51.9±1.1 57.7±1.1 56.5±0.9 57.4±1.3 58.8±1.1

amazon caltech 35.1±0.3 32.0±0.8 37.0±0.4 31.1±0.6 36.0±0.5 36.4±0.8 35.8±0.8 35.9±0.7
webcam caltech 31.3±0.4 30.4±0.7 31.9±0.5 29.4±0.6 31.1±0.6 32.2±0.8 33.6±0.9 34.0±0.9
dslr caltech 31.4±0.3 31.7±0.6 33.5±0.4 31.0±0.5 32.9±0.5 34.1±0.8 35.0±0.7 35.9±0.6

Mean Performance 40.0±0.6 48.5±0.8 49.5±0.6 47.4±0.8 51.0±0.7 52.5±1.0 53.4±0.9 54.2±1.0

laptop, monitor, mouse, mug, projector) shared by Office
and Caltech-256. We use 800-dimensional SURF-BoW
features provided by Gong et al. (2012) for all four domains.
To have results comparable to the previous studies, we fol-
low the experimental setup used by Saenko et al. (2010),
Gong et al. (2012), and Hoffman et al. (2013), and per-
form experiments for 20 random train/test splits provided by
Hoffman et al. (2013). In 12 domain adaptation experiments
defined between all possible pairs of the four domains, there
are few labeled data points (three images) available for each
category in the target domain, whereas we have much more
labeled data points (20 images for amazon and eight im-
ages for others) in the source domain. The remaining data
points from the target domain are used in the test phase. For
each experiment, we report the mean and standard deviation
of multiclass classification accuracies over 20 replications.

We compare eight algorithms (i.e., six baseline algorithms
and our algorithm with two different kernels):

(i) SVMS: an SVM trained on the source domain,

(ii) SVMT: an SVM trained on the target domain,

(iii) ARCT: asymmetric regularized cross-domain transfor-
mation algorithm proposed by Kulis, Saenko, and Dar-
rell (2011),

(iv) HFA: heterogeneous feature adaptation algorithm pro-
posed by Duan, Xu, and Tsang (2012),

(v) GFK: geodesic flow kernel algorithm proposed by
Gong et al. (2012),

(vi) MMDT: max-margin domain transforms algorithm pro-
posed by Hoffman et al. (2013),

(vii) KBTL(L): our algorithm for multiclass classification
with the linear kernel,

(viii) KBTL(G): our algorithm for multiclass classification
with the Gaussian kernel.

The results for baseline algorithms are directly taken from
Hoffman et al. (2013).

For our algorithm, the hyper-parameter values are se-
lected as (↵⌘,�⌘) = (↵� ,��) = (↵�,��) = (1, 1),�h =

0.1, and ⌫ = 1. The number of components in the hidden
representation space is selected as R = 20. We take 200 it-
erations for variational inference scheme. For KBTL(L), we
calculate a linear kernel on each domain and normalize the
kernel matrices to unit maximum value (i.e., dividing each
kernel matrix by its maximum value) in order to eliminate
scaling issues. For KBTL(G), we calculate a Gaussian ker-
nel on each domain, where we set the kernel width to the
mean of pairwise distances between the training data points.
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Table 2: Number of data points in source and target domains
for transfer learning experiments.

CCLE (source) TCGA (target)

Cancer Gene Mutant WT Mutant WT

GBM
EGFR 5 36 47 102
TP53 27 14 45 104

LUAD
TP53 34 9 79 90
KRAS 17 26 46 123

Table 1 reports the multiclass classification accuracies for
12 supervised domain adaptation experiments. KBTL(L)
outperforms all baseline algorithms on eight out of 12 ex-
periments, whereas KBTL(G) outperforms them on nine
experiments. They also improve the mean performance by
0.9 and 1.7 percentage units, respectively, compared to the
baseline algorithm with the best performance. These results
validate the better generalization performance of our algo-
rithm irrespective of the kernel function used. Our algorithm
does not perform well on two experiments defined between
webcam and dslr. This can be explained by the similarity
between these two domains as SVMS performs significantly
better than SVMT on these experiments. That is why nearest-
neighbor-based algorithms, i.e., ARCT and GFK, work bet-
ter for such scenarios but not margin-based algorithms, i.e.,
HFA, MMDT, KBTL(L), and KBTL(G).

3.2 Cancer Biology Experiments
In this second set of experiments, we test if we can
transfer information from in-vitro cancer cell line data
to improve the accuracy of gene-expression-based pre-
dictors of the mutation status of important cancer genes
in primary patient tumor samples. We use primary tu-
mor data from The Cancer Genome Atlas (TCGA)
(TCGA Research Network 2008) and cancer cell line
data from the Cancer Cell Line Encyclopedia
(CCLE) (Barretina et al. 2012). We define the learn-
ing task as predicting mutation status (Mutant versus
Wild Type) of a particular gene using gene expres-
sion profiles. Specifically, we use expression profiles of
20,530 genes in TCGA from Illumina HiSeq experiments
and expression profiles of 18,897 genes in CCLE from
Affymetrix U133+2 microarrays. From TCGA, we use pri-
mary tumors from two cancer cohorts: glioblastoma
multiforme (GBM) and lung adenocarcinoma
(LUAD). From CCLE, we use cell lines with the cor-
responding tissue types: central nervous system
glioma and lung adenocarcinoma. We perform four
transfer learning experiments in which we try to transfer in-
formation from CCLE to TCGA (i.e., from cell lines to pri-
mary tumors). For both cancer types, we identify two genes
that are most frequently mutated in TCGA among the ones
listed in The Cancer Gene Census (Futreal et al. 2004). Ta-
ble 2 summarizes the details of these four experiments.

We compare three algorithms:
(i) BRVM: Bayesian relevance vector machine algorithm

proposed by Bishop and Tipping (2000) trained on the

target domain (i.e., no transfer),
(ii) MMDT: max-margin domain transforms algorithm pro-

posed by Hoffman et al. (2013) (i.e., the best baseline
algorithm in the computer vision experiments),

(iii) KBTL: our algorithm for binary classification trained
on both domains together.

For BRVM, we use our own Matlab implementation and set
the hyper-parameter values to the default values as in KBTL,
i.e., (↵� ,��) = (↵�,��) = (1, 1). For MMDT, we use the
Matlab implementation provided by Hoffman et al. (2013)
and reduce the dimensionality of each domain to 20 using
PCA as suggested by Hoffman et al. (2013) to get reasonable
run times for high-dimensional cancer data sets. For BRVM
and KBTL, we calculate a linear kernel for each domain and
normalize the kernel matrix to unit maximum value. For our
algorithm, the number of components in the hidden repre-
sentation space is selected as R = 2.

We perform experiments for 50 random train/test splits.
For each replication, we randomly select 25 per cent of
TCGA with stratification as the test set and use 25, 50, or 75
per cent as the training set, whereas we use all data points
in CCLE for training. The training sets are normalized sep-
arately to have zero mean and unit standard deviation, and
the test set in TCGA is then normalized using the mean and
the standard deviation of the original training set in TCGA.

Figure 5 compares the performance of BRVM, MMDT, and
KBTL in terms of the area under the ROC curve (AUC) val-
ues with varying training set size for the target domain on
four transfer learning experiments using box-and-whisker
plots. It also compares KBTL and the best baseline algo-
rithm for each experiment using scatter plots. We clearly see
that KBTL is statistically significantly superior to BRVM and
MMDT in all of the experiments according to the paired t-
test with p < 0.05. Note that knowledge transfer happens in
all of the experiments for our algorithm (i.e., KBTL is con-
sistently better than BRVM), whereas MMDT obtains worse
AUC values than BRVM in some of the experiments (e.g.,
KRAS gene on LUAD cohort). These results show that KBTL
is able to improve the predictive performance on primary
tumors using cell lines as an auxiliary data source. Applica-
tions of this approach may have important clinical implica-
tions due to the difficulty and expense of obtaining data on
primary tumors compared to cell lines.

4 Conclusions
We introduce a kernelized Bayesian transfer learning frame-
work that can transfer information between tasks with het-
erogenous feature representations by mapping their data
points into a shared subspace with task-specific projection
matrices and learning a coupled classification model in this
subspace. Our two main contributions are: (i) formulating
novel probabilistic models that couple these two parts for
binary and multiclass classification in a principled way and
(ii) developing very efficient variational approximation pro-
cedures for these probabilistic models. We illustrate the
practical importance of the method for two scenarios: (i) su-
pervised domain adaptation experiments on object recogni-
tion data sets and (ii) transfer learning experiments with het-
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Figure 5: Comparison between (A) BRVM, (B) MMDT, and (C) KBTL in terms of AUC values on GBM and LUAD cohorts with
varying training set size for the target domain.

erogenous populations for two cancer types. We show that
our method outperforms the state-of-the-art domain adap-
tation algorithms on computer vision experiments. We also
show that our method is able to transfer information between
patient-derived primary tumor data and in-vitro-derived can-
cer cell line data.

Three interesting topics for future research are: (i) per-
forming task grouping to cluster tasks with similar char-
acteristics together, which leads to eliminating the negative
transfer between tasks with different characteristics, (ii) ex-
tending coupled classification part of our algorithms using
the low-density assumption of Lawrence and Jordan (2005)
in order to make use of unlabeled data, which leads to semi-
supervised variants of our algorithms, and (iii) combining

multiple kernels to integrate different feature representations
or similarities for each task to learn a better task-specific ker-
nel function, known as multiple kernel learning (Gönen and
Alpaydın 2011), using the formulation of Gönen (2012).
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