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Abstract

The smoothness hypothesis is critical for graph-based
semi-supervised learning. This paper defines local
smoothness, based on which a new algorithm, Reliable
Label Inference via Smoothness Hypothesis (ReLISH),
is proposed. ReLISH has produced smoother labels
than some existing methods for both labeled and
unlabeled examples. Theoretical analyses demonstrate
good stability and generalizability of ReLISH. Using
real-world datasets, our empirical analyses reveal
that ReLISH is promising for both transductive and
inductive tasks, when compared with representative
algorithms, including Harmonic Functions, Local
and Global Consistency, Constraint Metric Learning,
Linear Neighborhood Propagation, and Manifold
Regularization.

Introduction
Semi-supervised learning (SSL) is suitable for situations
where labeled examples are limited, but unlabeled examples
are abundant. By exploiting the presence of large numbers
of unlabeled examples, SSL aims to improve classification
performance, even though labeled examples are scarce. The
most commonly used SSL algorithms, including co-training,
transductive support vector machines (TSVM), and graph-
based methods, are comprehensively reviewed in (Zhu and
Goldberg 2009).

In recent years, graph-based methods using spectral graph
theory to build and analyze various SSL models have at-
tracted increasing attention. In traditional graph-based meth-
ods, the vertices of a graph represent examples, while the
similarities between examples are described by weighted
edges. SSL can be either transductive or inductive: trans-
ductive SSL predicts the label of an unlabeled example
contained in the training set, while inductive learning aims
to predict the label of a test example that has not been
seen during the training stage. We summarize the most
popular graph-based SSL algorithms regarding these two
main categories:
1. Transductive learning: Minimum cut (Mincut)

(Joachims 2003) classifies unlabeled examples by
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Figure 1: The illustration of local smoothness regularizer on
the DoubleSemicircle dataset. A 2-NN graph is built and
the edges are shown as green lines in (a). A bridge point
is located in between the two semicircles. (b) and (c) show
the results obtained by LapRLS (without using the proposed
regularizer) and ReLISH, respectively.

finding the best graph partition to minimize an
energy function; Harmonic Functions (HF) (Zhu,
Ghahramani, and Lafferty 2003) exploit Gaussian
random fields to model a graph, where the mean is
characterized by harmonic functions; Local and Global
Consistency (LGC) (Zhou and Bousquet 2003) uses
a normalized graph Laplacian to reflect the intrinsic
structure embedded in the training examples; and
Measure Propagation (Subramanya and Bilmes 2011) is
derived by minimizing the Kullback-Leibler divergence
between discrete probability measures. Other transductive
algorithms include (Tong and Jin 2007; Wang, Jebara,
and Chang 2008; Fergus, Weiss, and Torralba 2009;
Orbach and Crammer 2012).

2. Inductive learning: Linear Neighborhood Propagation
(LNP) (Wang and Zhang 2006) performs inductive clas-
sification through a Parzen windows-like non-parametric
model. Harmonic Mixture (Zhu and Lafferty 2005) com-
bines the generative mixture model and discriminative
regularization using the graph Laplacian. Laplacian Sup-
port Vector Machines (LapSVM) and Laplacian Regular-
ized Least Squares (LapRLS) extend traditional Support
Vector Machines and Regularized Least Squares method-
ologies by introducing manifold regularization (Belkin,
Niyogi, and Sindhwani 2006) to encode the prior of
unlabeled examples. Moreover, Vector-valued Manifold
Regularization (Quang, Bazzani, and Murino 2013) learns
an unknown functional dependency between a structured
input space and a structured output space.
All these algorithms share the common assumption that
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the learned functions are smooth on the graph, and that a pair
of examples connected by a strong edge are likely to have
similar labels. In this paper we propose a novel regularizer
that introduces local smoothness to describe the relationship
between examples and their neighbors. An example strongly
associated with its neighbors should result in a similar
label in order to achieve sufficient label smoothness in a
local area. Conversely, an example weakly connected to its
neighbors (e.g. an outlier) should not obtain a confident
label. Based on this principle, we propose the Reliable
Label Inference via Smoothness Hypothesis (ReLISH) algo-
rithm, which is theoretically and empirically demonstrated
to improve SSL performance for classification purposes. In
Figure 1, we use the DoubleSemicircle dataset to intuitively
show the effectiveness of proposed local smoothness reg-
ularizer. The red, blue and black circles in (a) represent
positive, negative, and unlabeled examples, respectively.
Examples belonging to the top semicircle form the positive
class and examples in the bottom semicircle correspond to
the negative class. The point at (1, 0) lies exactly in the mid-
dle of the two classes, and can be attributed to an arbitrary
class. We call this point “bridge point” because it locates in
the intersection area of classes and will probably serve as
a bridge for the undesirable mutual transmission of positive
and negative labels. The simulation in Figure 1 (b) is simply
based on LapRLS which does not incorporate the local
smoothness regularizer, so the positive label is erroneously
propagated to the negative class through the “bridge point”.
By contrast, Figure 1 (c) shows that the proposed ReLISH
equipped with the local smoothness regularizer assigns a
very weak label to the “bridge point”, and successfully
prohibits the label information from passing through it.
Therefore, ReLISH achieves a perfect classification result.

ReLISH is cast into a convex optimization problem and
explores the geometry of the data distribution by postulating
that its support has the geometric structure of a Riemannian
manifold. Our theoretical analyses reveal that the hypoth-
esis determined by ReLISH is very stable, and that the
probability of the generalization risk being larger than any
positive constant is bounded. The proposed algorithm there-
fore performs accurately and reliably. Moreover, the kernel
extension of ReLISH has been proved to be equivalent to
conducting ReLISH on the data pre-processed by kernel
principal component analysis (KPCA). This profound prop-
erty indicates all theoretical results of ReLISH are tenable to
its kernel extension.

We conduct comprehensive experiments to compare ReL-
ISH with representative SSL algorithms on several public
datasets, including UCI (Frank and Asuncion 2010), the
Optical Recognition of Handwritten Digits Dataset (Frank
and Asuncion 2010), and Caltech 256 (Griffin, Holub, and
Perona 2007). These empirical studies complement our the-
oretical studies and show that ReLISH achieves promising
performance on both the transductive and inductive settings.

Model Description
Given a set of labeled examples L = {(xi, yi)}li=1 and a
set of unlabeled examples U = {(xi)}l+u

i=l+1, typically with

l ⌧ u, where xi (1 i  n, n= l+u) are d-dimensional
examples sampled from an unknown marginal distribution
PX , and yi (1 i l) are labels taking values from a binary
label set {1,�1}. An inductive SSL algorithm aims to find
a suitable hypothesis f : Rd ! R based on the union of L
and U , i.e.  = {(x1, y1), · · · , (xl, yl),xl+1 · · ·xl+u}, to
perfectly predict the label of a test example.

To learn the prediction function f , all examples in  are
represented by nodes in a graph G with the adjacency matrix
W, and the similarity between two nodes xi and xj (1 
i, j  n) are defined by an edge in which the weight is a
Gaussian kernel Wij=exp

⇣
�kxi � xjk2/(2�2

)

⌘
with the

width �. The traditional regularization framework for graph-
based SSL is formulated as

min

f
E(f) =

1

2

[c̃(f(·),x1⇠l, y1⇠l) + ↵S(f(·),x1⇠n,W)

+�Q(kfk)] ,
(1)

where the first term is a fidelity function defined on L, which
requests f to fit the labels of the labeled examples; the
second smoothness term enforces labels on the graph that
vary smoothly to reflect the intrinsic geometry of PX ; and
the third induction term controls the complexity of f . Two
free parameters, ↵ and �, balance the weights of these three
terms.

The fundamental smoothness assumption widely adopted
in classical graph-based SSL is that if x1,x22X are close in
the intrinsic geometry of the marginal distribution PX , then
the conditional distributions P (y1|x1) and P (y2|x2) are
similar. A smoother function f on the training set  usually
leads to better classification performance for test examples.
Therefore, the smoothness term S(f(·),x1⇠n,W) plays an
important role in the whole regularization framework. In our
method the smoothness term S(f(·),x1⇠n,W) is defined
by

S(f(·),x1⇠n,W) =

1

2

g0
Xn

i=1

Xn

j=1
Wij(f(xi)�f(xj))

2

+ g1
Xn

i=1
f2

(xi)/dii

= g0f
T
Lf + g1f

T
D

�1
f

(2)

where f = (

f(x1), f(x2), · · · , f(xn))
T , with f(xi) 2 R

(1 i n) representing the soft labels obtained by xi. The
degree of xi is dii =

Pn
j=1 Wij , and the degrees of all the

examples form a diagonal matrix D = diag(d11, · · · , dnn).
L = D � W is the graph Laplacian, which approximates
the Laplace-Beltrami operator �M on a compact manifold
M⇢Rd under certain conditions (Belkin and Niyogi 2003).

The first pairwise smoothness term in (2) is defined using
pairs of examples and indicates that two examples sharing
a large edge weight Wij should have similar soft labels.
The second term is the local smoothness term, which is
defined by the connection between xi and its neighbors. This
term considers smoothness of examples in a local region
as a whole, which regularizes the label of xi heavily if it
corresponds to a low degree dii. In Figure 1 (c), the “bridge
point” has lower degree than other points, so its label is reg-
ularized to a very small number. From another perspective
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where the probability distribution PX is supported by a low-
dimensional manifold M, then (2) is able to discover the
intrinsic geometry of PX by penalizing f along M.

The regularization framework of ReLISH is derived in the
Euclidian space. Suppose the prediction function is

f(x) = !T
x, (3)

in which ! = (!1, · · · ,!d)
T is a coefficient

vector and x is a test example drawn from PX .
If we put all the training examples in a matrix
X = (

x1, · · · ,xl,xl+1, · · · ,xl+u) = (

Xl Xu) where
each column represents a d-dimensional label vector, then
the induction and fidelity terms in (1) can be defined by
Q(kfk) = k!k22 and c̃(f(·),x1⇠l, y1⇠l) =

��
y � JX

T!
��2
2
,

respectively. Here J = diag(1, · · · , 1, 0, · · · 0) is an n ⇥ n
diagonal matrix with the first l elements 1, and the rest are
0. Therefore, the regularization framework of ReLISH is

min

!
E(!)=

1

2

h��
y � JX

T!
��2
2
+↵!T

XLX

T!

+�!T
XD

�1
X

T! + � k!k22
i
,

(4)

where ↵, �, and � are non-negative parameters balancing
the weights of these four terms. Note that (4) differs from
LapRLS (Belkin, Niyogi, and Sindhwani 2006) simply in
the local smoothness term �!T

XD

�1
X

T!. The effective-
ness of this new regularizer for boosting the classification
accuracy will be theoretically justified in the next section.

To find the optimal !⇤, we set the derivative of the right
hand side of (4) w.r.t. ! to 0, and obtain

�! + ↵XLX

T! + �XD

�1
X

T! +XJX

T! �XJy = 0.
(5)

Therefore, by considering Jy = y, the minimizer of (4) is

!⇤
=

�
�I+↵XLX

T
+�XD

�1
X

T
+XJX

T
��1

Xy. (6)
Finally, the optimal f⇤ is obtained by plugging (6) into (3).

Proof of Smoothness
As mentioned above, graph-based SSL algorithms prefer a
smoother f (Zhu and Goldberg 2009), because it usually
results in higher accuracy. This section proves that the new
local smoothness term makes the label vector f obtained by
ReLISH smoother than that obtained by LapRLS.
Lemma 1: Let D and L be the degree matrix and
graph Laplacian, respectively. J is an n ⇥ n diagonal
matrix of which the first l elements are 1 and the
rest are 0. Then ⌦ = (J+ ↵L)

�1
L(J+ ↵L)

�1 �
(J+ ↵L+ �D�1

)

�1
L(J+ ↵L+ �D�1

)

�1 is a positive
semi-definite matrix.

Proof is provided in the supplementary material.
Theorem 2: ReLISH is guaranteed to obtain a smoother f
than LapRLS due to the incorporated local smoothness term.

Proof : The smoothness of f is evaluated by � = f

T
Lf

(Zhu, Ghahramani, and Lafferty 2003; Zhu and Goldberg
2009). Therefore, if f1 and f2 are used to denote the solu-
tions of ReLISH and LapRLS, respectively, then we need
to prove f

T
1 Lf1 is smaller than f

T
2 Lf2. In (4), � is set

to 0 to explicitly assess the smoothness of ReLISH on
the training set, so the objective function is simplified as
min E(f1) =

1
2

⇣
kJf1 � yk22 + ↵fT1 Lf1 + �fT1 D

�1
f1

⌘
,

of which the minimizer is f1 =

�
J+↵L+�D�1

��1
y.

Similarly, the solution of LapRLS is f2 = (J+↵L)
�1

y.
Then the difference between f

T
1 Lf1 and f

T
2 Lf2 is

f

T
2 Lf2 � f

T
1 Lf1

= y

T
h
(J+ ↵L)

�1
L(J+ ↵L)

�1

� (J+ ↵L+ �D�1
)

�1
L(J+ ↵L+ �D�1

)

�1
i
y

= y

T
⌦y.

(7)
According to Lemma 1, ⌦ is a positive semi-definite matrix,
so we have yT

⌦y � 0 , which reveals that fT1 Lf1  f

T
2 Lf2.

This completes the proof.
One may argue that a smoother solution can be acquired

by simply increasing the ↵ in (4). However, this way will
significantly weaken the influences of other terms on the
result, which is unfavorable to obtaining satisfactory per-
formances. In this view, ReLISH aims to obtain a smoother
solution as well as not decrease the impacts of other regular-
izers on the outputs.

Stability and Generalization
This section studies the generalization bound of ReLISH
theoretically, based on the notion of stability proposed by
Bousquet et al. (2001).

Stability
Definition 3 (Bousquet and Elisseeff 2001): Let  =

{x1, · · · ,xn} be a training set,  h
=  \xh be the training

set where the example xh has been removed, and A is
a symmetric algorithm. We say that A is ✓-stable if the
following inequality holds:

8xh 2  , |c(f ,x)� c(f h ,x)|  ✓, (8)
where c(·, ·) is the cost function.

According to Definition 3, we have the following theo-
rem:
Theorem 4: Given c(f(·),x1⇠l, y1⇠l) =

1
2 c̃(f(·),x1⇠l, y1⇠l) =

1
2

��
y � JX

T!
��2
2

as the loss

function, ReLISH is 1
2

⇣
1 + l

q
8ndl
� +

ndl2

2�

⌘
-stable on the

training set  = {x1, · · · ,xn}.
Proof is provided in the supplementary material.

Generalization Bound
The empirical risk Rn(f) =

1
n

Pn
i=1 (f(xi)� yi)

2 is an
evaluation of how well the hypothesis f fits the train-
ing set  . The generalization risk expressed by R(f) =

E(f(xi)� yi)
2 is the expectation of the square loss of f on

the whole example space⇥ with all xi (1  i  n) sampled
from ⇥.
Theorem 5 (Bousquet and Elisseeff 2001): Let A be a ✓-
stable algorithm, so that 0  c(f(·),x1⇠l, y1⇠l)  M ,
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for all x 2  . For any � > 0 and n � 1, we have the
generalization bound defined as

P [|Rn(f)�R(f)| > � + ✓]  2 exp

 
� n�2

2(n✓ +M)

2

!
.

(9)
Based on Theorem 5, the generalization bound of ReLISH
is given in Theorem 6:
Theorem 6: Let c(f(·),x1⇠l, y1⇠l) =

1
2

��
y � JX

T!
��2
2

be
the loss function and f⇤ be the optimal solution of ReLISH,
so that, for all x 2  and � > 0, the following generalization
bound holds:
P [|Rn(f

⇤
)�R(f⇤

)| > � + ✓]

2exp

 
� 8n�2�2⇥

2l(2n+1)

p
2�ndl+(n+1)ndl2+2(n+l)�

⇤
2

!
.

(10)
Theorem 6 is proved in the supplementary material. This

theorem demonstrates that the generalization risk of ReLISH
is bounded and the prediction results obtained by ReLISH
are reliable.

Kernel Extension of ReLISH
Suppose H is a Hilbert space of R-valued functions defined
on a non-empty set X , a function K : X ⇥ X ! R is
called a reproducing kernel of H, and H is an RKHS if
K satisfies: (1) 8x 2 X , K(·, x) 2 H and (2) 8x 2
X , 8f 2 H, hf,K(·, x)iH = f(x). In particular, for
any x1, x2 2 X , K(x1, x2) = hK(·, x1),K(·, x2)iH. The
theory of RKHS has been widely applied to the field of
machine learning (Hofmann, Schölkopf, and Smola 2005).
This section studies the kernel extension of ReLISH, and
proves that learning ReLISH in RKHS is equivalent to
learning ReLISH in the space spanned by all the principal
components of KPCA.

Suppose K(·, ·) : X ⇥ X ! R is a Mercer kernel
associated with RKHS, and the corresponding norm is k·kK .
Thus, the regularization framework of ReLISH in RKHS is

min

f2HK

E(f)=
1

2

hXl

i=1
(f(xi)�yi)

2
+↵fTLf + �fTD�1

f

+� kfk2K
⇤
.

(11)
According to the extended representer theorem (Belkin,

Niyogi, and Sindhwani 2006), we know that the minimizer
f⇤ 2 HK of the regularized risk function (11) can be
decomposed as an expansion of kernel functions over both
labeled and unlabeled examples:

f⇤
(x) =

Xn

i=1
s⇤iK(x,xi). (12)

Therefore, we obtain a convex differentiable objective func-
tion of S = (s1, · · · , sn)T by plugging (12) into (11):

S

⇤
=argmin

S2Rn

1

2

h
ky � JKSk22 + ↵ST

KLKS

+�ST
KD

�1
KS+ �ST

KS

⇤
,

(13)

where K is an n ⇥ n Gram matrix over both labeled and
unlabeled examples, with elements Kij = K(xi,xj). By

solving (13) and replacing (12) with the result, we have the
optimal f⇤:

f

⇤
= K(JK+ ↵LK+ �D�1

K+ �I)
�1

y. (14)
Theorem 7: Learning ReLISH in RKHS is equivalent to
learning ReLISH in the space spanned by all the principal
components of KPCA.

Theorem 7 is proved in the supplementary material.
This theorem suggests that solving (11) directly is equivalent
to adopting KPCA to pre-process data, followed by ReLISH
with the linear kernel. Therefore, the theoretical analyses in
the Euclidean space above are also tenable to the kernelized
ReLISH.

Experimental Results
To demonstrate the effectiveness of ReLISH on real-world
applications such as digit recognition and image classifica-
tion, we have evaluated the algorithm on public datasets.
We have demonstrated that ReLISH performs well on both
the transductive and inductive settings, when compared with
popular graph-based SSL algorithms, including HF (Zhu,
Ghahramani, and Lafferty 2003), LGC (Zhou and Bousquet
2003), LapSVM (Belkin, Niyogi, and Sindhwani 2006),
LapRLS (Belkin, Niyogi, and Sindhwani 2006), LNP (Wang
and Zhang 2006), and CML (Liu, Tian, and Tao 2010). We
built k-NN graphs with � empirically tuned to optimal for
all the algorithms throughout this section, and the model
parameters ↵, �, � of ReLISH were also properly tuned
for each dataset. We also empirically show that the ReLISH
performs robustly for a wide range of each of the model
parameters in the supplementary material.

Synthetic Data
We have already empirically explained the strength of the
local smoothness term in the Introduction. In Figure 1 (a),
the initially labeled positive example is closer to the “bridge
point” than the negative example, so it has a stronger impact
for determining the label of the “bridge point” and pushes
the positive label to the semicircle below (see Figure 1
(b)). However, ReLISH discovers the low degree of “bridge
point” and “suppresses” its label to a rather small number
(+9.006 ⇥ 10

�4 compared with +0.0041 without using
ReLISH), and therefore the “power” of positive label is
weakened and the erroneous propagation is avoided.

Next we used three synthetic toy datasets, DoubleMoon,
DoubleRing, and Square&Ring, to further assess the perfor-
mance of ReLISH. Binary classification was performed on
these datasets with only one labeled example in each class.
DoubleMoon contained 400 examples, equally divided into
two moons, with each moon representing one category (see
Figure 3 (a)). DoubleRing consisted of two rings centered
at (0, 0), with radiuses 0.5 and 1.5 for inner and outer
rings, respectively (see Figure 3 (c)). In Square&Ring, the
examples were distributed as a square surrounded by a ring.
Two hundred examples in the square comprised the positive
cluster, while the 629 examples belonging to the ring formed
the negative cluster. Both the square and the ring were
centered at (0.5, 0.5). The radius of the outer ring was 1.3,
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Figure 2: Experimental results on four UCI datasets. (a) and (e) are Iris, (b) and (f) are Wine, (c) and (g) are BreastCancer, and
(d) and (h) are Seeds. The sub-plots in the first row compare the transductive performance of algorithms, and the sub-plots in
the second row compare their inductive performance.

and the length of each side of the inner square was 1 (see
Figure 3 (e)).

9-NN, 9-NN and 10-NN graphs were established for
DoubleMoon, DoubleRing and Square&Ring, respectively.
For transduction, the weighting parameters of ReLISH were
set as ↵ = � = 1 and � = 0 on the three datasets. In
inductive settings, � was tuned to 1 so that ReLISH has the
generalizability to the test data.

The transductive results of ReLISH on three datasets are
presented in Figure 3 (b) (d) (f), with red dots denoting posi-
tive examples, and blue dots representing negative examples.
ReLISH achieved perfect classification performance, indi-
cating that it can precisely discover the geometric structure
of classes.

To demonstrate the inductive ability of ReLISH, the
learned decision boundary was plotted within the example
space. The green and white regions in Figure 3 (b) (d)
(f), partitioned by the decision boundary, were consistent
with the geometry of unlabeled examples. Therefore, the
prediction function f⇤ trained by ReLISH has good gener-
alizability.

UCI Data
We next compared ReLISH with popular graph-based SSL
algorithms on four UCI Machine Learning Repository
datasets (Frank and Asuncion 2010), including the Iris,
Wine, BreastCancer, and Seeds datasets.

We first evaluated the transductive ability of ReLISH on
the entire dataset by varying the size of the labeled set l and
comparing ReLISH with LNP, LGC, CML, HF, LapSVM,
and LapRLS. We set parameters of ReLISH ↵ = � = 1

in Iris, Wine and Seeds dataset, and fixed ↵ = 0.1 and
� = 10 in BreastCancer dataset. � is always set to 0 to
obtain the optimal transductive performance. The parameter
↵ governing the weight between smoothness term and fitting
term in LGC, HF and LNP are set to 0.99, and the key pa-
rameters of LapRLS and LapRLS are adjusted to �A = 0.1

and �I = 1. Twenty independent runs of the algorithm were
performed. In each run, examples in the labeled set L were
randomly generated, but at least one labeled example was
guaranteed to be present in each class. The labeled examples
in each run were same in different algorithms. Accuracy
was assessed by comparing the mean value of the outputs of
these runs. Figure 2 (a)⇠(d) reveal that, with increasing l, the
accuracies of the different algorithms improve, and ReLISH
achieves the highest levels of accuracy in the majority of
cases. Moreover, ReLISH achieves very encouraging results
on all the datasets, even when the number of the labeled
examples is very small.

To test inductive ability, each of the original four datasets
was divided into training and test sets. We conducted the
simulations by using n = 60 training examples. Only LNP,
LapRLS, and LapSVM were used in comparisons because
the other methods do not have the inductive ability. We set
� = 1 to enable ReLISH to handle unseen data. Figure
2 (e)⇠(h) shows the results on Iris, Wine, BreastCancer,
and Seeds, respectively. The outputs were averaged over
twenty independent random runs, from which we can see
that ReLISH achieves very competitive performance. This
is because the incorporated smoothness and inductive terms
perfectly discover the underlying manifold of the data,
which effectively decreases the generalization risk.

Handwritten Digit Recognition
To further test ReLISH in a real-life setting, we compared it
with other methods on the Optical Recognition of Handwrit-
ten Digits Dataset (Frank and Asuncion 2010). We extracted
800 examples, corresponding to digits 0⇠9 from the original
dataset, in which 500 examples were used for training and
the remaining 300 examples for testing. Each example is a
gray image, of which the pixel-wise feature is represented
by a 64-dimensional vector. We constructed a 10-NN graph
with � = 15 for both transductive and inductive evaluations.

In the transductive setting, the training and test sets
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Figure 3: Transductive and inductive results demonstrating
the promising performance of ReLISH on three synthetic
toy datasets. (a) (c) (e) are initial states with marked labeled
examples, and (b) (d) (f) are the classification results.

were combined to form an example pool, and the labeled
examples are randomly selected from it. The accuracies
of algorithms are plotted in Figure 4 (a), suggesting that
ReLISH can reach a relative high accuracy given only a
small number of labeled examples. This is because ReLISH
can precisely and effectively discover the manifold structure
of a dataset.

The inductive performances of ReLISH, LNP, LapRLS,
and LapSVM are compared in Figure 4 (b). By comparing
with LNP, LapSVM, and LapRLS, ReLISH best classifies
the unseen digits, demonstrating that the f⇤ trained by
ReLISH has good predictive ability.

Image Classification
We compared ReLISH with HF, LGC, LNP, CML,
LapSVM, and LapRLS on the Caltech 256 dataset (Griffin,
Holub, and Perona 2007), to classify the images of dog,
goose, swan, zebra, dolphin, duck, goldfish, horse, and
whale. In this experiment, we chose the first 80 examples
of each category from the original dataset to illustrate the
performance of the algorithms. Example images are shown
in Figure 5 (a). Images are represented by a concatenation
(Tommasi, Orabona, and Caputo 2010) of four image
descriptors, including PHOG (Bosch, Zisserman, and
Munoz 2007), SIFT Descriptor (Lowe 2004), Region
Covariance (Tuzel, Porikli, and Meer 2007), and LBP
(Ojala, Pietikainen, and Maenpaa 2002). A 10-NN graph
with � = 2 was established for all the comparators, and
↵, �, � in ReLISH are tuned to 1, 10 and 0, respectively.
Figure 5 (b) plots the accuracies of the different algorithms
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Figure 4: Experimental results demonstrating the promising
performance of ReLISH on handwritten digit recognition:
(a) shows the transductive performance and (b) illustrates
the inductive performance.
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Figure 5: Experiment performed on the Caltech 256 dataset:
(a) shows example images of the four classes; (b) compares
the classification accuracies of different algorithms.

w.r.t. increasing the number of labeled examples, and shows
that ReLISH obtains very promising performance compared
with traditional methods.

Conclusion
This paper has presented a novel graph-based SSL algorithm
called ReLISH, developed originally in the Euclidean space
and then extended to RKHS. In addition to the pairwise
smoothness term commonly used in existing SSL algo-
rithms, ReLISH introduces a local smoothness term, which
is sufficient for the smoothness property and penalizes the
labels of examples locally. The advantages of ReLISH are
four-fold: (1) ReLISH is formulated as a convex optimiza-
tion problem and is easily solved, (2) the local smoothness
term can effectively boost the classification accuracy by
assigning weak labels to ambiguous examples, (3) ReLISH
is stable and has a low generalization risk, and (4) the
parameters in ReLISH are stable and can easily be adjusted
to obtain impressive performance. Compared with HF, LGC,
CML, LNP, LapSVM, and LapRLS, ReLISH obtains su-
perior transductive and inductive performance when tested
on real-world public datasets related to data mining, digit
recognition, and image classification. Of particular note is
the fact that since LapRLS is a special case of ReLISH
without the local smoothness term, the effectiveness of the
introduction of this term is especially validated by this
comparison.

In the future, fast algorithms will be developed to handle
big data tasks, because without using fast numerical compu-
tations, ReLISH requires O(n3

) complexity.
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