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Abstract

Multi-view clustering, which seeks a partition of the
data in multiple views that often provide complemen-
tary information to each other, has received consid-
erable attention in recent years. In real life cluster-
ing problems, the data in each view may have con-
siderable noise. However, existing clustering methods
blindly combine the information from multi-view data
with possibly considerable noise, which often degrades
their performance. In this paper, we propose a novel
Markov chain method for Robust Multi-view Spectral
Clustering (RMSC). Our method has a flavor of low-
rank and sparse decomposition, where we firstly con-
struct a transition probability matrix from each single
view, and then use these matrices to recover a shared
low-rank transition probability matrix as a crucial in-
put to the standard Markov chain method for cluster-
ing. The optimization problem of RMSC has a low-rank
constraint on the transition probability matrix, and si-
multaneously a probabilistic simplex constraint on each
of its rows. To solve this challenging optimization prob-
lem, we propose an optimization procedure based on the
Augmented Lagrangian Multiplier scheme. Experimen-
tal results on various real world datasets show that the
proposed method has superior performance over several
state-of-the-art methods for multi-view clustering.

Introduction
In many real-life clustering problems, one has access to
multiple representations or views of the data. These views
often provide complementary information to each other.
Multi-view clustering, which seeks to improve the clus-
tering performance by leveraging the information from
multiple views, has recently received considerable atten-
tion. Many multi-view clustering methods have been pro-
posed (Chaudhuri et al. 2009; Bickel and Scheffer 2004;
Kumar and Daumé 2011; Kumar, Rai, and Daumé 2011;
Zhou and Burges 2007; Greene and Cunningham 2009).

Among diverse clustering methods, we consider multi-
view spectral clustering via Markov chains. Spectral clus-
tering has become one of the most popular clustering meth-
ods because it has well-defined mathematical principles, and
often has superior performance than traditional clustering
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methods such as k-means clustering. Spectral clustering has
a natural connection to Markov chains (Shi and Malik 2000).
For example, in the single view case, spectral clustering is
derived from a real relaxation of the combinatorial normal-
ized cut, which leads to the graph Laplacian that can be natu-
rally converted to a transition probability matrix to generate
a Markov chain on the graph.

In Markov chain methods, a crucial step is to construct
an accurate transition probability matrix. In the context of
multi-view clustering, one needs to construct a transition
probability matrix by leveraging the information from mul-
tiple representations. For example, Zhou et al. (Zhou and
Burges 2007) proposed a Markov chain method by gener-
alizing the normalized cut from a single view to multiple
views, which constructs the transition matrix via a Markov
mixture that combines multiple transition matrices defined
on different type of representations. 0

In real world applications of multi-view spectral cluster-
ing, the input data may be noisy, which results in the cor-
responding similarity/transition matrices being corrupted by
considerable noise. However, the existing methods for multi-
view spectral clustering blindly combine multiple represen-
tations of data with possibly considerable noise, which may
often degrade the clustering performance.

To address this issue, in this paper, we propose Robust
Multi-view Spectral Clustering (RMSC), a Markov chain
method that explicitly handles the possible noise in the tran-
sition probability matrices associated with different views.
As shown in Figure 1, we firstly use each type of repre-
sentation to construct a similarity matrix and a transition
probability matrix. Then, we propose to learn the final tran-
sition probability matrix via low-rank and sparse decom-
position. Different from the existing methods for low-rank
and sparse decomposition (i.e., (Ye et al. 2012; Pan et al.
2013b)), our formulation introduces a probabilistic simplex
constraint on each row of the learned transition probability
matrix, resulting in a considerably more challenging opti-
mization problem. We propose an optimization procedure
to solve the optimization problem based on the Augmented
Lagrangian Multiplier (ALM) scheme (Lin, Chen, and Ma
2010). Experimental results on benchmark datasets of multi-
view clustering show that the proposed RMSC outperforms
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Figure 1: Overview of transition matrix construction. Given
n data points with m views, we firstly construct a sim-
ilarity matrix S(i) (i = 1, 2, ...,m) for each view, and
then calculate the corresponding transition probability ma-
trix P (i) by P (i) = (D(i))−1S(i). After that, we re-
cover a low-rank latent transition probability matrix P̂ from
P (1), P (2), . . . , P (m) via low-rank and sparse decomposi-
tion, where P̂ will be used as input to the standard Markov
chain method for (single view) spectral clustering.

several state-of-the-art clustering methods.

Related Work
Clustering is a classical problem in data mining. Recently,
with the increasing quantities of data in multiple representa-
tions from diverse sources, multi-view clustering algorithms
have attracted considerable attention (Chaudhuri et al. 2009;
Bickel and Scheffer 2004; Kumar and Daumé 2011; Kumar,
Rai, and Daumé 2011; Zhou and Burges 2007; Greene and
Cunningham 2009).

Existing methods for multi-view clustering can be
roughly categorized into three streams. The methods in the
first stream integrate multi-view features into some common
representation before (or in) the clustering process (Bickel
and Scheffer 2004; Kumar, Rai, and Daumé 2011; Kumar
and Daumé 2011; Zhou and Burges 2007). For example,
the methods in (Bickel and Scheffer 2004; Kumar, Rai, and
Daumé 2011) incorporate multi-view features to construct
the loss functions for clustering; the method in (Zhou and
Burges 2007) constructs a Markov mixture model for clus-
tering via leveraging multiple transition probability matri-
ces, each of which is exacted from one view. The methods
in the second stream firstly project each view of features
onto a common low-dimensional subspace, and then con-
duct clustering in this subspace. A representative method in
this stream is CCA for multi-view clustering (Chaudhuri et
al. 2009), which uses CCA to project the multi-view high di-
mensional data onto a low-dimensional subspace. The meth-
ods in the third stream (Greene and Cunningham 2009)
firstly learn a clustering solution from each single view, and
then combine these intermediate outputs to get a final clus-
tering solution. The proposed method in this paper belongs
to the first stream.

Our method performs multi-view clustering by build-

ing a Markov chain. Recently, some effort has been made
in Markov chain methods for multi-view clustering. Zhou
et al. (Zhou and Burges 2007) proposed a Markov chain
method for the generalized normalized cut on multi-views
data, which firstly constructs a transition probability ma-
trix on each view, and then combines these matrices via
a Markov mixture. However, the real life multi-view data
may be noisy, which results in considerable corruptions in
the corresponding transition matrix associated with each
view. The method in (Zhou and Burges 2007) blindly com-
bines multiple transition matrices with possibly considerable
noise, which often degrades its clustering performance.

An integral part of our method is to build an accurate tran-
sition probability matrix by combining multiple input ma-
trices via low-rank and sparse decomposition. The idea of
explicitly handling the noise in multiple input matrices via
low-rank and sparse decomposition is not new. For exam-
ple, the robust data fusion methods (Ye et al. 2012; Pan et al.
2013b) separate the considerable noise in multiple input ma-
trices via low-rank and sparse decomposition; Pan et al. (Pan
et al. 2013a) proposed a rank aggregation method to distin-
guish the noise via low-rank and structured-sparse decom-
position. The proposed method in this paper shares some
similar features with the previous methods for low-rank and
sparse decomposition. However, since our goal is to learn a
low-rank transition probability matrix, our formulation in-
troduces a probabilistic simplex constraint on each row of
the learned matrix, resulting in a considerably more chal-
lenging optimization problem than those in (Ye et al. 2012;
Pan et al. 2013b).

Spectral Clustering via Markov Chains
Given a set of data points {x1, . . . , xn}, we define a sim-
ilarity matrix S where Sij ≥ 0 denotes the similarity on
a pair of data points xi and xj . Let G = (V,E, S) be a
weighted graph with vertex set V , edge set E, and the cor-
responding weight/similarity matrix S, where each vertex vi
associates with the data point xi and each edge (i, j) ∈ E
associates with Sij between xi and xj . One popular way is
to use Gaussian kernels to define the similarity matrix, i.e.,
Sij = exp(− ||xi−xj ||22

σ2 ) where ||.||2 denotes the `2 norm and
σ2 denotes the standard deviation (e.g., one can set σ2 to be
the average Euclidean distance over all pairs of data points).
The degree of a vertex vi is defined as di =

∑n
j=1 Sij .

Spectral clustering seeks a partition of data points in a
weighted graph G. It has been shown that spectral cluster-
ing has a natural connection to transition probabilities or
random walks of the Markov chains (Shi and Malik 2000).
More specifically, spectral clustering can be interpreted as
trying to find a partition on G such that the Markov random
walk stays long within the same cluster and seldom jumps
between clusters. Let P be the transition matrix of a ran-
dom walk defined on G. One can define P as P = D−1S
where D is a diagonal matrix with Dii = di =

∑n
j=1 Sij .

It is easy to verify that each row of P is a probability dis-
tribution, i.e., for all j, Pij ≥ 0 and

∑n
j=1 Pij = 1. Pij

represents the probability of jumping in one step from vi to
vj . Given a connected and non-bipartite G with the transi-
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Figure 2: An illustration of a low-rank transition proba-
bility matrix. There are 7 data points in 3 clusters, i.e.,
{(x1, x2, x3), (x4, x5), (x6, x7)}, where any pair of points in the
same cluster is identical (with the maximum similarity 1) and any
pair of points in different clusters is different (with the minimum
similarity 0). Then the corresponding transition probability matrix
is shown in this figure, whose rank is 3, exactly equaling to the
number of clusters. The detailed explanation can be found in in the
subsection “Transition Matrix Construction”.

tion matrix P , there exists a unique stationary distribution π
satisfying π = Pπ.

Here we briefly outline the algorithm of Markov chains
for spectral clustering. We refer the readers to (Zhou, Huang,
and Schölkopf 2005) for more details of spectral clustering
via Markov chains.
• Given a weighted graph G = (V,E, S), define a random walk

overGwith a transition probability matrix P = D−1S ∈ Rn×n
such that it has a stationary distribution π satisfying π = Pπ.

• Let Π denote the diagonal matrix with its ith diagonal elements
being the stationary distribution π(i). Construct the matrix L =

Π− ΠP+PT Π
2

.
• Obtain the r smallest generalized eigenvectors u1, . . . , ur of the

generalized eigenproblem Lu = λΠu.
• Let U ∈ Rn×r be the matrix containing the vectors u1, . . . , ur .

Run k-means clustering to cluster the row vectors of U .
• Assign the data point xi to cluster c if the ith row of U is as-

signed to cluster c by the k-means algorithm.

Robust Multi-View Spectral Clustering
A crucial step in the Markov chain methods for spectral clus-
tering is constructing an accurate transition probability ma-
trix. In this section, we present the proposed RMSC method
which conducts low-rank and sparse decomposition to re-
cover a latent transition probability matrix from multiple
views. This recovered matrix is used as input to the standard
Markov chain method (see the previous section) to obtain
the final clustering solution.

Transition Matrix Construction
In the context of multi-view clustering, we are given a set of
data points in m views, in each of which we can construct a
similarity matrix S(i) and the corresponding weighted graph
G(i) (i = 1, 2, · · · ,m). Let P (1), . . . , P (m) be the transi-
tion matrix associated to G(1), . . . , G(m), respectively. Fig-
ure 1 illustrates the framework of the proposed method for
transition matrix construction. The basic assumptions in the
proposed method are twofold: (1) The features in each indi-
vidual view are sufficient to discover most of the cluster-
ing information. (2) The features in each individual view

might be corrupted by noise, i.e., these noise might result
in a small portion of data points being assigned to wrong
clusters. Based on these assumptions, each transition prob-
ability matrix P (i) associated to an individual view can be
naturally decomposed into two parts: a shared latent tran-
sition probability matrix P̂ that reflects the underlying true
clustering information, combined with a deviation error ma-
trixE(i) that encodes the noise in the transition probabilities
in each view.

∀i, P (i) = P̂ + E(i)

Once P̂ is given, we can simply use P̂ as the input transition
matrix to the Markov chain method for spectral clustering to
obtain the final clustering solution.

A key question arising here is how to model the latent
matrix P̂ and the error matrices E(i).

For the latent matrix P̂ , we consider an
ideal case with 7 data points in 3 clusters, i.e.,
{(x1, x2, x3), (x4, x5), (x6, x7)}, where any pair of
points in the same cluster is identical (with the maximum
similarity 1) and any pair of points in different clusters
is different (with the minimum similarity 0). Then the
resulting transition probability matrix is shown in Figure
2. Since the first three columns are identical, the 4th and
5th columns are identical, and the 6th and 7th columns
are identical, it is obvious that the rank of this transition
matrix is 3, which equals to the number of clusters. Note
that exchanging two columns/rows in a matrix A does not
change the rank of A. Hence, in the general case with a set
of data points generated by k clusters, we can re-organize
the columns/rows of the resulting transition matrix and
convert it into a block-diagonal form with k blocks (like the
one in Figure 2), and the rank of this block-diagonal matrix
is not larger than k. In real world clustering problems, it
is still reasonable to assume that the transition probability
between any two points within the same cluster is high,
and that between any two points in different clusters is low,
which results in a matrix that tends to be of low-rank. In
summary, these observations motivate us to assume that the
transition probability matrix which reflects the underlying
true clustering information tends to be of low-rank.

Each error matrix E(i) represents the difference between
P (i) and P̂ . Since we assume the features in each individ-
ual view are sufficient to identify most of the clustering
structure, it is reasonable to assume that there are only a
small fraction of elements in P (i) being significantly differ-
ent from the corresponding ones in P̂ . That is, the deviation
error matrix E(i) tends to be sparse.

Problem Formulation
Under the low-rank and sparse assumptions, we formulate
the transition matrix construction problem as:

min
P̂ ,E(i)

rank(P̂ ) + λ

m∑
i=1

‖E(i)‖0

s.t. i = 1, 2, ...,m, P (i) = P̂ + E(i), P̂ ≥ 0, P̂1 = 1,

(1)

where rank(P̂ ) is the rank of P̂ , the `0 norm ||E(i)||0 rep-
resents the number of non-zero elements in E(i), 1 denotes
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the vector with all ones, and λ is a non-negative trade-off
parameter. Note that the constraints P̂ ≥ 0, P̂1 = 1 enforce
P̂ to be a transition probability matrix, i.e., each of its rows
is a probability distribution.

It is known that the optimization problem in (1) is
NP-hard in general due to the non-convex rank(P̂ ) and
||E(i)||0. A popular way is to replace rank(P̂ ) with the trace
norm ||P̂ ||∗, and ||E(i)||0 with the `1 norm ||E(i)||1, result-
ing in the following convex optimization problem:

min
P̂ ,E(i)

‖P̂‖∗ + λ

m∑
i=1

‖E(i)‖1

s.t. i = 1, 2, ...,m, P (i) = P̂ + E(i), P̂ ≥ 0, P̂1 = 1.

(2)

The trace norm ‖P̂‖∗ is the convex envelope of the rank
of P̂ over the unit ball of the spectral norm, and minimizing
the trace norm often induces the desirable low-rank structure
in practice (Fazel, Hindi, and Boyd 2001; Srebro, Rennie,
and Jaakkola 2004). The `1 norm ‖E(i)‖1 =

∑
(i,j) |Eij | is

well-known to be a convex surrogate of ‖E‖0.

Optimization

The optimization problem (2) is still challenging because the
matrix P̂ has a trace-norm constraint, and simultaneously
each of its rows has a probabilistic simplex constraint. In this
section, we propose an optimization procedure to solve this
problem via the Augmented Lagrangian Multiplier (ALM)
scheme (Lin, Chen, and Ma 2010), which has shown its
good balance between efficiency and accuracy in many ma-
trix learning problems.

By introducing an auxiliary variable Q, we convert (2)
into the following equivalent form:

min
P̂ ,Q,E(i)

‖Q‖∗ + λ

m∑
i=1

‖E(i)‖1

s.t. i = 1, 2, ...,m, P (i) = P̂ + E(i),

P̂ ≥ 0, P̂1 = 1, P̂ = Q.

(3)

The corresponding augmented Lagrange function of (3) is:

L(P̂ , Q,E(i)) = ‖Q‖∗ + λ

m∑
i=1

‖E(i)‖1

+

m∑
i=1

〈Y (i), P̂ + E(i) − P (i)〉+
µ

2

m∑
i=1

‖P̂ + E(i) − P (i)‖2F

+ 〈Z, P̂ −Q〉+
µ

2
‖P̂ −Q‖2F s.t. P̂ ≥ 0, P̂1 = 1,

(4)
where Z, Y (i) represent the Lagrange multipliers, 〈·, ·〉 de-
notes the inner product of matrices (i.e.,for two matrices A
and B, 〈A,B〉 = ATB), and µ > 0 is an adaptive penalty
parameter.

The sketch of the proposed algorithm for transition matrix
construction is shown in Algorithm 1. Next we will present
the update rules for each of P̂ , Q and E(i), by minimizing
L in (4) with other variables being fixed. Please refer to Al-
gorithm 1 for the details.

Algorithm 1 Algorithm for transition matrix construction
Input: λ, P (i) ∈ Rn×n(i = 1, 2, . . . ,m)

Initialize: P̂ = 0, Q = 0, Z = 0, Y (i) = 0, E(i) = 0, µ =
10−6, ρ = 1.9, maxµ = 1010, ε = 10−8

Repeat
1. Let C ← 1

m+1
(Q− Z

µ
+

∑m
i=1(P (i) − E(i) − Y (i)

µ
)).

2. For j=1,2, . . . , n
Run Algorithm 2 using Cj as input to update P̂j
where Cj /P̂j is the jth row of C/P̂ , respectively.

3. For i=1,2, . . . , m
Update E(i) via Eq.(7).

4. Update Q via Eq.(6).
5. Set Z ← Z + µ(P̂ −Q).
6. For i=1,2, . . . , m

Set Y (i) ← Y (i) + µ(P̂ + E(i) − P (i)).
7. Set µ← min(ρµ,maxµ).

Until min(||P̂ + E(i) − P (i)||∞, ||P̂ −Q||∞) ≤ ε
Output: P̂ , E(i) (i = 1, 2, ...m)

Solving Q

When other variables are fixed, the subproblem w.r.t. Q is
min
Q
‖Q‖∗ +

µ

2
‖P̂ −Q+

Z

µ
‖2F , (5)

which can be solved by the Singular Value Threshold
method (Cai, Candès, and Shen 2010). More specifically,
let UΣV T be the SVD form of (P̂ + Z

µ ), the solution to (5)
is as follows:

Q = US1/µ(Σ)V T , (6)
where Sδ(X) = max(X − δ, 0) + min(X + δ, 0) is the
shrinkage operator (Lin, Chen, and Ma 2010).

Solving E(i)

The subproblem w.r.t. E(i) (i = 1, 2, ...,m) can be simpli-
fied as:

min
E(i)

λ‖E(i)‖1 +
µ

2
‖E(i) − (P (i) − P̂ − Y (i)

µ
)‖2F , (7)

which has a closed form solution E(i) = Sλ/µ(P (i) − P̂ −
Y (i)

µ ).

Solving P̂

With other variables being fixed, we update P̂ by solving

P̂ = argmin
P̂

µ

2

m∑
i=1

‖P̂ + E(i) − P (i) +
Y (i)

µ
‖2F

+
µ

2
‖P̂ −Q+

Z

µ
‖2F s.t. P̂ ≥ 0, P̂1 = 1.

(8)

For ease of presentation, we define

C =
1

m+ 1
(Q− Z

µ
+

m∑
i=1

(P (i) − E(i) − Y (i)

µ
)).

Then with simple algebra, the problem in (8) can be rewrit-
ten as:
P̂ = argmin

P̂

1

2
‖P̂ − C‖2F , s.t. P̂ ≥ 0, P̂1 = 1

= argmin
P̂1,...,P̂n

1

2

n∑
i=1

‖P̂i − Ci‖2F , s.t.
n∑
j=1

P̂ij = 1, P̂ij ≥ 0,

(9)
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where P̂i/Ci denotes the ith row of the matrix P̂ /C, respec-
tively. That is, the problem in (9) can be decomposed into n
independent subproblems:

min
P̂i

1

2
‖P̂i − Ci‖22 s.t.

n∑
j=1

P̂ij = 1, P̂ij ≥ 0.

Each subproblem is a proximal operator problem with prob-
abilistic simplex constraint, which can be efficiently solved
by the projection algorithm in (Duchi et al. 2008). Here we
include the algorithm in Algorithm 2 for self-containedness.

Since the objective (2) is convex subject to linear con-
straints, and all of its subproblems can be solved exactly,
based on existing theoretical results (Luo 2012), we have
that Algorithm 1 converges to global optima with a linear
convergence rate.

Algorithm 2 Algorithm for proximal operator with simplex
constraint
Input: A vector Ci ∈ Rn
Sort Ci into u: u1 ≥ u2 ≥ · · · ≥ un
Find ĵ = max{j : 1−

∑j
r=1(ur − uj) ≥ 0}

Let σ = 1

ĵ
(
∑ĵ
i=1 ui − 1)

Output: P̂i where P̂ij = max(Cij − σ, 0), j = 1, 2, · · · , n

Experiments
In this section, we evaluate and compare the performance of
the proposed RMSC method on various real world datasets.
We chose the following five multi-view clustering algo-
rithms as baselines: (1)Best Single View: Using the indi-
vidual view which achieves the best spectral clustering per-
formance with a single view of data. (2)Feature Concate-
nation: Concatenating the features of each view, and then
performing spectral clustering directly on this concatenated
feature representation. (3)Kernel Addition: Constructing a
kernel matrix from each view, and then averaging these ma-
trices to obtain a single kernel matrix for spectral cluster-
ing. (4)Mixture of Markov Chains (MMC): The mixture
of Markov chains method proposed in (Zhou and Burges
2007), which is perhaps the most related one to the proposed
RMSC. (5)Co-regularized Spectral clustering (Co-Reg):
The co-regularization method for spectral clustering (Ku-
mar, Rai, and Daumé 2011). Following the settings in (Ku-
mar, Rai, and Daumé 2011), we use the Gaussian kernel for
each view, and the best clustering results are reported with
the parameter λ being chosen from 0.01 to 0.05.

dataset instances views clusters
BBC 2225 3 5

BBCSport 737 2 5
WebKB 1051 2 2

UCI Digits 2000 3 10
Flower17 1360 7 17

CCV 9317 3 20

Table 1: Statistics of the real world datasets

Results on Real World Datasets
We report the experimental results on six real-world
datasets: BBC and BBCSport1 for news article clustering,
WebKB (Sindhwani, Niyogi, and Belkin 2005) for web-
pages clustering, UCI digits (Asuncion and Newman 2007)
and Flower172 for image clustering, and Columbia Con-
sumer Video (CCV) (Jiang et al. 2011) for video event clus-
tering. The statistics of these datasets are summarized in Ta-
ble 1.

In all the experiments, we use six metrics to mea-
sure the clustering performances: precision, recall, F-score,
normalized mutual information (NMI), average entropy,
and adjusted rand index(Adj-RI) (Manning, Raghavan, and
Schütze 2008; Hubert and Arabie 1985). Note that lower
values indicate better performance for average entropy, and
higher values indicate better performance for the other met-
rics.

In all the experiments, Gaussian kernels are used to build
the similarity matrix for each single view. The standard devi-
ation is set to the median of the pairwise Euclidean distances
between every pair of data points for all of the datasets
except BBC and BBCSport. For the BBC and BBCSport
datasets, we follow (Kumar and Daumé 2011) to set the stan-
dard deviation to be 100. For MMC (Zhou and Burges 2007)
and the proposed RMSC, the transition probability matrix
for each view is constructed by P = D−1S, where S is the
similarity matrix and D is a diagonal matrix with Dii be-
ing the sum of the elements of the ith row in S. In RMSC,
the regularization parameter λ is set to be 0.005 3. Note that
we use the same value of λ in all the views. One can use

1http://mlg.ucd.ie/datasets
2http://www.robots.ox.ac.uk/ vgg/data/flowers/. We directly use

the seven pre-computed kernel matrices included in the dataset as
input for clustering. Hence we do not report the results of Feature
Concatenation.

3Here we set λ = 0.005 because it works well in all of the
datasets. In Section “Parameter Sensitivity”, we investigate the ef-
fects on the performance of RMSC with different values of the pa-
rameter λ, which shows that RMSC has superior performance gains
over the baselines as long as λ varying in a suitable range.

BBCSport WebKB
NMI Adj-RI Fscore NMI Adj-RI Fscore

λ = 0.005 0.811 0.790 0.839 0.779 0.885 0.960
λ = 0.01 0.825 0.827 0.868 0.764 0.876 0.958
λ = 0.05 0.792 0.773 0.827 0.752 0.868 0.955
λ = 0.1 0.816 0.816 0.860 0.765 0.876 0.958
λ = 0.5 0.785 0.773 0.826 0.718 0.845 0.947
λ = 1 0.770 0.774 0.827 0.718 0.845 0.947
λ = 5 0.753 0.763 0.817 0.718 0.845 0.947
λ = 10 0.733 0.733 0.794 0.718 0.845 0.947
λ = 50 0.611 0.570 0.672 0.718 0.845 0.947
λ = 100 0.611 0.554 0.660 0.718 0.845 0.947
the second

0.718 0.697 0.768 0.718 0.845 0.947
best baseline

Table 2: Results of RMSC with different values of λ on the
BBCSport and WebKB datasets.
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dataset method F-score Precision Recall Entropy NMI Adj-RI

BBC

Best Single View 0.798(0.058) 0.804(0.071) 0.792(0.045) 0.600(0.084) 0.735(0.033) 0.744(0.075)
Feature Concat 0.828(0.074) 0.822(0.101) 0.838(0.047) 0.498(0.131) 0.784(0.048) 0.780(0.098)
Kernel Addition 0.828(0.077) 0.818(0.110) 0.842(0.045) 0.503(0.146) 0.783(0.052) 0.779(0.103)

Co-Reg 0.829(0.049) 0.836(0.057) 0.822(0.042) 0.516(0.076) 0.771(0.031) 0.783(0.063)
MMC 0.829(0.075) 0.825(0.097) 0.834(0.051) 0.498(0.133) 0.783(0.051) 0.781(0.098)
Ours 0.871(0.053) 0.879(0.078) 0.864(0.046) 0.431(0.109) 0.808(0.059) 0.837(0.087)

BBCSport

Best Single View 0.768(0.004) 0.781(0.015) 0.756(0.023) 0.616(0.028) 0.715(0.006) 0.697(0.003)
Feature Concat 0.657(0.015) 0.667(0.019) 0.649(0.030) 0.862(0.041) 0.604(0.016) 0.552(0.018)
Kernel Addition 0.657(0.020) 0.649(0.007) 0.667(0.044) 0.886(0.034) 0.600(0.022) 0.548(0.022)

Co-Reg 0.766(0.002) 0.786(0.008) 0.748(0.012) 0.606(0.015) 0.718(0.003) 0.696(0.001)
MMC 0.657(0.019) 0.658(0.018) 0.658(0.039) 0.877(0.039) 0.601(0.018) 0.550(0.022)
Ours 0.869(0.035) 0.871(0.022) 0.869(0.049) 0.405(0.023) 0.818(0.017) 0.829(0.044)

WebKB

Best Single View 0.889(0.003) 0.824(0.005) 0.956(0.000) 0.406(0.001) 0.532(0.002) 0.618(0.001)
Feature Concat 0.947(0.001) 0.947(0.003) 0.947(0.001) 0.214(0.001) 0.718(0.002) 0.845(0.001)
Kernel Addition 0.947(0.006) 0.947(0.004) 0.947(0.010) 0.214(0.003) 0.718(0.001) 0.845(0.002)

Co-Reg 0.933(0.002) 0.958(0.003) 0.910(0.001) 0.209(0.002) 0.700(0.008) 0.814(0.005)
MMC 0.947(0.005) 0.947(0.002) 0.947(0.001) 0.214(0.001) 0.718(0.003) 0.845(0.002)
Ours 0.960(0.001) 0.965(0.002) 0.965(0.001) 0.164(0.001) 0.779(0.004) 0.885(0.002)

UCI digits

Best Single View 0.591(0.029) 0.582(0.030) 0.601(0.030) 1.195(0.071) 0.642(0.021) 0.545(0.033)
Feature Concat 0.452(0.019) 0.438(0.024) 0.468(0.015) 1.489(0.078) 0.556(0.022) 0.389(0.022)
Kernel Addition 0.754(0.020) 0.740(0.035) 0.769(0.011) 0.718(0.033) 0.787(0.007) 0.726(0.023)

Co-Reg 0.780(0.052) 0.764(0.067) 0.798(0.035) 0.664(0.113) 0.804(0.031) 0.755(0.058)
MMC 0.762(0.036) 0.740(0.052) 0.787(0.018) 0.687(0.068) 0.799(0.016) 0.735(0.040)
Ours 0.811(0.049) 0.797(0.065) 0.826(0.031) 0.601(0.099) 0.822(0.026) 0.789(0.055)

CCV

Best Single View 0.119(0.002) 0.126(0.002) 0.114(0.002) 3.466(0.016) 0.177(0.004) 0.069(0.002)
Feature Concat 0.096(0.001) 0.073(0.001) 0.141(0.007) 3.739(0.009) 0.119(0.002) 0.022(0.002)
Kernel Addition 0.124(0.002) 0.126(0.004) 0.123(0.003) 3.496(0.017) 0.171(0.004) 0.072(0.003)

Co-reg 0.119(0.140) 0.125(0.147) 0.113(0.134) 3.473(3.358) 0.176(0.203) 0.068(0.090)
MMC 0.125(0.001) 0.128(0.003) 0.123(0.002) 3.499(0.019) 0.170(0.004) 0.073(0.002)
Ours 0.132(0.002) 0.133(0.003) 0.129(0.003) 3.225(0.017) 0.203(0.006) 0.082(0.003)

Flower17

Best Single View 0.206(0.005) 0.191(0.006) 0.225(0.008) 2.820(0.021) 0.315(0.004) 0.153(0.006)
Kernel Addition 0.090(0.004) 0.063(0.002) 0.165(0.027) 3.862(0.034) 0.064(0.008) 0.007(0.003)

Co-reg 0.097(0.003) 0.089(0.002) 0.106(0.006) 3.567(0.015) 0.130(0.003) 0.036(0.002)
MMC 0.369(0.018) 0.362(0.019) 0.376(0.018) 2.015(0.054) 0.509(0.013) 0.329(0.019)
Ours 0.423(0.019) 0.414(0.015) 0.433(0.011) 1.813(0.037) 0.559(0.009) 0.387(0.014)

Table 3: Comparison results on six datsets. On each dataset, 20 test runs with different random initializations were conducted
and the average performance as well as the standard deviation (numbers in parentheses) are reported.

different values of λ for different views if one has certain
importance prior of different views, such as in (Zhou and
Burges 2007).

The results are shown in Table 3. As can be seen, in all of
the six datasets, the proposed RMSC shows superior perfor-
mance gains over the baselines w.r.t. all the six metrics. Here
are some statistics. On Flower17 with seven views, the re-
sults of RMSC indicate a relative increase of 14.6%, 9.8%
and 17.6% w.r.t. F-score, NMI and Adj-RI, respectively,
compared to the corresponding second best baseline. On
BBCSport with three views, RMSC shows 13.2%, 13.9%
and 18.9% of relative improvement w.r.t. F-score, NMI and
Adj-RI over the corresponding second best baseline, respec-
tively. On WebKB, RMSC indicates a relative increase of
8.5% and 4.7% w.r.t NMI and Adj-RI over the correspond-
ing second best baselines, respectively.

Remark We also evaluate RMSC on syntactic datasets to
observe the effects with different types of noise. The results
can be found in the supplementary material.

Parameter Sensitivity

There is a trade-off parameter λ in RMSC. In unsupervised
clustering, one needs to set this parameter empirically. A
natural question arising here is whether the performance of
RMSC is sensitive to the parameter λ. To answer this ques-
tion, we conduct experiments on BBCSport and WebKB
datasets to observe the effects on clustering performance
with different values of λ.

Table 2 lists the results with different values of λ on the
BBCSport and WebKB . We can observe that: (1) In both
of the two datasets, a relative small λ leads to good perfor-
mance w.r.t. F-score, NMI and Adj-RI. (2) The performance
of RMSC only has small variations as long as λ is chosen in
a suitable range, i.e., from 0.005 to 0.1, with the obtained re-
sults being consistently better than those of the correspond-
ing second best baseline.

In summary, RMSC is relatively insensitive to its param-
eter λ as long as the parameter is chosen from a suitable
range. This makes RMSC easy to use without much effort
for parameter tuning.
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Conclusions
In this paper, we developed RMSC, a Markov chain method
for robust multi-view spectral clustering, which explicitly
handles the possible noise in the multi-view input data
and recovers a shared transition probability matrix via low-
rank and sparse decomposition. To solve the optimization
problem of RMSC, we proposed a procedure based on the
ALM scheme. Extensive experiments in various real world
datasets for clustering show that RMSC has encouraging
performance gains over the state-of-the-arts. RMSC is rel-
atively insensitive to its parameter as long as the parameter
is in a suitable range, which makes the algorithm easy to use
without much effort for parameter tuning.

Acknowledgment
This work was funded in part by National Science Founda-
tion of China (grant No. 61370021, 61003045, 61033010),
Natural Science Foundation of Guangdong Province, China
(grant No. S2013010011905). Yan Pan is the corresponding
author of this paper (panyan5@mail.sysu.edu.cn).

References
Asuncion, A., and Newman, D. 2007. Uci machine learning
repository.
Bickel, S., and Scheffer, T. 2004. Multi-view clustering. In
Proceedings of the IEEE International Conference on Data
Mining, volume 4, 19–26.
Cai, J.-F.; Candès, E. J.; and Shen, Z. 2010. A singular
value thresholding algorithm for matrix completion. SIAM
Journal on Optimization 20(4):1956–1982.
Chaudhuri, K.; Kakade, S. M.; Livescu, K.; and Sridharan,
K. 2009. Multi-view clustering via canonical correlation
analysis. In Proceedings of the International Conference on
Machine Learning, 129–136.
Duchi, J.; Shalev-Shwartz, S.; Singer, Y.; and Chandra, T.
2008. Efficient projections onto the `1-ball for learning in
high dimensions. In Proceedings of the International Con-
ference on Machine Learning, 272–279.
Fazel, M.; Hindi, H.; and Boyd, S. P. 2001. A rank min-
imization heuristic with application to minimum order sys-
tem approximation. In Proceedings of the American Control
Conference, volume 6, 4734–4739.
Greene, D., and Cunningham, P. 2009. A matrix factor-
ization approach for integrating multiple data views. In
Machine Learning and Knowledge Discovery in Databases.
Springer. 423–438.
Hubert, L., and Arabie, P. 1985. Comparing partitions. Jour-
nal of Classification 2(1):193–218.
Jiang, Y.-G.; Ye, G.; Chang, S.-F.; Ellis, D.; and Loui,
A. C. 2011. Consumer video understanding: A benchmark
database and an evaluation of human and machine perfor-
mance. In Proceedings of the International Conference on
Multimedia Retrieval, 29.
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