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Abstract

Manifold learning is a powerful tool for solving nonlin-
ear dimension reduction problems. By assuming that the
high-dimensional data usually lie on a low-dimensional
manifold, many algorithms have been proposed. How-
ever, most algorithms simply adopt the traditional graph
Laplacian to encode the data locality, so the discrim-
inative ability is limited and the embedding results are
not always suitable for the subsequent classification. In-
stead, this paper deploys the signed graph Laplacian
and proposes Signed Laplacian Embedding (SLE) for
supervised dimension reduction. By exploring the la-
bel information, SLE comprehensively transfers the dis-
crimination carried by the original data to the embedded
low-dimensional space. Without perturbing the discrim-
ination structure, SLE also retains the locality. Theo-
retically, we prove the immersion property by comput-
ing the rank of projection, and relate SLE to existing
algorithms in the frame of patch alignment. Thorough
empirical studies on synthetic and real datasets demon-
strate the effectiveness of SLE.

Introduction
High-dimensional data often make data analysis intractable
because of the unbearable computational burden. One com-
mon way to overcome this difficulty is to preprocess the data
by dimension reduction, which seeks a low-dimensional rep-
resentation of the original dataset while duly preserving its
structural information, e.g. discrimination and locality. So
far massive dimension reduction algorithms have been de-
veloped and demonstrated to be effective in various utiliza-
tions.

Traditional dimension reduction methods include Princi-
pal Component Analysis (PCA) (Hotelling 1933) and Linear
Discriminative Analysis (LDA) (Fisher 1936). Both PCA
and LDA assume that examples are drawn from Gaussian
distributions.

To discover the locality encoded in non-Gaussian dis-
tributed data, manifold learning has been intensively investi-
gated, which assumes that the high-dimensional data are of-
ten embedded in a low-dimensional intrinsic manifold M.
Typical algorithms include ISOMAP (Tenenbaum, Silva,
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and Langford 2000), Locally Linear Embedding (LLE)
(Roweis and Saul 2000), Laplacian Eigenmaps (LE) (Belkin
and Niyogi 2001), Locality Preserving Projections (LPP)
(He and Niyogi 2004), Local Tangent Space Alignment
(LTSA) (Zhang and Zha 2005), Structure Preserving Em-
bedding (SPE) (Shaw and Jebara 2009), Maximum Variance
Correction (MVC) (Chen, Chen, and Weinberger 2013),
and Multi-scale Manifold Learning (Wang and Mahadevan
2013).

However, the manifold learning methods do not take the
supervised information into account and only retains the lo-
cality in the low-dimensional space, so they may not im-
prove the performance for classification tasks. Although
Manifold Elastic Net (Zhou, Tao, and Wu 2011), Marginal
Fisher Analysis (MFA) (Yan et al. 2007) and Discriminative
Locality Alignment (DLA) (Zhang et al. 2009) encode the
label information for graph construction, they simply pre-
serve the local proximity relationship between similar or
dis-similar pairs by implementations on a k nearest neigh-
borhood (kNN) graph.

To address the defects of existing methodologies, we pro-
pose a novel approach called Signed Laplacian Embedding
(SLE). Specifically, the signed graph Laplacian (Kunegis et
al. 2010) is incorporated to equip SLE with better discrim-
inative ability. Compared with the traditional graph Lapla-
cian that simply encodes the pairwise similarity between
data points, the signed graph Laplacian also exploits the la-
bel information, which guarantees the examples of different
classes in the original space still separable in the embed-
ded subspace. As a result, SLE is a global method since
it treats all the examples belonging to one class together,
and projects them as a whole when implements reduction.
In this way, the discrimination in the original data can be
well retained in the embedded low-dimensional space. Be-
sides, we show that SLE has a strong connection with other
typical manifold learning algorithms from the perspective of
the patch alignment framework.

Model Description
Given a set of training examples X = (x1,x2, · · · ,xn

) 2
Rm⇥n in which each column {x

i

}n
i=1 2 Rm represents m-

dimensional data, then the target of dimension reduction is
to find a projection matrix A 2 Rm⇥d that properly maps
these n examples to a smooth Riemannian manifold M em-
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bedded in a low-dimensional ambient space Rd with d < m.
Moreover, a dimension reduction method should have the
generalizability that accurately predicts the low-dimensional
representation of unseen test data x

t

2 Rm as y
t

= A

T

x

t

.

Signed Graph Laplacian
Popular manifold learning algorithms, such as LPP (He and
Niyogi 2004) and LE (Belkin and Niyogi 2001), usually use
a graph G = (V, E) to represent the training set X, in which
V is the vertex set composed of the examples {x

i

}n
i=1, and E

is the edge set recording the relationship between them. The
(i, j)-th element of the G’s adjacency matrix W is computed
as W

ij

= exp(kx
i

� x

j

k2/�2
) (� is the kernel width) if

x

j

is one of the k nearest neighbors of x

i

, and W

ij

= 0

otherwise. Furthermore, by defining a diagonal matrix D as
D

ii

=

P
j

W

ij

for i = 1, 2, · · · , n, the traditional graph
Laplacian is formulated as L = D�W.

Note that L above is only suitable for the W with ele-
ments in the range [0, 1]. In contrast, Kunegis et al. (2010)
studies the signed graph ˜G, and defines a novel adjacency
matrix ˜

W which contains both positive and negative ele-
ments. A diagonal matrix ˜

D is then represented as ˜

D

ii

=

P
j

��� ˜W
ij

��� (i = 1, 2, · · · , n), and the signed graph Lapla-

cian is given by ˜

L =

˜

D � ˜

W. Similar to L, it is easy to
verify that ˜L is also positive semi-definite.

The Algorithm
Based on the signed graph Laplacian introduced above, SLE
is proposed and is divided into two major steps:

1. Signed graph construction: The vertices of ˜G corre-
spond to the training examples {x

i

}n
i=1. x

i

and x

j

are
connected by a positive edge if they belong to the same
class, while they are linked by a negative edge if they
come from different classes. Therefore, the elements in
the adjacency matrix ˜

W are

W̃ij =

⇢
1, xi and xj are in the same class

�1, xi and xj are in the different classes
.

(1)

2. Finding the projection matrix: The following general-
ized eigenvalue problem (2) is to be solved:

X

˜

LX

T

a = �XX

T

a. (2)
Suppose �1,�2, · · · ,�d

are the eigenvalues obtained and
arranged in ascending order, and the corresponding eigen-
vectors are a1,a2, · · · ,ad, respectively, then the projec-
tion matrix is A

m⇥d

= (a1,a2, · · · ,ad). Let Y =

(y1,y2, · · · ,yn

) 2 Rd⇥n denote the embedding results
of the training data, then the projection on X can be eas-
ily expressed as Y = A

T

X.

Model Justification
As introduced above, the kNN graph is usually adopted by
the existing manifold-based methods, and requires that the
adjacent examples in Rm are not mapped far apart in Rd. In
other words, their target is to minimize

P
ij

(y

i

� y

j

)

2
W

ij

.

However, this measure simply focuses on preserving the lo-
cal structure among examples, and W

ij

(i, j = 1, 2, · · · , n)
are required to be nonnegative.

In contrast, we claim that: 1) The examples belonging to
the same class, not simply originally nearby, are better to be
projected together for the subsequent classification; 2) The
elements in the adjacency matrix are allowed to take nega-
tive values to enable the incorporation of both similarity and
dissimilarity information, so that better discriminative per-
formance can be achieved. Therefore, taking the two-class
situation as an example, we aim to minimize the following
objective function:

Q =

1

2

X
n

i=1

X
n

j=1
(y

i

� s

ij

y

j

)

2
��� ˜W

ij

���, (3)

in which s

ij

= 1 if ˜

W

ij

� 0 and s

ij

= �1 if ˜

W

ij

<

0. Suppose a is a projection vector, namely y

T

i

= a

T

x

i

,
and considering that s2

ij

= 1 and
��� ˜W

ij

��� s
ij

=

˜

W

ij

, (3) is
reformulated as

Q =
1
2

Xn

i=1

Xn

j=1
(aT

xi � a

T
xjsij)

2
���W̃ij

���

=
Xn

i=1
a

T
xiD̃iix

T
i a�

Xn

i=1

Xn

j=1
a

T
xi

���W̃ij

��� sijxT
j a

= a

T
X(˜D� ˜

W)XT
a

= a

T
X

˜

LX

T
a

.

(4)
Moreover, to uniquely determine the minimizer a, an ad-

ditional constraint is imposed as
a

T

XX

T

a = 1. (5)
Consequently, our task is to find the solution to the following
optimization problem:

min

a
a

T

X

˜

LX

T

a

s.t. a

T

XX

T

a = 1

. (6)

By applying the Lagrangian multiplier method (Boyd and
Vandenberghe 2004), (6) can be transformed into a gener-
alized eigenvalue problem which shares the same formation
as (2).

Extension to Multi-class Situations
The current model (6) is only suitable for two-class situa-
tions because its objective function (3) simply “pushes” the
x

j

’s low-dimensional embedding y

j

to �y

i

if x
j

belongs to
a different class from x

i

, which will definitely cause ambi-
guity in multi-class situations.

We use the “one-versus-the-rest” strategy to adapt SLE to
multiple classes. Suppose there are C classes in total, a pro-
jection matrix A

i

is explicitly trained by (6) for each class
c

i

(i = 1, 2, · · · , C), so that all the examples belonging to c

i

(denoted as X(i)) are mapped to Y

(i)
= A

T

i

X

(i), while the
examples of other classes (denoted as ¯

X

(i)) are embedded
together as ¯

Y

(i)
= A

T

i

¯

X

(i). To address the example imbal-
ance problem during this process, we re-weight the ˜

W

ij

in
(1) to 1/n

ci (n
ci is the number of examples in c

i

) if x
i

and
x

j

share the same label. Then, for test data x

t

we imple-
ment dimension reduction using A1,A2, · · · ,AC

respec-
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tively. The corresponding results are y

(1)
t

,y

(2)
t

, · · · ,y(C)
t

,
and the membership degree that x

t

belongs to the i-th class
is then calculated by

✓(i) =

min

j

d(y

(i)

t

,

¯

Y

(i)
·j )

min

j

d(y

(i)

t

,Y

(i)
·j )

. (7)

In (7), Y(i)
·j denotes the j-th column of the matrix Y

(i),
and d(·, ·) represents the Euclidean distance between two
vectors. Consequently, x

t

is classified into the class c

t

=

argmax1iC

✓(i), and its corresponding projection matrix
is A

ct .

Theoretical Analyses
This section studies some theoretical properties related to
SLE. We reveal that SLE has a solid statistical background,
and prove that SLE is essentially an immersion between two
smooth manifolds.

Statistical Viewpoint of SLE
SLE can also be understood from the statistical viewpoint.
Suppose all the examples obey an underlying distribution P ,
and x1, x2 are two data points randomly drawn from P , then
a projection x ! a

T

x is defined that perfectly preserves the
main structure of the whole dataset in the L2 space. If S and
D are used to denote the positive and negative edge sets, the
following mathematical expectation regarding a should be
minimized:
E

⇣��
a

T

x1 � s12a
T

x2

��2|(x1,x2) 2 S or (x1,x2) 2 D
⌘
.

(8)
By denoting z12 = x1 � s12x2, (8) can be reformulated as

E

⇣��
a

T

x1 � s12a
T

x2

��2 |(x1,x2) 2 S or (x1,x2) 2 D
⌘

= E

⇣��
a

T

z12

��2 |(x1,x2) 2 S or (x1,x2) 2 D
⌘

= a

T

E

�
z12z

T

12 |(x1,x2) 2 S or (x1,x2) 2 D
�
a

T

.

(9)
According to the Law of Large Numbers, the expectation

in (9) can be estimated from the massive data as follows:

E
⇣
z12z

T
12 |(x1,x2) 2 S or (x1,x2) 2 D

⌘

⇡ 1
|S|+|D|

X
(xi,xj)2S or (xi,xj)2D

zijz
T
ij

=
1

|S|+|D|
Xn

i=1

Xn

j=1
(xi�sijxj)(xi�sijxj)

T
���W̃ij

���

=
4

|S|+|D|

⇣Xn

i=1
xiD̃iix

T
i �
Xn

i=1

Xn

j=1
xix

T
j sij

���W̃ij

���
⌘

=
4

|S|+|D| (X
˜

DX

T �X

˜

WX

T )

=
4

|S|+|D|X
˜

LX

T

,

(10)

where |·| denotes the size of a set, and ˜

L has the same forma-
tion as defined above. By plugging (10) into (9), and adding
the constraint (5), we finally obtain the equivalent optimiza-
tion problem as (6).

Rank of Projection
Suppose M and N are two manifolds, and f : M ! N
is a smooth mapping between them, then for each point p 2
M, the Jacobian df

p

of f defines a linear mapping from the
tangent plane of M at p (denoted as T

p

(M)), to the tangent
plane of N at f(p) (denoted as T

f(p)(N )). The definition
for the rank of f is provided in Definition 1, based on which
we investigate the rank of SLE in this section.

Definition 1 (Rank, (Joncas and Meila 2013)) A smooth

mapping f

i

(x1, · · · , xm

) : M ! N with i = 1, 2, · · · , d
has rank(f) = r if the Jacobian df

p

: T

p

M ! T

f(p)N of

the map has rank r for all points p = (x

p

1, · · · , xp

m

) 2 M,

which is defined by

J =

0

B@

@f1

@x1
· · · @f1

@xm

.

.

.

.

.

.

.

.

.

@fd

@x1
· · · @fd

@xm

1

CA . (11)

According to Definition 1, the Jacobian for SLE is ex-
actly A

T , so the next step is to find the rank of A. Since A

is composed of the generalized eigenvectors of (2), we first
give an important theorem related to the generalized eigen-
value problem.

Theorem 2 (Q-orthogonal, (Golub and Loan 2012)) For

a generalized eigenvalue problem Pv = �Qv with �, v

denoting the eigenvalue and eigenvector, respectively, if

P = P

T 2 Rm⇥m

and Q = Q

T 2 Rm⇥m

with Q positive

definite, then all eigenvalues �

i

(i = 1, 2, · · ·m) are real,

and all eigenvectors are Q-orthogonal, i.e., v

T

i

Qv

j

= 0

for i 6= j and v

T

i

Qv

j

6= 0 for i = j.

Based on Theorem 2, we have the following theorem:

Theorem 3 All the eigenvectors of (2) constitute a linearly

independent set, so SLE is a full-rank projection.

Proof : In SLE, ˜

L is symmetric and ˜

D is symmet-
ric and positive definite, so it is easy to verify that the
matrices X

˜

LX

T and X

˜

DX

T are equivalent to P and
Q in Theorem 2. Therefore, the eigenvectors of (2) sat-
isfy a

T

i

X

˜

DX

T

a

j

= 0 for i 6= j. Suppose the eigen-
vectors are linearly dependent, then without loss of gen-
erality, we may assume that a1 can be explicitly rep-
resented by other eigenvectors, namely a1 = ↵2a2 +

· · · + ↵

m

a

m

(↵2, · · · ,↵m

cannot be all zeros). Accord-
ing to Theorem 2, a1 is X

˜

DX

T -orthogonal to {a
i

}m
i=2, so

we have (↵2a2 + · · ·+ ↵

i

a

i

+ · · ·+ ↵

m

a

m

)

T

X

˜

DX

T

a

i

=

↵

i

a

T

i

X

˜

DX

T

a

i

= 0. However, Theorem 2 reveals that
a

T

i

X

˜

DX

T

a

i

6= 0, so all the coefficients {↵
i

}m
i=2 should

be 0, which means that a1 cannot be linearly represented
by other eigenvectors. Therefore, all the eigenvectors of
(2) are linearly independent, and the projection of SLE has
rank(f

SLE

) = m.
Theorem 3 reveals that the rank of f

SLE

always equals the
dimension of original space, so f

SLE

is a valid embedding
from M to N , and the mapping f

SLE

is called an immersion

(Joncas and Meila 2013).
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Relationship with Other Methods
Zhang et al. (2009) proposed a patch alignment framework
which summarizes various dimension reduction algorithms
into one unified formulation, such as PCA (Hotelling 1933),
LLE (Roweis and Saul 2000), LPP (He and Niyogi 2004),
and DLA (Zhang et al. 2009). Here we demonstrate that the
proposed SLE can also be unified into this framework, based
on which we further analyze the relationship between SLE
and other approaches.

Theorem 4 Let

˜

W·i be the i-th column of the

generalized adjacency matrix

˜

W, and ⇤|W̃·i|
is a diagonal matrix defined by ⇤|W̃·i| =

diag

⇣���( ˜W·i)1

��� ,
���( ˜W·i)2

��� , · · · ,
���( ˜W·i)

n

���
⌘

2 Rn⇥n
, then

SLE can be regarded as a special case of patch alignment

framework when the part optimization matrix is

˜

L

i

=

 
˜

D

ii

� ˜

W

T

·i
� ˜

W·i ⇤|W̃·i|

!
.

Proof : The patch alignment framework contains two
steps: part optimization and whole alignment. In the part op-
timization step, we rewrite (3) as

min

yi

1

2

X
n

i=1

X
n

j=1
(y

i

� s

ij

y

ij

)

2
���( ˜W·i)

j

���, (12)

where y

ij

(j = 1, 2, · · · , n) are the n connected points1 of
the central example y

i

. Therefore, (12) can be rearranged as

min
yi

1
2

nX

i=1

tr

2

64

0

B@
(yi�si1ys1)

T

...
(yi�sinysn)

T

1

CA
�
yi�si1ys1 · · ·yi�sinysn

�

diag
⇣���( ˜W·i)1

��� , · · · ,
���( ˜W·i)n

���
⌘i

.

(13)

By denoting Y

i

= (y

i

,y

i1, · · ·yin

) 2 Rd⇥(n+1), e
n

=

[1, · · · , 1] 2 Rn, S
n

= diag(s

i1, si2, . . . , sin) 2 Rn⇥n, and
I

n

as an n⇥n identity matrix, (13) can be further formulated
as

min
Yi

Xn

i=1
tr


Yi

✓
e

T
l

�SnIn

◆
⇤| ˜W·i|

�
en �SnIn

�
Y

T
i

�

, min
Yi

Xn

i=1
tr(Yi˜LiY

T
i )

,

(14)
in which the part optimization matrix

˜

Li=

✓
e

T
n

�SnIn

◆
⇤| ˜W|

�
en �SnIn

�
=

 
D̃ii � ˜

W

T
·i

� ˜

W·i ⇤| ˜W·i|

!
.

(15)
(14) is used to compute the part optimizations of all the

examples, which reveals that the patch of x
i

can be properly
established by x

i

and the remaining data. By using the iter-
ative method as Zhang et al. (2009) suggests, the alignment
matrix ˜

L can finally be obtained in the whole alignment step,

1For convenience, we simply regard yii = yi as one of yi’s
connective points. This will not influence the final optimization re-
sult according to (12).

which is the same as the signed graph Laplacian adopted by
SLE. This completes the proof.

Based on Theorem 4, the characteristics of SLE and other
dimension reduction methods are summarized in Table 1,
from which we observe that SLE mainly differs from other
methods in the construction of patches and the representa-
tion of part optimization. In detail, the patches of PCA and
SLE are globally constructed by using all the examples in
the dataset, while LPP, LLE and DLA establish each patch
by an example and its nearest neighbours. Besides, Table 1
reveals that LPP, DLA and SLE preserve the proximity re-
lationship in a patch through the adjacency matrices, which
are different from LLE that preserves reconstruction coeffi-
cients obtained in the original high-dimensional space. The
superiority of SLE brought about by these differences will
be empirically demonstrated in the experiments.

Experimental Results
This section evaluates the performance of SLE on syn-
thetic and practical datasets. Two unsupervised methods,
PCA (Hotelling 1933) and LPP (He and Niyogi 2004), and
two supervised methods, MFA (Yan et al. 2007) and DLA
(Zhang et al. 2009), serve as the baselines for comparisons.
Of these, PCA is a global method, while the others simply
use the kNN graph to preserve the local structure of the data.
In this section, each of the adopted real-world datasets has
10 different partitions, and the original dataset in each parti-
tion was randomly split into a training set and a test set. All
the algorithms were independently tested on these 10 parti-
tions and the final results were averaged over the outputs of
the 10 tests. Note that in these 10 tests, the ratio of the sizes
of training and test sets for all the algorithms was identical.

Toy Data
The SwissRoll synthetic dataset was used to visualize the
performances of SLE and other baselines. For SwissRoll, the
data cloud in the 3D space is shaped like a roll. The exam-
ples with z-coordinates less than �5 are regarded as posi-
tive, while the examples with z-coordinates above �5 con-
stitute the negative class. Of particular note is the fact that
the points belonging to one class are distributed discontinu-
ously along the high-dimensional manifold, as shown in Fig.
1 (a).

UCI Data
Six UCI datasets (Frank and Asuncion 2010), BreastCancer,
Musk, Waveform, Seeds, SPECT and Wine, were adopted to
test the dimension reduction performances of the algorithms
compared.

All the feature vectors in these six databases were nor-
malized to [0, 1], and the RBF kernel width � in LPP, MFA
and DLA was chosen from the set {0.01, 0.1, 0.5, 1, 10}.
The numbers of neighbors for graph construction, such as
k in LPP, k1 and k2 in MFA and DLA, were chosen from
{5, 10, 15, 20, 25, 30}. The optimal results were then re-
ported over the different selections of these parameters. Sim-
ilar to (Yan et al. 2007) and (Zhang et al. 2009), we adopted
PCA to preprocess the features before implementing the
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Table 1: Summary of various dimension reduction algorithms. (c
i

is the reconstruction coefficient vector in LLE.)

Algorithms Patch Representation of part optimization Objective function

PCA Given example and the rest 1
n

2

✓
(n� 1)

2 �(n� 1)e

T

n�1
�(n� 1)e

n�1 e

n�1e
T

n�1

◆
Orthogonal linear

LPP Given example and its neighbors
✓P

k

j=1 (W·i)
j

�W

T

·i
�W·i diag(W·i)

◆
Linear

LLE Given example and its neighbors
✓

1 �c

T

i

�c

i

c

i

c

T

i

◆
Non-linear

DLA
Given example with its k1 nearest neighbors in the
same class, and k2 nearest neighbors in the differ-
ent class

✓P
k1+k2

j=1 (W·i)
j

�W

T

·i
�W·i diag(W·i)

◆
Linear

SLE Given example and the rest

 
˜

D

ii

� ˜

W

T

·i
� ˜

W·i ⇤|W̃·i|

!
Linear

��� ��� � �� ��
���

���

�

��

��

��� � ���
��

��
���

���

�

��

��

��� ��� � �� ��
���

���

�

��

��

��� ��� � �� ��
���

���

�

��

��

��� ��� � �� ��
���

���

�

��

��

��� ��� � �� ��
���

���

���

���

��

�

�

�D� �E�

�F� �G�

�H� �I�

Figure 1: The performance of algorithms on the SwissRoll

dataset. (a) is the original data distributed in 3D space, and
(b)-(f) are the 2D embedding results of PCA, LPP, MFA,
DLA and SLE, respectively. The red circles denote positive
examples and the blue circles represent negative examples.

compared dimension reduction algorithms, with the excep-
tion of PCA itself, to eliminate the useless information and
prevent the singularity problem. For multi-class situations,
(7) was employed to decide the labels of the test exam-
ples, and the Nearest Neighborhood Classifier (NNC) was
directly adopted to handle the two-class classifications.

For every algorithm compared, a projection matrix was
trained on the training set and was then applied to reduce the

dimensions of a set of test examples. Finally, these test data
were classified based on their dimension reduction results.
The classification accuracy on the test sets, in particular, was
observed to evaluate the dimension reduction performance
of the algorithms. The experimental results are presented in
Fig. 2, in which the y-axes denote the accuracy and the x-
axes stand for the reduced dimensions d. We see that the pro-
posed SLE is superior to other baselines in most cases, and
the performance of SLE is comparable with PCA and LPP
on the BreastCancer dataset. Furthermore, Fig. 2 suggests
that the output of SLE is not very sensitive to the choice of
d in all datasets, so this parameter can be tuned easily for
practical use.

Face Data
It has been extensively demonstrated that there is an un-
derlying manifold embedded in face images, though they
may look different in appearance, illumination and angle
of observation (Roweis and Saul 2000; Tenenbaum, Silva,
and Langford 2000). This section uses two popular face
databases, Yale (Georghiades, Belhumeur, and Kriegman
2001) and Labeled Face in the Wild (LFW) (Gary et al.
2007), to compare the performances of SLE and other base-
lines.

Yale contains 165 gray images of 15 individuals. Each in-
dividual has 11 face images covering a variety of facial ex-
pressions and configurations including: center-light, wear-
ing glasses, happy, left-light, wearing no glasses, normal,
right-light, sad, sleepy, surprised, and wink. Some represen-
tative examples are provided in Fig. 3 (a) . Every image has a
resolution of 64⇥64 and is therefore represented by a 4096-
dimensional pixel-wise long vector. In each implementation,
we randomly chose 6 images of every individual as the train-
ing set, and the remaining 5 images were used for testing, so
the sizes of the training set and test set were 6⇥15 = 90 and
5⇥15 = 75, respectively. We ran all the algorithms 10 times
based on the different partitions of the training and test sets,
and the recognition accuracies w.r.t. the increase of d were
reported in Fig. 3 (b).

We built a 5NN graph for LPP with kernel width � = 10.
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Figure 2: Experimental results on six UCI datasets. (a) de-
notes BreastCancer, (b) represents Musk, (c) shows Wave-

form, (d) denotes Seeds, (e) illustrates SPECT, and (f) is
Wine.

In MFA and DLA, we set k1 = 5 and k2 = 10 to obtain
the best performances. We see that PCA, DLA and MFA
achieve similar performances on the Yale data with approx-
imately 60% accuracy. Comparatively, the recognition rate
of SLE reaches almost 80%, so the effectiveness of the pro-
posed algorithm is demonstrated.

LFW contains a large number of face images gathered
from the web. Because these face images are directly col-
lected from natural scenes, the unconstrained facial expres-
sions, unsuitable observation angles, undesirable illumina-
tion conditions and complicated background settings create
difficulties for accurate face recognition. We used a sub-
set of LFW by choosing face images of Toledo, Sharon,
Schwarzenegger, Powell, Rumsfeld, Bush, Arroyo, Agassi,
Beckham, and Hewitt, giving 392 examples in total be-
longing to 10 people in the subset. We adopted the 73-
dimensional features built by Kumar et al. (2009) to char-
acterize every face image, and reduced their dimensions via
PCA, LPP, MFA, DLA, and SLE, respectively. The projec-
tion matrices were learnt from the training set with 200 im-
ages and were employed to compute the embeddings of the
192 test examples.

To obtain optimal performance, k and � were adjusted to
10 and 1 for LPP, and we set k1 = k2 = 10 for MFA and
DLA. Fig. 4 (b) shows the results, which reveal that SLE
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Figure 3: Comparison of algorithms on Yale data. (a) shows
representative examples. (b) plots the accuracies of algo-
rithms under different choices of reduced dimensions d.
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Figure 4: Experimental results of algorithms on LFW

dataset. (a) shows some typical examples. (b) reports the ob-
tained accuracies w.r.t. different d.

obtains the highest accuracy generally. DLA achieves com-
parable performance with SLE when d is larger than 25, but
only achieves around 60% accuracy when d = 5, which is
worse than SLE with an approximate 80% recognition rate.
Though recognizing faces in LFW is a very challenging task,
SLE obtains very promising results on this dataset.

Conclusion
This paper has proposed a novel supervised manifold learn-
ing algorithm called Signed Laplacian Embedding (SLE).
By constructing the binary signed graph and employing the
signed graph Laplacian, SLE utilizes the label information
and preserves the global data locality of examples simulta-
neously. Numerous experiments have demonstrated that this
improves embedding performance. SLE has been proven
from both spectral graph and statistical theories, and is re-
lated to other algorithms from the viewpoint of the patch
alignment framework. The core purpose of SLE is to solve
a generalized eigenvalue problem, which can be efficiently
computed by using existing numerical methods such as the
QZ algorithm or Krylov subspace algorithm. Furthermore,
we note that d is the only parameter to be tuned, so SLE can
be easily implemented.
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