
Pre-Trained Multi-View Word Embedding
Using Two-side Neural Network

Yong Luo†∗, Jian Tang†, Jun Yan‡, Chao Xu†, and Zheng Chen‡
†School of Electronics Engineering and Computer Science, Peking University, Beijing, China

(email: yluo180@gmail.com; tangjianpku@gmail.com; xuchao@cis.pku.edu.cn)
‡Microsoft Research Asia, Beijing, China (email: {junyan, zhengc}@microsoft.com)

Abstract

Word embedding aims to learn a continuous represen-
tation for each word. It attracts increasing attention due
to its effectiveness in various tasks such as named en-
tity recognition and language modeling. Most existing
word embedding results are generally trained on one in-
dividual data source such as news pages or Wikipedia
articles. However, when we apply them to other tasks
such as web search, the performance suffers. To ob-
tain a robust word embedding for different applications,
multiple data sources could be leveraged. In this pa-
per, we proposed a two-side multimodal neural net-
work to learn a robust word embedding from multi-
ple data sources including free text, user search queries
and search click-through data. This framework takes the
word embeddings learned from different data sources
as pre-train, and then uses a two-side neural network
to unify these embeddings. The pre-trained embeddings
are obtained by adapting the recently proposed CBOW
algorithm. Since the proposed neural network does not
need to re-train word embeddings for a new task, it is
highly scalable in real world problem solving. Besides,
the network allows weighting different sources differ-
ently when applied to different application tasks. Ex-
periments on two real-world applications including web
search ranking and word similarity measuring show that
our neural network with multiple sources outperforms
state-of-the-art word embedding algorithm with each
individual source. It also outperforms other competitive
baselines using multiple sources.

Introduction
Word embedding is a continuous-valued representation of
the word. Good word embedding is expressive and effec-
tive since it can represent a huge number of possible inputs
using only a small number of variables, and help tackling
the problem of the curse of dimensionality. By representing
each word with the learned continuous-valued variables, se-
mantically related words can be close to each other. The ef-
fectiveness of word embedding has been investigated in the
literature, such as (Bengio, Courville, and Vincent 2013).

∗This work was done when the first author and second author
were interns of Microsoft Research Asia.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Word embedding has been widely used in many natural lan-
guage processing (NLP) tasks, such as language modeling
(Bengio et al. 2003; Mnih and Hinton 2007), named en-
tity recognition and chunking (Collobert and Weston 2008;
Turian, Ratinov, and Bengio 2010; Dhillon, Foster, and Un-
gar 2011). Recently, the word embedding techniques were
also extended to embed queries, documents, phrases, enti-
ties, etc. (Huang et al. 2013; Mikolov et al. 2013b), which
could play a critical role in industry applications, such as
large-scale web search and knowledge mining.

Dozens of algorithms have been proposed for word em-
bedding in the literature. Some representative works are the
Collobert and Weston (2008) (C&W08) (Collobert and We-
ston 2008) method, hierarchical log-bilinear (HLBL) (Mnih
and Hinton 2008) model, and the continuous bag-of-words
(CBOW) (Mikolov et al. 2013a) algorithm. In the training
of these models, the data used are articles from books, news
or Wikipedia etc., which are all consist of large amounts of
sentences. Usually the context information contained in and
between the sentences is utilized for training. Such informa-
tion is critical and effective for the NLP tasks, but may be
not appropriate for other tasks such as query classification
(Lin and Wu 2009).

To tackle this problem, we propose to train word embed-
ding for different application tasks by the use of different
data sources, such as the free text documents, user queries,
and click-through data. Besides, it has been demonstrated
empirically in (Turian, Ratinov, and Bengio 2010) that com-
bining different word embeddings is beneficial. A natural
combination strategy is to concatenate all the embeddings
into a long vector. However, this strategy not only lack phys-
ical interpretation, but also may lead to serve “curse of di-
mensionality”. We thus developed a two-side neural network
to combine the learned word embeddings. In particular, we
first introduce how to adapt a word embedding algorithm to
learn from other data sources that have never been reported
in academia before. Due to the efficiency and effectiveness
of the CBOW model, we use it as our baseline word embed-
ding algorithm, and show how to train it on different data
sources. Then we take all the learned word embeddings as
the pre-train of a two-side neural network, and only fine tune
the hidden layer parameters for different application tasks.
The network is chosen to have two sides since we found that
the data is pairwise in many applications, e.g., the query doc-

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1982

ument pair in web search, the word pair in word similarity
measuring, and the context target pair in language modeling.

The main advantages of the proposed multi-view word
embedding (MVWE) framework are: 1) different from the
work of (Collobert et al. 2011), where word embeddings are
pre-trained and fine tuned for each NLP task, the multiple
pre-trained word embeddings in our framework are fixed,
and we only need to fine tune the combination weights when
apply MVWE to different tasks. This reduces the time com-
plexity significantly and thus is scalable to a variety of real
world applications; 2) compared to the combination strat-
egy presented in (Turian, Ratinov, and Bengio 2010), where
word embeddings are only utilized as additional features in
the NLP system, the hidden units in our network are abstrac-
tions of the inputs (Bengio 2009) and thus the commonali-
ties as well as the variations of different sources can be ex-
ploited using the multiple hidden layers. Besides, the neural
network can approximate the arbitrary nonlinear correlation
among the different sources (Krasnopolsky and Lin 2012),
and thus hopefully better performance could be obtained.

We thoroughly evaluate the proposed MVWE framework
on two different application tasks: search ranking and se-
mantic word similarity measuring. We compare it with sin-
gle word embedding trained on each data source, as well as
a combination of these embeddings using the concatenation
strategy and linear regression. Experimental results demon-
strated the effectiveness of the proposed framework.

Related Work
Our work is a combination of the word embeddings pre-
trained from multiple views.

Word embedding
Traditional one-hot word representation, in which the di-
mensionality of the word vector is the same as the size
of the dictionary, suffers the data sparsity problem. There-
fore, many researchers focus on representing a word using a
continuous-valued low-dimensional feature vector (Dumais
et al. 1988; Brown et al. 1992; Bengio et al. 2003). Word
embedding (Bengio et al. 2003; Collobert and Weston 2008;
Mnih and Hinton 2008) is one of the most popular word rep-
resentations of this type. We refer to (Turian, Ratinov, and
Bengio 2010) for a summarization of some popular word
representation works. Recently, two quite efficient mod-
els, continuous bag-of-words (CBOW) and continuous skip-
gram (Skip-gram) are proposed in (Mikolov et al. 2013a).
High-quality word embeddings can be learned using these
two models and the training process was further acceler-
ated in (Mikolov et al. 2013b) by sub-sampling the frequent
words. Due to the efficiency and effectiveness of these two
models, we use one of them, the CBOW model, as our base-
line word embedding algorithm. We will show how to adapt
it for training on various data sources, and then combine the
learned word embeddings for different applications.

To the best of our knowledge, the closest work to our
model is done by Turian et al. (Turian, Ratinov, and Bengio
2010). Compared to their work, our framework offers at least
two benefits: 1) the input word embeddings are pre-trained

using different data sources, not different algorithms. Thus
our model can be applied to a variety of tasks including web
search, not limited in NLP tasks; 2) we combine the differ-
ent word embeddings using a nonlinear network, which can
be fine tuned for specific task. While in (Turian, Ratinov,
and Bengio 2010), the word embeddings were only used as
additional features in the supervised NLP system and thus
the nonlinear relationships among the different embeddings
cannot be exploited.

Multi-view learning using the neural network
The present framework is also closely related to multimodal
fusion (Luo et al. 2013a; 2013b). The different embeddings
of a word can be regarded as its different modalities since
the embeddings are learned from different data sources. We
refer to (Kung and Hwang 1998) for a survey of some rep-
resentative works on combining multiple modalities using
neural network. There also exist a few recent models based
on deep networks. Ngiam et al. (Ngiam et al. 2011) pro-
posed to fuse the audio and video inputs for speech clas-
sification using a Deep Autoencoder model. As opposed to
it, a bimodal Deep Boltzmann Machine (DBM) is presented
in (Srivastava and Salakhutdinov 2012) to integrate together
the image and text modalities. The multimodal DBM is gen-
erative and thus can naturally handle missing data modal-
ities. In this paper, we assume the word embeddings are
pre-trained, and our aim is to combine them. The two mul-
timodal deep models are not appropriate here since they are
not feasible when only the trained embeddings are available.

Multi-view Word Embedding
In this section, we first illustrate how to train a word embed-
ding algorithm using different data sources, and then present
the main part of this paper, i.e., the multi-view word embed-
ding (MVWE) framework on combining the word embed-
dings trained on different data sources for various applica-
tion tasks.

Word embedding algorithm adaptation
The recently proposed high-performance CBOW algorithm
(Mikolov et al. 2013a) is utilized as an example for adapta-
tion, and the data sources we used here are: free text docu-
ments from Wikipedia, search click-through data, and user
query data collected using a commercial search engine. In
CBOW, a negative sampling (NEG) (Mikolov et al. 2013b)
training strategy is proposed. NEG can learn high-quality
word embeddings without maximizing the probability of the
target word in an n-gram sequence over the vocabulary.

For the free text documents, CBOW can be directly used
as usual, and in our implementation we consider a window
size of c = 11 words. However, the window size must be
limited to c = 3 for user query data, since there is sometimes
only one word (together with two “padding” words (Col-
lobert et al. 2011)) for a query. Besides, a window should
not across two queries since they are often not semantically
related.

For the search click-through data, all the query words are
used as the context words, and the clicked document is re-
garded as the target word. The document embedding can be

1983

Input

Nonlinear

Avg

Linear

HardTanh / None

Cosine

22 ,bW

33 ,bW

)1(
11z

)(
11
mz)1(

21z
)(

21
mz

21z 22z

31z 32z

o

c

d

)1(
1X

)(
1
mX)1(

2X
)(

2
mX

1y 2y

1W

Figure 1: Architecture of the MVWE network.

pre-trained by the deep structured semantic model (DSSM)
presented in (Huang et al. 2013). The same strategy can be
applied in many other popular word embedding learning al-
gorithms, such as the C&W08 (Collobert and Weston 2008)
and log-bilinear (LBL) (Mnih and Hinton 2007) model, by
simply replacing the target word embedding with the pre-
trained document embedding. We only adapt the CBOW al-
gorithm in this paper due to its scalability, efficiency and
high performance.

Network for word embedding combination
In this paper, we choose the neural network to combine the
different word embeddings. This is mainly because the non-
linear combination is often superior the linear combination,
and the neural network can approximate arbitrary nonlinear
dependence among multiple modalities (Krasnopolsky and
Lin 2012). Before presenting the network, we first introduce
some notations.

Notations: We consider a two-side neural network of L
layers with parameters θ. Given a sequence of c input words,
we stack their embeddings in a matrix X(i)

s ∈ Rdi×c, where
s ∈ {1, 2} and i ∈ {1, . . . ,m} are the index of the side
and data source respectively, m signifies the number of data
sources and di is the dimensionality of the word embedding
pre-trained from the i’th data source. We denote zjs as the
representation of the j’th hidden layer. At the first hidden
layer, there are m representations {z(1)1s , . . . , z

(m)
1s } and z1s

is a concatenation of them. We also denote ys as the final
unified word embedding of the inputs X(i)

s , i = 1, . . . ,m,
and o as the output of the network.

The two-side network for combination is depicted in Fig-
ure 1. For each side of the network, the input is a word se-
quence. We map the word sequence into a feature matrix
X

(i)
s according to the lookup table trained by CBOW on the

i’th data source. Each column of X(i)
s is the embedding of

one word in the sequence. Then we obtain m feature matrix
X

(1)
s , . . . , X

(m)
s for each side, and each X(i)

s is averaged by
column (i.e., the embeddings of the different words in a se-
quence are averaged) to obtain the first hidden layer repre-
sentation z(i)1s . All the z(i)1s , i = 1, . . . ,m are concatenated

as z1s, which is subsequently transformed into the last hid-
den layer representation z3s by going through a nonlinear
followed by a linear layer. The average layer has no param-
eters to be learned, and the nonlinear and linear layers are
supposed to be parameterized by {W2, b2} and {W3, b3} re-
spectively, where Wi is the weight matrix and bi is the bias
term. Then we have

z2s = f(W2z1s + b2), and z3s =W3z2s + b3, (1)

where f is a nonlinear activation function. Following (Col-
lobert et al. 2011), the hard version of tanh is adopted, i.e.,

f(x) =

−1, if x < −1
x, if − 1 ≤ x ≤ 1

1, if x > 1

(2)

The nonlinear hidden layer is optional, and sometimes we
can remove it from the network for the sake of efficiency.
The hard tanh operation on z3s is also optional, so the uni-
fied embedding of the input sequence can be either ys = z3s
or ys = f(z3s). Finally, we utilize the cosine function to
measure the similarity between the two sides of the network,
that is,

o = cosine(y1, y2) =
yT1 y2
‖y1‖‖y2‖

. (3)

In the following, we show how to train the network for dif-
ferent tasks. It should be noted that we only fine tune the
parameters θ = {Wi, bi}, and the input word embeddings
are fixed.

Training
Our neural network is trained by leveraging the negative
sampling (NEG) (Mikolov et al. 2013b) strategy for the
search ranking task. In the semantic word similarity task,
we proposed a pairwise distance regression (PADR) training
strategy.

NEG for search ranking NEG is to separate the target
element eO in an n-gram sequence from some noise ele-
ments ei, i = 1, . . . , k drawn according to a noise distribu-
tion Pn(e). For search ranking, the n-gram context is the
query words and the target element is the clicked document.
The noise elements are drawn from the document corpus.
Suppose that yeC and yeO are the unified embedding of the
context and target element respectively, then the objective of
NEG (Mikolov et al. 2013b) is given by

P (θ) = logσ(yTeCyeO) +
k∑
i=1

Eei∼Pn(e)[logσ(−y
T
eCyei)],

(4)
where yei is the unified embedding of the noise element ei,
and σ(x) = 1/(1 + exp(−x)). In our implementation, all
yeC , yeO and yei are normalized to compute the output score
o by replacing the inner products yTeCyeO and yTeCyei in (4)
with the cosine similarities.

PADR for computing semantic word similarity We ar-
gue that the semantic similarity of a word pair is relative.
For example, compared to {cat, car}, the words {cat, bird}

1984

Table 1: Word embeddings in the lookup table trained by different data sources. Each column is the queried word followed by
its 10 most similar words in the dictionary.

word wikipedia megabits
click query wiki click query wiki click query wiki
Word words phrase wiki wiki Wiki mbits kilobits kib

WORD powerpoint words WIKI site:wikipedia.org nupedia megabit nanograms megabytes
www.word palana suffix encyclopedia is wikinfo kilobits mbytes terabytes

words Tecate term site:wikipedia.org does slashdot mbytes ug/l gigabytes
word.com murase verb site:en.wikipedia.org facts wiktionary gbytes mg/l kilobytes
msword VMotion digraph Wiki vs wikiquote megabytes MPa kilowatts

wordgames worksheets copula Wikipedia wikia npov gigabits .jpg milligrams
vocabulary Jeanna possessive WIKIPEDIA bio deletion Mb mi2 liter
thesaurus wordsearch acronym WIki define: fark megabyte dvr-ms litres

word? PERSIANS tetragrammation wki website templates kbytes mbar nanometres

are semantic similar to each other since they are both ani-
mals. But compared to {cat, tiger}, {cat, bird} are not such
close as they indicate different animal families. Therefore,
we propose to target the similarity difference of two word
pairs, instead of the similarity of each word pair. The loss of
the proposed pairwise distance regression (PADR) strategy
is given by

L(θ) =
1

2
(oij − tij)2, (5)

where oij = oi − oj is the difference of the output similar-
ity between the i’th word pair and j’th pair, and tij is the
corresponding ground-truth similarity difference.

Stochastic gradient In the learning process, we maximize
(4) or minimize (5) with stochastic gradient. In each itera-
tion, a random sample is selected to make a gradient step:
θ ← θ+λ∂P (θ)

∂θ or θ ← θ−λ∂L(θ)∂θ , where λ is the learning
rate, which is determined adaptively following the imple-
mentation of CBOW1. That is, λ is start with a large value,
e.g., 0.25, and then decreases with the number of iterations
until it is smaller than a threshold. This strategy was ob-
served to be better than using a fixed learning rate.

In our implementation, we set the dimensionalities of all
the pre-trained word embeddings and the final unified word
embedding to be 192. Thus the first hidden layer size is also
192. The middle hidden layer size is parameter that can be
decided using grid-search. The initialization of the network
is according to (Montavon, Orr, and Muller 2012). Besides,
in search ranking, the document embedding pre-trained by
DSSM (Huang et al. 2013) is directly used here as y2 in our
network. Thus we only have to train one side of network in
Figure 1.

Experiments
In the experiments, we first show a case study of the
word embeddings learned from different data sources, and
then evaluate the proposed multi-view word embedding
(MVWE) algorithm on two diverse application tasks: search
ranking and semantic word similarity measuring.

1http://code.google.com/p/word2vec/

Case study of word embedding trained on
individual data source
To pre-train the click-through and user query word embed-
dings, we use a click log training set that includes about 200
million English queries (3 words for each query on aver-
age), each associated with a clicked document (URL). The
obtained results are called CBOW click and CBOW query
respectively. The data used to train word embedding on free
text is the first billion characters from Wikipedia2, and we
call the learned word embedding CBOW wiki.

Table 1 shows the ten most similar words of a few ran-
domly chosen query words, under the metric induced by
different word embeddings. We find from the results that:
1) almost all the similar words returned by CBOW click is
semantically close to the query words, although some are
websites or only have spell difference. The phenomenon
was observed even if more similar words are listed (not
shown due to the limited space). This is because users’ in-
tention and preference has been contained in the learned
word embeddings; 2) CBOW wiki only tends to return the
words that belong to the same class of the query word; 3)
CBOW query can capture users intention to some extent,
but most of the returned nearest words are not related to
the query. Nevertheless, it can find some meaningful words
missed in the other two embeddings, e.g., “powerpoint” for
the query “word”.

Overall, the word embeddings trained on different
sources could be suitable to different tasks. For example,
CBOW click is good for web search, while CBOW wiki
may be appropriate for word clustering. In the next, we show
the results of combining these three word embeddings for
specific tasks using the proposed MVWE framework com-
pared with several baselines.

Experimental setup
In this paper, we assume the word embeddings are pre-
trained, and our aim is to combine them. We thus only
compared to the embedding combination strategies such
as concatenation and regression. Specifically, we compared
MVWE with the following methods in both of the investi-
gated application tasks.

2http://mattmahoney.net/dc/textdata.html

1985

• Single word embedding: using the word embeddings
trained on a single type of data. Particularly, in search
ranking, the query embedding is an average of the query
words’ embeddings. It should be noted that the training of
CBOW click is supervised in search ranking since the click-
through information is utilized, while for CBOW query and
CBOW wiki, the training are both unsupervised.
• CONCAT: singly concatenate the different types of word
embeddings into a long vector, which is used in the same
way as the single word embedding.
• REG: combine the word embeddings by the use of lin-
ear regression, provided that the dimensionalities of dif-
ferent embeddings are the same. For search ranking, sup-
pose there are N training samples, and the averaged con-
text embeddings of different data sources are stacked in a
matrix Zi = [z

(1)
i , . . . , z

(m)
i] ∈ Rd×m for the i’th sam-

ple. Then the objective in search ranking is to minimize
L(α) = 1

2N

∑N
i=1 ‖Ziα − yi‖22 + γ

2 ‖α‖
2
2 w.r.t. α, where

yi is the pre-trained document embedding, α ∈ Rm is the
regression variable to be learned, and γ is a positive trade-
off parameter. The problem can be solved analytically. Then
the query embedding is a linear combination of the averaged
word embeddings trained on different data sources with the
learned weight α.

For word similarity measuring, the objective is to mini-
mize αTHα−tw.r.t α, whereH = 2

N(N−1)
∑
i<j Hij with

each Hij = ZTi1Zi2 − ZTj1Zj2, and t = 2
N(N−1)

∑
i<j tij

with each tij the ground-truth similarity difference of the
i’th and j’th word pair. One solution of this problem is
α =

√
t/λu. Here λ and u are the largest eigenvalue and

the corresponding eigenvector of H .
• AVG: the same as REG, only the weights are the same for
different data sources.

For MVWE, the pre-trained document embedding is di-
rectly utilized as y2 in search ranking. In word similarity
measuring, the average layer can be omitted actually since
there is only one word for each sequence.

Search ranking
The goal of search ranking is to compute relevance scores
between a given query and a set of documents, and then rank
the documents according to these scores. The training set
is the same as in training CBOW click. We test the trained
model on another click log dataset, from which we randomly
sampled 550K frequent queries (FQ), and 600K long tail
queries (TQ) as two subsets. All the data are collected us-
ing a commercial search engine. The relevance between the
query and document are assigned with 5 levels: perfect, ex-
cellent, good, fair, and bad. The performance is evaluated
in terms of normalized discounted cumulative gain (NDCG)
(Järvelin and Kekäläinen 2000), and the NDCG scores at the
1, 3, 5 truncation levels are reported.

We first evaluate MVWE by varying the size of the
training set. The nonlinear hidden layer size is set to be
576=192×3, which is the sum of the input word embed-
ding sizes. The experimental results are shown in Figure 2.
It can be seen that: 1) the NDCG score at higher truncation
level tends to be larger; 2) the performance improves at first

104 105 106 107 108
0.3

0.33

0.36

0.39

0.42

0.45

Training size (number of queries)

FQ

NDCG@1
NDCG@3
NDCG@5

(a)

104 105 106 107 108
0.15

0.17

0.19

0.21

0.23

0.25

Training size (number of queries)

TQ

NDCG@1
NDCG@3
NDCG@5

(b)

Figure 2: Effect of training size (number of queries) on the
two test sets for search ranking.

10 50 100 200 300 400 500 600 700 800
0.25

0.29

0.33

0.37

0.41

0.45

Non−linear hidden layer size

FQ

NDCG@1
NDCG@3
NDCG@5

Figure 3: Effect of nonlinear hidden size for search ranking.

with an increasing training size, and then approach to a fixed
value when the number of queries used is more than 500K.
This indicates that the training time cost of our model is low,
since not very large amount of training data are required to
achieve the best performance.

Then we analyze the parameters of our model. Here, only
the impact of nonlinear hidden layer size is investigated, as
we have fixed the size of other layers and used an adaptive
learning rate. The training size is set to be 10M since it is
observed to perform the best overall in the last experiments.
The results are shown in Figure 3. It can be observed that
the performance improves sharply at first when the number
of hidden units increases, and then almost keeps unchanged
after 200. This again indicates the low cost of the training
process, since only a small number of nonlinear hidden units
are required for training.

Finally we compare MVWE with the baselines. The re-
sults are presented in Table 2. It can be seen that: 1) the
supervised CBOW click is much better than the unsuper-
vised CBOW query and CBOW wiki. This demonstrates the
effectiveness of the word embedding algorithm adaptation
strategy; 2) CBOW query is superior to CBOW wiki on the
FQ set, and they are comparable on the TQ set. This is be-
cause the user query data capture users intention, and thus
is more informative for search than the arbitrary free text;
3) the simple concatenation strategy CONCAT is better than
CBOW query and CBOW wiki, but much worse than the
best performed single word embedding CBOW click; 4) the
average of the three types of input word embeddings AVG
is also worse than CBOW click, while the linear regression

1986

Table 2: NDCG performance of different methods for search
ranking.

FQ (NDCG) TQ (NDCG)
Methods @1 @3 @5 @1 @3 @5

CBOW click 0.362 0.393 0.412 0.217 0.227 0.234
CBOW query 0.145 0.180 0.208 0.077 0.090 0.102
CBOw wiki 0.136 0.169 0.194 0.079 0.092 0.103
CONCAT 0.187 0.208 0.225 0.099 0.108 0.118

REG 0.380 0.414 0.434 0.217 0.226 0.234
AVG 0.350 0.385 0.407 0.195 0.205 0.213

MVWE 0.379 0.414 0.434 0.226 0.234 0.241

strategy REG that learns the combination weights can out-
perform CBOW click significantly on the FQ set. However,
no improvement is observed on the TQ set. This indicates
that the simple linear combination is effective sometimes,
but not stable. In contrast, the proposed MVWE outperforms
CBOW click consistently on both test sets. In particular, we
obtain a 4.7%, 5.3% and 5.3% NDCG improvement at the
truncation level 1, 3, and 5, respectively on the FQ set.

To sum up, CBOW click is the most effective individual
word embedding for search ranking, and better performance
can be obtained by combining all the embeddings using lin-
ear regression and the proposed MVWE algorithm. The con-
catenation strategy fails in this application.

Word similarity measuring
We use the WordSim353 (Finkelstein et al. 2002) dataset,
one of the most popular collection of this kind, to eval-
uate our model for computing semantic word relatedness.
Both the Pearson’s linear correlation coefficient (score based
correlation) and the Spearman’s rank correlation coefficient
(rank based correlation) are utilized as the evaluation crite-
ria (Strube and Ponzetto 2006; Gabrilovich and Markovitch
2007).

The WordSim353 dataset contains 353 word pairs, and
the similarity of each word pair is an average of the scores
assigned by 13-16 subjects. We randomly sampled 300 word
pairs as the training set, and the remaining 53 word pairs are
used for test. We removed the nonlinear hidden layer from
the network due to the limited training data, and actually the
result is bad (data not shown) when it is added.

Similar as in the search ranking task, we first perform a
self-test of our model. The results are shown in Figure 4.
We can see that both the Pearson and Spearman correlation
improve with an increasing number of word pairs used in
general. The tendency indicates a better performance if more
training data are available.

Then we compare MVWE with the baselines. We report
the results in Table 3, where MVWE n means the training
size is n. It can be observed that: 1) CBOW click is supe-
rior to both CBOW query and CBOW wiki. This indicates
that the click-through information is useful for inducing se-
mantic word similarity; 2) the performance of CBOW query
is worse than CBOW wiki since the semantic meaning of
the word cannot be captured due to the lack of structure
and context information; 3) the CONCAT strategy is very

10 50 100 150 200 250 300
0.62

0.64

0.66

0.68

0.7

0.72

Training size (number of word pairs)

Pearson Correlation
Spearman Correlation

Figure 4: Effect of training size (number of word pairs) for
word similarity measuring.

Table 3: Comparsion of different methods for word similar-
ity measuring.

Methods Pearson Correlation Spearman Correlation
CBOW click 0.594 0.594
CBOW query 0.483 0.484
CBOw wiki 0.559 0.572
CONCAT 0.650 0.679

REG 0.534 0.529
AVG 0.531 0.580

MVWE 100 0.663 0.680
MVWE 300 0.684 0.703

competitive in this task and outperforms the other base-
lines significantly; 4) the REG strategy performs worse than
CBOW click and CBOW wiki, and thus fails to combine
the different word embeddings. This again indicates that the
simple linear combination strategy is unreliable for word
embedding combination. In contrast, the MVWE framework
tends to outperform all of the other methods if the training
size is more than 100, and the improvement is significantly
when all the training word pairs are utilized.

To sum up, CBOW click and CBOW wiki are both effec-
tive for word similarity measuring, and we can obtain much
better performance using the concatenation and MVWE
methods. The linear regression strategy fails in this appli-
cation.

Conclusion
This paper presents a two-side neural network architecture
that can integrate multiple word embeddings for very dif-
ferent application tasks, such as search ranking and seman-
tic word relatedness measuring. The input word embeddings
are pre-trained by adapting the existed word embedding al-
gorithm for different data sources. The network is able to be
fine tuned for the tasks of interest, and also output a unified
word embedding for each of them. The training cost of the
network is low since neither much training data nor large
nonlinear hidden layer size is needed. The performance of
the concatenation and linear regression strategy, which may
fail on some tasks, are not robust for combining word em-
beddings. In contrast, the proposed framework outperforms
the baselines consistently for all the investigated tasks. The
future work may be to introduce more word embedding al-

1987

gorithms for adaptation and combination, and include more
application tasks for verification.

Acknowledgments
This work is partially supported by NBRPC
2011CB302400, NSFC 60975014, 61121002,
JCYJ20120614152136201, NSFB 4102024.

References
Bengio, Y.; Ducharme, R.; Vincent, P.; and Jauvin, C. 2003.
A neural probabilistic language model. Journal of Machine
Learning Research 3:1137–1155.
Bengio, Y.; Courville, A.; and Vincent, P. 2013. Repre-
sentation learning: A review and new perspectives. IEEE
Transactions on Pattern Analysis and Machine Intelligence
35(8):1798–1828.
Bengio, Y. 2009. Learning deep architectures for ai. Foun-
dations and trends in Machine Learning 2(1):1–127.
Brown, P. F.; Desouza, P. V.; Mercer, R. L.; Pietra, V. J. D.;
and Lai, J. C. 1992. Class-based n-gram models of natural
language. Computational Linguistics 18(4):467–479.
Collobert, R., and Weston, J. 2008. A unified architecture
for natural language processing: Deep neural networks with
multitask learning. In International Conference on Machine
Learning, 160–167.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural language
processing (almost) from scratch. The Journal of Machine
Learning Research 12:2493–2537.
Dhillon, P.; Foster, D. P.; and Ungar, L. H. 2011. Multi-view
learning of word embeddings via cca. In Advances in Neural
Information Processing Systems, 199–207.
Dumais, S. T.; Furnas, G. W.; Landauer, T. K.; Deerwester,
S.; and Harshman, R. 1988. Using latent semantic analysis
to improve access to textual information. In SIGCHI confer-
ence on Human factors in computing systems, 281–285.
Finkelstein, L.; Gabrilovich, E.; Matias, Y.; Rivlin, E.;
Solan, Z.; Wolfman, G.; and Ruppin, E. 2002. Placing
search in context: The concept revisited. ACM Transactions
on Information Systems 20(1):116–131.
Gabrilovich, E., and Markovitch, S. 2007. Computing se-
mantic relatedness using wikipedia-based explicit semantic
analysis. In International Joint Conference on Artificial In-
telligence, 1606–1611.
Huang, P.-S.; He, X.; Gao, J.; Deng, L.; Acero, A.; and Heck,
L. 2013. Learning deep structured semantic models for web
search using clickthrough data. In ACM international con-
ference on Conference on Information & Knowledge Man-
agement, 2333–2338.
Järvelin, K., and Kekäläinen, J. 2000. Ir evaluation meth-
ods for retrieving highly relevant documents. In ACM SIGIR
conference on Research and development in information re-
trieval, 41–48.
Krasnopolsky, V. M., and Lin, Y. 2012. A neural net-
work nonlinear multimodel ensemble to improve precipita-

tion forecasts over continental us. Advances in Meteorology
2012(doi:10.1155/2012/649450).
Kung, S.-Y., and Hwang, J.-N. 1998. Neural networks for
intelligent multimedia processing. Proceedings of the IEEE
86(6):1244–1272.
Lin, D., and Wu, X. 2009. Phrase clustering for discrimina-
tive learning. In Joint Conference of the Annual Meeting of
the ACL and the International Joint Conference on Natural
Language Processing, 1030–1038.
Luo, Y.; Tao, D.; Xu, C.; Li, D.; and Xu, C. 2013a. Vector-
valued multi-view semi-supervised learning for multi-label
image classification. In AAAI Conference on Artificial Intel-
ligence, 647–653.
Luo, Y.; Tao, D.; Xu, C.; Liu, H.; and Wen, Y. 2013b. Mul-
tiview vector-valued manifold regularization for multilabel
image classification. IEEE Transactions on Neural Net-
works and Learning Systems 24(5):709–722.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013a.
Efficient estimation of word representations in vector space.
In ICLR Workshop.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013b. Distributed representations of words and
phrases and their compositionality. In Advances in Neural
Information Processing Systems, 3111–3119.
Mnih, A., and Hinton, G. 2007. Three new graphical models
for statistical language modelling. In International Confer-
ence on Machine Learning, 641–648.
Mnih, A., and Hinton, G. E. 2008. A scalable hierarchical
distributed language model. In Advances in Neural Informa-
tion Processing Systems, 1081–1088.
Montavon, G.; Orr, G. B.; and Muller, K.-R. 2012. Neural
networks: tricks of the trade (2nd edition). Springer.
Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; and Ng,
A. 2011. Multimodal deep learning. In International Con-
ference on Machine Learning, 689–696.
Srivastava, N., and Salakhutdinov, R. 2012. Multimodal
learning with deep boltzmann machines. In Advances in
Neural Information Processing Systems, 2231–2239.
Strube, M., and Ponzetto, S. P. 2006. Wikirelate! computing
semantic relatedness using wikipedia. In AAAI Conference
on Artificial Intelligence, 1419–1424.
Turian, J.; Ratinov, L.; and Bengio, Y. 2010. Word repre-
sentations: a simple and general method for semi-supervised
learning. In Annual Meeting of the Association for Compu-
tational Linguistics, 384–394.

1988

