
Online Classification Using a Voted RDA Method

Tianbing Xu
Computer Science

University of California, Irvine

Jianfeng Gao, Lin Xiao
Microsoft Research

Redmond, WA

Amelia C. Regan
Computer Science

University of California, Irvine

Abstract

We propose a voted dual averaging method for on-
line classification problems with explicit regularization.
This method employs the update rule of the regularized
dual averaging (RDA) method proposed by Xiao, but
only on the subsequence of training examples where a
classification error is made. We derive a bound on the
number of mistakes made by this method on the training
set, as well as its generalization error rate. We also intro-
duce the concept of relative strength of regularization,
and show how it affects the mistake bound and gener-
alization performance. We examine the method using
`1-regularization on a large-scale natural language pro-
cessing task, and obtained state-of-the-art classification
performance with fairly sparse models.

Introduction
Driven by Internet applications, more and more large scale
machine learning problems are emerging and require effi-
cient online solutions. An example is online email spam
filtering. Each time an email arrives, we need to decide
whether it is a spam or not; after a decision is made, we
may receive the true value feedback information from users,
and thus update the hypothesis and continue the classifica-
tion in an online fashion. The low computational cost of on-
line methods such as stochastic gradient descent is associ-
ated with their slow convergence rate, which effectively in-
troduces implicit regularization and is possible to prevent
overfitting for very large scale training data (Zhang 2004;
Bottou and Bousquet 2008).

To obtain better generalization performance, or to induce
a particular structure (such as sparsity) into the solution, it
is often desirable to add simple regularization terms to the
loss function of a learning problem. In the online setting,
Langford et al. (Langford, Li, and Zhang 2009) proposed
a truncated gradient method to induce sparsity in the on-
line gradient method for minimizing convex loss functions
with `1-regularization, Duchi and Singer (Duchi and Singer
2009) applied forward-backward splitting method to work
with more general regularizations, and Xiao (Xiao 2010) ex-
tended Nesterov’s work (Nesterov 2009) to develop regular-
ized dual averaging (RDA) methods. In the case of `1 reg-
ularization, RDA often generates significantly more sparse
solutions than other online methods, which match the spar-

sity results of batch optimization methods. Recently, Lee
and Wright (Lee and Wrigh 2012) show that under suit-
able conditions, RDA is able to identify the low-dimensional
sparse manifold with high probability.

The aforementioned work provide regret analysis or con-
vergence rate in terms of reducing the objective function in
a convex optimization framework. For classification prob-
lems, such an objective function is a weighted sum of a loss
function (such as hinge or logistic loss) and a regularization
term (such as `2 or `1 norm). Since the loss function is a con-
vex surrogate for the 0-1 loss, it is often possible to derive
a classification error bound based on their regret bound or
convergence rate. However, this connection between regret
bound and error rate can be obfuscated by the additional reg-
ularization term.

In this paper, we propose a voted RDA (vRDA) method for
regularized online classification, and derive its error bounds
(i.e., number of mistakes made on the training set), as well as
its generalization performance. We also introduce the con-
cept of relative strength of regularization, and show how it
affects the error bound and generalization performance.

The voted RDA method shares a similar structure as the
voted perceptron algorithm (Freund and Schapire 1999),
which is a combination of the perceptron algorithm (Rosen-
blatt 1958) and the leave-one-out online-to-batch conversion
method (Helmbold and Warmuth 1995). More specifically,
in the training phase, we perform the update of the RDA
method only on the subsequence of examples where a pre-
diction mistake is made. In the testing phase, we follow the
deterministic leave-one-out approach, which labels an un-
seen example with the majority voting of all the predictors
generated in the training phase. In particular, each predictor
is weighted by the number of examples it survived to predict
correctly in the training phase.

The key difference between the voted RDA method and
the original RDA method (Xiao 2010) is that voted RDA
only updates its predictor when there is a classification er-
ror. In addition to numerous advantages in terms of compu-
tational learning theory (Floyd and Warmuth 1995), it can
reduce the computational cost involved in updating the pre-
dictor. Moreover, the scheme of update only on errors allows
us to derive a bound on the number of classification errors
that does not depend on the total number of examples.

Our analysis on the number of mistakes made by the al-

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2170

gorithm is based on the regret analysis of the RDA method
(Xiao 2010). The result depends on the relative strength of
regularization, which is captured by the difference between
the size of the regularization term of an (unknown) optimal
predictor, and the average size of the online predictors gen-
erated by the voted RDA method. In absense of the regu-
larization term, our results matches that of the voted per-
ceptron algorithm (up to a small constant). Moreover, our
notion of relative strength of regularization and error bound
analysis also applies to the voted versions of other online al-
gorithms, including the forward-backward splitting method
(Duchi and Singer 2009).

Regularized Online Classification
In this paper, we mainly consider binary classification prob-
lems. Let {(x1, y1), . . . , (xm, ym)} be a set of training ex-
amples, where each example consists of a feature vector
xi ∈ Rn and a label yi ∈ {+1,−1}. Our goal is to learn
a classification function f : Rn → {+1,−1} that attains
a small number of classification errors. For simplicity, we
focus on the linear predictor

f(w, x) = sign(wTx),

where w ∈ Rn is a weight vector, or predictor.
In a batch learning setting, we find the optimal predictorw

that minimizes the following empirical risk

Remp(w) =
1

m

m∑
i=1

`(w, zi) + λΨ(w),

where `(w, zi) is a loss function at sample zi = (xi, yi),
and Ψ(w) is a regularization function to prevent overfitting
or induce a particular structure (e.g., `1 norm for sparsity).
If we use the 0-1 loss function

`(w, z) = 1
(
y = f(w, x)

)
=

{
1 if y = f(w, x)
0 otherwise

then the total loss
∑m
i=1 `(w, zi) is precisely the total num-

ber of classification errors made by the predictor w.
However, the 0-1 loss function is non-convex and thus

it is very difficult to optimize. In practice, we often
use a surrogate convex function, such as the hinge loss
`(w, z) = max{0, (1− ywTx)}, the logistic loss `(w, z) =
log2(1 + exp(−ywTx)), or the exponential loss `(w, z) =
exp(−ywTx). We note that these surrogate functions are up-
per bounds of the 0-1 loss, therefore the corresponding total
loss

∑m
i=1 `(w, z) is an upper bound on the total number of

classification errors.
In a online classification setting, the training examples

{z1, z2, . . . , zt, . . .} are given one at a time, and accordingly,
we generate a sequence of hypotheses wt one at a time.
At each time t, we make a prediction f(wt, xt) based on
the previous hypothesis wt, then calculate the loss `(wt, zt)
based on the true label yt. The next hypothesis wt+1 is up-
dated according to some rules, e.g., online gradient descent
(Zinkevich 2003), based on the information available up to
time t. To simplify notation in the online setting, we use a
subscript to indicate the loss function at time t, i.e., we write
`t(wt) = `(wt, zt) henceforth.

The Voted RDA Method

Algorithm 1 The voted RDA method (training)
input: training set {(x1, y1), . . . , (xm, ym)},

and number of epochs N
initialize: k ← 1, w1 ← 0, c1 ← 0, s0 ← 0
repeat

for i = 1, . . . ,m do
compute prediction: ŷ ← f(wk, xi)
if ŷ = yi then
ck ← ck + 1

else
compute subgradient gk ∈ ∂`i(wk)
sk ← sk−1 + gk
update wk+1 according to Eq. (1)
ck+1 ← 1
k ← k + 1

end if
end for

until N times
output: number of mistakes M , and a list of

predictors {(w1, c1), . . . , (wM , cM)}

The voted RDA method is described in Algorithm 1 and
Algorithm 2, for training and testing respectively. The struc-
ture of the algorithm description is very similar to the voted
perceptron algorithm (Freund and Schapire 1999). In the
training phase (Algorithm 1), we go through the training
set N times, and only update the predictor when it makes
a classification error. Each predictor wk is associated with
a counter ck, which counts the number of examples it pro-
cessed correctly. These counters are then used in the testing
module (Algorithm 2) as the voting weights to generate a
prediction on an unlabeled example.

The update rule used in Algorithm 1 takes the same form
as the RDA method (Xiao 2010):

wk+1 = arg min
w

{
1

k
sTkw + λΨ(w) +

βk
k
h(w)

}
, (1)

where Ψ(w) is the convex regularization function, h(w) is
an auxiliary strongly convex function, and

βk = η
√
k, ∀ k ≥ 1, (2)

where η > 0 is a parameter that controls the learning rate.
Note that k is the number of classification mistakes, sk is the
summation of subgradients for the k samples with classifi-
cation mistakes, and ck is the counter of survival times for
the predictor wk.

For large scale problems, storing the list of predictors
{(w1, c1), . . . , (wM , cM)} and computing the majority vote
in (3) can be very costly. For linear predictors (i.e., ŷ =
sign(wTx)), we can replace the majority vote with a single
prediction made by the weighted average predictor w̃M =

(1/M)
∑M
k=1 ckwk,

ŷ = sign
(
w̃TMx

)
= sign

(
1

M

M∑
k=1

ck(wTk x)

)
.

2171

Algorithm 2 The voted RDA method (testing)
given: weighted predictors {(w1, c1), . . . , (wM , cM)}
input: an unlabeled instance x
output: a predicted label ŷ given by:

ŷ = sign
(∑M

k=1 ck f(wk, x)
)

(3)

In practice, this weighted average predictor generates very
similar robust performance as the majority vote (Freund and
Schapire 1999), and saves lots of memory and computa-
tional cost.

Bound On The Number Of Mistakes
We provide an analysis of the voted RDA method for the
case N = 1 (i.e., going through the training set once). The
analysis parallels that for the voted perceptron algorithm
given in Freund and Schapire (Freund and Schapire 1999).
In this section, we bound the number of mistakes made by
the voted RDA method through its regret analysis. Then in
the next section, we give its expected error rate in an online-
to-batch conversion setting.

First, we recognize that the voted RDA method is equiva-
lent to running the RDA method (Xiao 2010) on the subse-
quence of training examples where a classification mistake
is made. Let M the number of prediction mistakes made by
the algorithm after processing the m training examples, and
i(k) denote the index of the example on which the k-th mis-
take was made (by wk). The regret of the algorithm, with
respect to a fixed vector w, is defined only on the examples
with prediction errors:

RM (w) =

M∑
k=1

(
`i(k)(wk) + Ψ(wk)

)
−

M∑
k=1

(
`i(k)(w) + Ψ(w)

)
.

(4)

According to Theorem 1 of Xiao (Xiao 2010), the RDA
method (1) has the following regret bound:

RM (w) ≤ βMh(w) +
G2

2

M∑
k=1

1

βk
,

where G is an upper bound on the norm of the subgradients,
i.e., ‖gk‖2 ≤ G for all k = 1, . . . ,M . For simplicity of
presentation, we restrict to the case of h(w) = (1/2)‖w‖22
in this paper. If we choose βk as in (2), then, by Corollary 2
of Xiao (Xiao 2010),

RM (w) ≤
(
η

2
‖w‖22 +

G2

η

)√
M.

This bound is minimized by setting η =
√

2G/‖w‖2, which
results in

RM (w) ≤
√

2G‖w‖2
√
M. (5)

To bound the number of mistakes M , we use the fact that
the loss functions `i(w) are surrogate (upper bounds) for the
0-1 loss. Therefore,

M ≤
M∑
k=1

`i(k)(wk).

Combining the above inequality with the definition of regret
in (4) and the regret bound (5), we have

M ≤
M∑
k=1

`i(k)(w) +Mλ∆(w) +
√

2G‖w‖2
√
M. (6)

where ∆(w) is the relative strength of regularization, de-
fined as

λ∆(w) = Ψ(w)− 1

M

M∑
k=1

Ψ(wk). (7)

We can also further relax the bound by replacing ∆(w) with
∆̄(w), defined as

λ∆̄(w) = Ψ(w)−Ψ(w̄M),

where w̄M = 1
M

∑M
k=1 wk is the (unweighted) average of

the predictors generated by the algorithm. Note that by con-
vexity of Ψ, we have ∆(w) ≤ ∆̄(w).

Analysis For The Separable Case
Our analysis for the separable case is based on the hinge loss
`i(w) = max{0, 1− yi(wTxi)}.
Assumption 1 There exists a vector u such that yi(uTxi) ≥
1 for all i = 1, . . . ,m.

This is the standard separability with large margin as-
sumption. Under this assumption, we have

M∑
k=1

`i(k)(u) =
M∑
k=1

max{0, 1− yi(k)(u
Txi(k))} = 0

for any M > 0 and any subsequence {i(k)}Mi=1. The margin
of separability is defined as γ = 1/‖u‖2. For convenience,
we also let

R = max
i=1,...,m

‖xi‖2 .

Then we can set G = R since for hinge loss, −yixi is the
subgradient of `i(w), and we have ‖ − yixi‖2 = ‖xi‖2 ≤
R for i = 1, . . . ,m. We have the following results under
Assumption 1:

If λ = 0 (the case without regularization), then M ≤√
2G‖u‖2

√
M , which implies

M ≤ 2G2‖u‖22 = 2

(
R

γ

)2

.

This is very similar to the mistake bound for the voted per-
ceptron (Freund and Schapire 1999), with an extra factor of
two. Note that this bound is independent of the dimension n
and the number of examples m. It also holds for N > 1
(multiple passes over the data).

If λ > 0, the mistake bound also depends on ∆(u), which
is the difference between Ψ(u) and the unweighted average
of Ψ(w1), . . . ,Ψ(wM). More specifically,

M ≤Mλ∆(u) +
√

2R‖u‖2
√
M. (8)

Note that Ψ(w1), . . . ,Ψ(wM) tend to be small for large val-
ues of λ (more regularization), and tend to be large for small
values of λ (less regularization). We discuss two scenarios:

2172

The under-regularization case: ∆(u) < 0. This happens
if the regularization parameter λ is chosen too small, and the
generated vectors w1, . . . , wM on average has a larger value
of Ψ than Ψ(u). In this case, we have

M ≤ 2

(
1

1 + λ|∆(u)|

)2(
R

γ

)2

.

So we have a smaller mistake bound than the case of “per-
fect” regularization (when ∆(u) = 0). This effect may be
related to over-fitting on the training set.

The over-regularization case: ∆(u) > 0. This happens if
the regularization parameter λ is chosen too large, and the
generated vectors w1, . . . , wM on average has a smaller Ψ
value than Ψ(u). If in addition λ|∆(u)| < 1, then we have

M ≤ 2

(
1

1− λ|∆(u)|

)2(
R

γ

)2

,

which can be much larger than the case of “perfect” regu-
larization (meaning ∆(u) = 0). If λ∆(u) ≥ 1, then the in-
equality (8) holds trivially and does not give any meaningful
mistake bound.

Analysis For The Inseparable Case
We start with the inequality (6). To simplify notation, let
L(u) denote the total loss of an arbitrary vector u over the
subsequence i(k), k = 1, . . . ,M , i.e.,

L(u) =

M∑
k=1

`i(k)(u). (9)

Then we have

M ≤ L(u) +Mλ∆(u) +
√

2R‖u‖2
√
M. (10)

Our analysis is similar to the error analysis for the percep-
tron in (Shalev-Shwartz 2011).

If λ = 0 (the case without regularization), we have

M ≤ L(u) +
√

2R‖u‖2
√
M,

which results in

M ≤
(√

L(u) +
√

2R‖u‖2
)2

.

Note that this bound only makes sense if the total loss L(u)
is not too large.

If λ > 0, the mistake bound depends on ∆(u), the relative
strength of regularization.

The under-regularization case: ∆(u) < 0. we have

M ≤

(√
L(u)

1 + λ|∆(u)|
+

√
2R‖u‖2

1 + λ|∆(u)|

)2

.

The over-regularization case: ∆(u) > 0. If λ|∆(u)| < 1,
we have

M ≤

(√
L(u)

1− λ|∆(u)|
+

√
2R‖u‖2

1− λ|∆(u)|

)2

.

Again, if λ∆(u) ≥ 1, the inequality (10) holds trivially and
does not lead to any meaningful bound.

Theorem 1 Let {(x1, y1), . . . , (xm, ym)} be a sequence of
labeled examples with ‖xi‖2 ≤ R. Suppose the voted RDA
method (Algorithm 1) makesM prediction errors on the sub-
sequence i(1), . . . , i(M), and generates a sequence of pre-
dictors w1, . . . , wM . For any vector u, let L(u) be the total
loss defined in (9), and ∆(u) be the relative strength of reg-
ularization defined in (7). If λ∆(u) < 1, then the number of
mistakes M is bounded by

M ≤

(√
L(u)

1− λ∆(u)
+

√
2R‖u‖2

1− λ∆(u)

)2

.

In particular, if the training set satisfies Assumption 1, then
we have

M ≤ 2

(
1

1− λ∆(u)

)2(
R

γ

)2

,

where γ = 1/‖u‖2 is the separation margin.
The above theorem is stated in the context of using the

hinge loss. However, the analysis for the inseparable case
holds for other convex surrogate functions as well, including
the hinge loss, logistic loss and exponential loss. We only
need to replace R with a constant G, which satisfies G ≥
‖gk‖2 for all k = 1, . . . ,M .

For a strongly convex regularizer such as Ψ(w) =
(λ/2)‖w‖22, the regret bound is on the order of logM (Xiao
2010). Thus, for any hypothesis u, the training error bound
can be derived from

M(1− λ∆(u)) ≤ G‖u‖2 logM + L(u).

Online SVM is a special case following the above bound
with hinge loss and `2 regularizer.

Online-To-Batch Conversion
The training part of the voted RDA method (Algorithm 1) is
an online algorithm, which makes a small number of mis-
takes when presented with examples one by one (see the
analysis in Section). In a batch setting, we can use this al-
gorithm to process the training data one by one (possibly
going through the data multiple times), and then generate a
hypothesis which will be evaluated on a separate test set.

Following Freund and Schapire (Freund and Schapire
1999), we use the deterministic leave-one-out method for
converting an online learning algorithm into a batch learn-
ing algorithm. Here we give a brief description. Suppose we
havem training examples and an unlabeled instance, all gen-
erated i.i.d. at random. Then, for each r ∈ {0,m}, we run
the online algorithm on a sequence of r + 1 examples con-
sisting of the first r examples in the training set and the last
one being the unlabeled instance. This produces m+ 1 pre-
dictions for the unlabeled instance, and we take the majority
vote of these predictions.

It is straightforward to see that the testing module of the
voted RDA method (Algorithm 2) outputs exactly such a
majority vote, hence the name “voted RDA.” Our result is
a direct corollary of a theorem from Freund and Schapire
(Freund and Schapire 1999), which is a result of the theory
developed in Helmbold and Warmuth (Helmbold and War-
muth 1995).

2173

Table 1: Comparing performance of different algorithms

Algorithms Precision Recall F-Score NNZ
Baseline 0.8983 0.8990 0.8986 N.A.
Perceptron 0.9191 0.9143 0.9164 939 K
TG (hinge) 0.9198 0.9127 0.9172 775 K
TG (log) 0.9190 0.9139 0.9165 485 K
vRDA (hinge) 0.9211 0.9150 0.9175 932 K
vRDA (log) 0.9204 0.9144 0.9174 173 K

Corollary 1 Assume all examples are generated i.i.d. at
random. Suppose that we run Algorithm 1 on a sequence
of examples {(x1, y1), . . . , (xm+1, ym+1)} and M mistakes
occur on examples with indices i(1), . . . , i(M). Let ∆(u)
and L(u) be defined as in (7) and (9), respectively.

Now suppose we run Algorithm 1 on m examples
{(x1, y1), . . . , (xm, ym)} for a single epoch. Then the prob-
ability that Algorithm 2 does not predict ym+1 on the test
instance xm+1 is at most

2

m+1
E

 inf
u: 1−λ∆(u)>0

(√
L(u)

1−λ∆(u)
+

√
2R‖u‖2

1−λ∆(u)

)2
 .

(The above expectation E[·] is over the choice of all m + 1
random examples.)

Experiments On Parse Reranking
Parse reranking has been widely used as a test bed when
adapting machine learning algorithms to natural language
processing (NLP) tasks; see, e.g., Collins (Collins 2000),
Charniak and Johnson (Charniak and Johnson 2005), Gao et
al. (Gao et al. 2007) and Andrew and Gao (Andrew and Gao
2007). Here, we briefly describe parse reranking as an online
classification problem, following Collins (Collins 2000).

We follow the experimental paradigm of parse reranking
outlined in Charniak and Johnson (Charniak and Johnson
2005). We used the same generative baseline model for gen-
erating candidate parsers, and nearly the same feature set,
which includes the log probability of a parse according to
the baseline model and 1,219,272 additional features. We
trained the predictor on Sections 2-19 of the Penn Treebank
(Marcus, Santorini, and Marcinkiewicz 1993), used Section
20-21 to optimize training parameters, including the regular-
ization weight λ and the learning rate η, and then evaluated
the predictors on Section 22. The training set contains 36K
sentences, while the development set and the test set have 4K
and 1.7K, respectively. Performance of parsing reranking is
measured with the PARSEVAL metric, i.e., F-Score over la-
belled brackets. For each epoch, we have the F-Score based
on the corresponding weights learned from these samples.
We use the weighted average of all the predictors generated
by the algorithm as the final predictor for testing.

Comparison with Perceptron and TG
Our main results are summarized in Tables 1, the F-Score

and NNZ are averaged over the results of 20 epoches of
online classification. The baseline results are obtained by

(a) Hinge loss

(b) Log loss

Figure 1: Different sparse feature structure by different reg-
ularization λ for vRDA with hinge and log losses. The x axis
is the number of samples, and the y axis shows the NNZ.

the parser in Charniak (Charniak 2000). The implementa-
tion of perceptron follows the averaged perceptron algorithm
(Collins 2002). For voted RDA, we report results of the pre-
dictors trained using the parameter settings tuned on the de-
velopment set. We used η = 0.05 and λ = 1e− 5 for hinge
loss, and η = 1000 and λ = 1e−4 for log loss. Results show
that compared to perceptron, voted RDA achieves similar F-
Scores with more sparse weight vectors. For example, using
log loss we are able to achieve an F-score of 0.9174 with
only 14% of features. TG is the truncated gradient method
(Langford, Li, and Zhang 2009); our vRDA is a better choice
than TG in terms of the classification performance and spar-
sity, especially for log loss.

Sparsity and Performance Trade Off
Since its ability to learn a sparse structured weight vector

is an important advantage of voted RDA, we exam in de-
tail how the number of non-zero weights changes during the
course of training in Figure 1. In vRDA, the regularization
parameter λ controls the model sparsity. For a stronger `1
regularizer with large values of λ, it ends up with a sim-
pler model with fewer number of nonzero (NNZ) feature
weights; for a weaker regularizer, we will get a more com-
plex model with many more nonzero features weights. From
the Figure 1, we may observe the convergence of the online

2174

Figure 2: Trade off between the model sparsity and classifi-
cation accuracy for vRDA with hinge and log losses. The x
axis is the ratio of number of nonzero to the overall 1.2 M
features; y axis is the F-Score.

Figure 3: Performance comparisons of single and average
predctions for vRDA.

learning along with the number of samples. With a relatively
larger value of λ, the simpler model is easy to converge
to stationary states with a small number of nonzero fea-
ture weights; while for a smaller λ, we have more nonzero
feature weights and it will take many more samples for the
model to reach stable states.

Figure 2 illustrates the trade-off between model sparsity
and classification performance when we adjust the regular-
ization parameter λ. For hinge loss, with a larger λ, we get
more sparse model at the price of a worse F-Score. For the
log loss, as is showed in Figure 2, it is able to prevent over-
fitting to some extent. On average, it achieves the best classi-
fication performance with average F-Score 0.9174 with the
173K (out of 1.2M) feature chosen by the sparse predictor.

Single vs Average Prediction
To investigate where the performance gain comes from,

we compare the predictions of vRDA using a single weight
at the last sample of each epoch, and the averaged weights
learned from all the training samples. In Figure 3, we plot the
mean and variance bars with the corresponding predictions
based on weights trained on 10 epoches. For both Hinge

Figure 4: Performance comparisons of RDA and vRDA.

and Log losses, the average predictions have lower variance
and better F-Score compared to their single predictions. The
large variance for single predictions of Log loss implies that
the predictions are quite inconsistent by different epoches;
thus average predictions is highly desired here.

Conservative Updates
Here, in Figure 4 we compare the performance of RDA

and vRDA to illustrate the trade-off with conservative up-
dates with mean and variance bars based on 10 epoches. For
Hinge loss, the conservative updates (vRDA) are necessary
as the hinge loss is nonzero when there is a classification
mistake; thus vRDA has better F-Scores. While for Log loss,
RDA is better as even when there is a classification mistake,
we still have a non-zero loss and need to update the weights
accordingly. Another gain by conservative updates comes
from a computational perspective. For vRDA, the frequency
ratio of updating weights is proportional to the error rate of
RDA. From our experiments, the training time of vRDA is
about 89.7% for Hinge loss and 87.2% for Log loss of RDA.
These percentages are not the error rate as there are extra
common computations involved in calculating that.

Conclusion And Discussions
In this paper, we propose a voted RDA (vRDA) method to
address online classification problems with explicit regular-
ization. This method updates the predictor only on the sub-
sequence of training examples where a classification error
is made. In addition to significantly reducing the computa-
tional cost involved in updating the predictor, this allows us
to derive a mistake bound that does not depend on the total
number of examples. We also introduce the concept of rel-
ative strength of regularization, and show how it affects the
mistake bound and the generalization performance. Finally,
our algorithm obtained state-of-the-art classification perfor-
mance with fairly sparse models for parse reranking task.

Our analysis on mistake bound is based on the regret anal-
ysis of the RDA method (Xiao 2010). In fact, our notion of
relative strength of regularization and error bound analysis
also applies to the voted versions of other online algorithms
that admit a similar regret analysis, including the forward-
backward splitting method in (Duchi and Singer 2009).

2175

Acknowledgments
This work was supported by Microsoft Research internship
and a UCI ICS Deans Fellowship. Special thanks for insight-
ful discussions with Guibo Ye and Qiang Liu.

References
Andrew, G., and Gao, J. 2007. Scalable training of l1-
regularized log-linear models. In Proceedings of the 24th
International Conference on Machine learning(ICML 07),
33–40.
Bottou, L., and Bousquet, O. 2008. The tradeoffs of large
scale learning. In Platt, J.; Koller, D.; Singer, Y.; and Roweis,
S., eds., Advances in Neural Information Processing Systems
20. Cambridge, MA: MIT Press. 161–168.
Charniak, E., and Johnson, M. 2005. Coarse-to-fine n-best
parsing and maxent discriminative reranking. In Proceed-
ings of the 43rd Annual Meeting on Association for Compu-
tational Linguistics(ACL 05), 173–180.
Charniak, E. 2000. A maximum-entropy-inspired parser. In
Proceedings of the 1st North American chapter of the Asso-
ciation for Computational Linguistics conference (NAACL
2000), 132–139.
Collins, M. 2000. Discriminative re-ranking for natural
language parsing. In Proceedings of the 17th International
Conference on Machine learning(ICML), 175–182.
Collins, M. 2002. Discriminative training methods for hid-
den markov models: theory and experiments with perceptron
algorithms. In Proceedings of the ACL-02 conference on
Empirical Methods in Natural Language Processing, 1–8.
Duchi, J., and Singer, Y. 2009. Efficient online and batch
learning using forward backward splitting. Journal of Ma-
chine Learning Research 10:2873–2898.
Floyd, S., and Warmuth, M. K. 1995. Sample compression,
learnability, and the vapnik-chervonenkis dimension. Ma-
chine Learning 21(3):269–304.
Freund, Y., and Schapire, R. E. 1999. Large margin classi-
fication using the perceptron algorithm. Machine Learning
37(3):227–296.
Gao, J.; Andrew, G.; Johnson, M.; and Toutanova, K. 2007.
A comparative study of parameter estimation methods for
statistical natural language processing. In Annual Meeting of
the Association for Computational Linguistics (ACL), 824–
831.
Helmbold, D. P., and Warmuth, M. K. 1995. On weak learn-
ing. Journal of Computer and System Sciences 50:551–573.
Langford, J.; Li, L.; and Zhang, T. 2009. Sparse online
learning via truncated gradient. Journal of Machine Learn-
ing Research 10:777–801.
Lee, S., and Wrigh, S. J. 2012. Manifold identication in dual
averaging for regularized stochastic online learning. Journal
of Machine Learning Research 13:1705–1744.
Marcus, M. P.; Santorini, B.; and Marcinkiewicz, M. A.
1993. Building a large annotated corpus of english: The
Penn Treebank. Computational Linguistics 19(2):313–330.

Nesterov, Y. 2009. Primal-dual subgradient methods for
convex problems. Mathematical Programming 120:221–
259.
Rosenblatt, F. 1958. The perceptron: a probabilistic model
for information storage and organization in the brain. Psy-
chological Review 65:386–407.
Shalev-Shwartz, S. 2011. Online learning and online convex
optimization. Foundations and Trends in Machine Learning
4(2):107–194.
Xiao, L. 2010. Dual averaging methods for regularized
stochastic learning and online optimization. Journal of Ma-
chine Learning Research 11:2543–2596.
Zhang, T. 2004. Solving large scale linear prediction prob-
lems using stochastic gradient descent algorithms. In Inter-
national Conference on Machine learning (ICML 04), 116–
123.
Zinkevich, M. 2003. Online convex programming and gen-
eralized infinitesimal gradient ascent. In International Con-
ference on Machine Learning (ICML03), 928–936.

2176

