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Abstract
Semi-supervised kernel design is an essential step for obtain-
ing good predictive performance in semi-supervised learning
tasks. In the current literatures, a large family of algorithms
builds the new kernel by using the weighted average of pre-
defined base kernels. While optimal weighting schemes have
been studied extensively, the choice of base kernels received
much less attention. Many methods simply adopt the empiri-
cal kernel matrices or its eigenvectors. Such base kernels are
computed irrespective of class labels and may not always re-
flect useful structures in the data. As a result, in case of poor
base kernels, the generalization performance can be degraded
however hard their weights are tuned. In this paper, we pro-
pose to construct high-quality base kernels with the help of
label information to globally improve the final target align-
ment. In particular, we devise label-aware kernel eigenvec-
tors under the framework of semi-supervised eigenfunction
extrapolation, which span base kernels that are more useful
for learning. Such base kernels are individually better aligned
to the learning target, so their mixture will more likely gen-
erate a good classifier. Our approach is computationally ef-
ficient, and demonstrates encouraging performance in semi-
supervised classification and regression.

Introduction
Semi-supervised learning (SSL) is a useful learning sce-
nario where availability of unlabeled samples is used to
boost the learning performance with only limited super-
vision. Among various directions that have been pursued,
for example, graph based algorithms (Belkin, Niyogi, and
Sindhwani 2006)(Kulis et al. 2005), low-density separation
(Chapelle and Zien 2005), transductive SVM (Collobert et
al. 2006)(Melacci and Belkin 2011)(Joachims 1999), SDP
programming (Li, Liu, and Tang 2008), ensemble method
(Li and Zhou 2011), high order (Zhou and Belkin 2011),
semi-supervised kernel design turns to a promising one be-
cause it allows the abundant theories and algorithms in ker-
nel methods to be adopted directly in solving SSL prob-
lems. In particular, a large family of algorithms for semi-
supervised kernel relies on spectral transformation, where
the eigenvectors of the kernel matrix (or the graph Lapacian)
are used together with the rectified eigenvalues to build the
new kernel.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Given an n × n kernel matrix K, the graph Laplacian is
computed as L = D − K, where D ∈ Rn×n is a (diago-
nal) degree matrix such that Dii =

∑n
j=1Kij . The normal-

ized graph Laplacian is defined as L̃ = I−D−1/2KD−1/2,
where I is identity matrix. The (normalized) graph Lapla-
cian matrix imposes important smoothness constraints over
the graph, which has been widely used in spectral clustering
and image segmentation (Shi and Malik 2000), and feature
selection (He et al. 2011). In particular, its smaller eigenval-
ues correspond to smoother eigenvectors over the graph, i.e.,
the entries of the eigenvector corresponding to neighboring
samples are close to each other. Such smoothness is very
useful for predicting the actual class labels. Based on this
property, a general principle is applied in spectral transfor-
mation to build semi-supervised kernel (Smola and Kondor
2003),

K̃ =
n∑
i=1

r(λi)φiφ
>
i .

Here λi’s (i = 1, 2, ..., n) are eigenvalues of the (normal-
ized) graph Lapacian L ∈ Rn×n sorted in an ascending
order, φi’s are the corresponding eigenvectors, and r(·) is
a non-increasing function which enforces larger penalty for
less smooth eigenvectors. Various choice of the transform
r(·) has been proposed in the literatures. For example, the
diffusion kernel (Kondor and Lafferty 2002) corresponds to
r(λ) = exp(−σ

2

2 λ); the cluster kernel (Chapelle, Weston,
and Scholkopf 2003), the eigenvectors φi’s are based on the
degree-normalized kernel matrix S = D−1/2KD−1/2.

The empirical kernel alignment (Cristianini et al. 2002)
is a promising tool to evaluate the degree of agreement be-
tween a kernel and the learning target, via the use of “ideal
kernel” K∗(x, z) = y(x)y(z), where y(x) is the target con-
cept (such as the class label chosen from {±1} or {0, 1}
(Kwok and Tsang 2003)). Given a set of l training exam-
ples, corresponding label vector y ∈ Rl×1, and kernel ma-
trix K ∈ Rl×l, the alignment is computed as

AK,y =

〈
K, yy>

〉
l
√
〈K,K〉

,

where 〈K1,K2〉 =
∑
ij K1(xi, xj)K2(xi, xj) is the inner

product between matrices. It has been shown that the align-
ment between kernels is sharply concentrated, i.e., a good
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alignment on the training set will indicate a good alignment
on the test set (Cristianini et al. 2002). On the other hand,
AK,y is favorably associated with the generalization per-
formance of a classifier (such as the Parzen window esti-
mator) (Cristianini et al. 2002). Therefore, maximizing the
alignment of the kernel with the ideal one provides a gen-
eral and effective way for kernel design. Recently, a cen-
tralized alignment criterion was proposed in (Cortes, Mohri,
and Rostamizadeh 2010), K and K ′,

ρ(K,K ′) =
〈Kc,K

′
c〉F

‖Kc‖F ‖K ′c‖F
,

whereKc is the centralized version ofK. This criterion pro-
vides a novel concentration bound, and shows the existence
of good predictors for kernels with high alignment, in both
classification and regression tasks.

The concept of ideal kernel and its implications have led
to several successful methods for kernel learning. The com-
mon theme of these methods is to use eigenvectors of the
kernel matrix to span a set of base kernels, and then op-
timize the weighting in the combined kernel via maximiz-
ing its alignment with the target (or ideal kernel). For ex-
ample, Christianini et al. proposed to compute the weight-
ing of each base kernel proportional to the inner product of
the corresponding eigenvector with the target (Cristianini et
al. 2002). Sinha et al. presented a framework for computing
sparse combination of the base kernels (Sinha and Belkin
2009). Cortes et al. show that the weighting in the maxi-
mal alignment kernel can be solved via quadratic program-
ming (Cortes, Mohri, and Rostamizadeh 2010). In (Lanck-
riet et al. 2004), a semi-definite programming formulation
was adopted to learn a kernel matrix K̃ that is maximally
aligned with the ideal kernel. In (Zhu et al. 2004), an or-
der constraint on the transformed eigenvalue is further con-
sidered. The order constraint reflects important prior belief
that smoother eigenvectors should be given higher priority in
building the kernel, and empirically it has shown improved
behavior over parametric and purely nonparametric spectral
transforms (Zhu et al. 2004).

Lots of empirical successes have been observed with the
family of semi-supervised kernels based on spectral trans-
forms. However, there are still some concerns with them.
First, building a kernel solely based on rectifying the ker-
nel eigen-spectrum may be restrictive in terms of acquiring
desired kernel. Note that eigenvectors of the empirical ker-
nel matrix (or graph Laplacian) are computed in an unsuper-
vised manner, entirely irrespective of the class labels. There-
fore, these eigenvectors may not reveal useful structures for
classification, and the base kernels they span can have low
alignment with the target. Second, the optimization proce-
dure involved can be quite expensive. For example, comput-
ing the eigenvalue decomposition of the Laplacian already
takes O(n3) time and O(n2) memory. The time complex-
ity of QCQP (O(n4)) (Zhu et al. 2004) and SDP (O(n4.5))
(Lanckriet et al. 2004) is also quite demanding.

To solve these problems, we propose a new way for de-
signing semi-supervised kernel. Besides using the eigenvec-
tors from the original kernel matrix or graph Lapacian, we
also compute a new set of more ”accurate” eigenvectors that

are expected to be better aligned to the target. Our key ob-
servation is that the kernel eigenvectors and class labels have
some intrinsic connections. In particular, the ideal kernel
eigenvectors are deemed equivalent as the class labels. In-
spired by this, we compute a set of desired kernel eigenvec-
tors by extrapolating the ideal kernel eigenfunction. Such
extrapolation builds upon important proximity structures en-
coded in the input patterns. More importantly, it directly in-
corporates class labels in the computation. Therefore, the
label-aware eigenvectors are empirically more aligned to the
target compared with the unsupervised kernel eigenvectors.
This directly leads to a set of base kernels with higher qual-
ity, and the overall alignment of the mixed kernel will also
be improved with better generalization performance. In ad-
dition, we use low-rank approximation to compute useful
eigenvectors from the original kernel matrix, therefore our
approach is computationally very efficient and only requires
linear time and space complexities.

The rest of the paper is organized as follows. In section
2.1, we discuss the connection between kernel eigenvectors
and class labels; Section 2.2 introduces the eigenfunction
and its extrapolation via the Nystrom extension; Section 2.3
presents the complete algorithm; Section 2.4 analyzes the
complexity of the proposed method. Section 3 discusses re-
lated methods. Section 4 compares the performance of our
approach with a number of algorithms based on spectral
transformations. The last section concludes the paper.

Proposed Method
Kernel target alignment is an important criterion widely used
in semi-supervised kernel design (Cristianini et al. 2002). It
states that higher alignment with the ideal kernel will in-
dicate the existence of a good classifier with higher prob-
abilities (Cristianini et al. 2002)(Cortes, Mohri, and Ros-
tamizadeh 2010). It can be easily observed that the overall
alignment of the mixed kernel depends directly on the indi-
vidual alignment. For example, it has been shown that the
optimized alignment between a mixture of kernel eigenvec-
tors and the learning target is proportional to average of the
individual alignment scores of these eigenvectors (Cristian-
ini et al. 2002). In other words, base kernels with higher in-
dividual alignment to target will also lead to a higher overall
alignment. However, in practice, the base kernels spanned
by the eigenvectors of the kernel matrix might deviate a lot
from the target due to various practical factors, such as noise,
choice of kernel types/parameters, or the difficulty of the
classification problem.

In the following, we consider building more ”accurate”
eigenvectors to span better base kernels. Note that one rea-
son of the low quality of the base kernels spanned by ker-
nel eigenvectors is that they are computed regardless of the
label. Therefore, we may not expect that the kernel eigen-
structures faithfully reflects the target variable. To alleviate
this problem, we propose to compute a set of desired “eigen-
vectors” via extrapolation of the ideal kernel eigenfunction.
We first discuss the connection between kernel eigenvec-
tors and class labels, and then introduce the concept of ker-
nel eigenfunction extrapolation to build label-aware kernel
eigenvectors.
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Kernel Eigenvectors and Class Labels
Proposition 1 Given l labeled examples ordered from c
classes, with ideal kernel in the form of

K∗ =


11′l1 0 . . . 0

0 11′l2 · · · 0

... . . .
. . .

...
0 . . . 0 11′lc

 . (1)

where li is size of the ith class. Let Y ∈ Rl×c be the class
label, i.e., Yij = 1 if xi is in class j; and Yij = 0 otherwise.
Then the ith non-zero eigenvector of K∗ is 1√

li
Yi, where Yi

is the ith column of Y .

Proposition 1 shows that non-zero eigenvectors of the
ideal kernel correspond exactly to the classes labels (up
to a scaling). For example, (Shi and Malik 2000) shows
that the eigenvectors corresponding to the second smallest
eigenvalue of the normalized graph Laplacian provides a re-
laxed solution for a two class clustering problem1. There-
fore, eigenvectors and class labels have intrinsic connec-
tions. The main difference is that eigenvectors of the ker-
nel matrix can be noisy and may fail to reveal underlying
cluster structures due to its unsupervised nature; in compar-
ison, class labels represent prior knowledge and is always a
clean, piecewise constant vector. The connection indicates
that if we can expand “ideal” kernel eigenvectors from la-
beled samples to the whole data set and obtain a set of high-
quality eigenvectors that align better to class labels, then the
resultant base kernels will also have higher target alignment.
To achieve this goal, we need notions of eigenfunction and
its extrapolation via the Nyström extension.

Eigenfunction Expansion
Let A be a linear operator on a function space. The eigen-
function f of A is any non-zero function that returns itself
from the operator, i.e., Af = λf , where λ is the eigenvalue.
In this paper, we are interested in the case where A is a
symmetric, positive semi-definite kernel K(x, z). The cor-
responding eigenfunction φ(·), given the underlying sample
distribution p(x), is defined as (Williams and Seeger 2000)∫

K(x, z)φ(x)p(x)dx = λφ(z). (2)

The standard numerical method to approximate the eigen-
functions and eigenvalues in (2) is to replace the integral
with the empirical average (Fowlkes et al. 2004; Williams
and Seeger 2000)∫

K(x, z)p(x)φ(x)dx ≈ 1

q

q∑
i=1

K(xi, z)φ(xi), (3)

where xi, i=1,2,...,q is drawn from the distribution f(·). By
choosing z also from z = xi, i=1,2,...,q, equation (3) extends
to a matrix eigenvalue decomposition Kv = λv, where K is
the kernel matrix defined as Kij = K(xi, xj) for 1 ≤ i, j ≤

1Positive entries in this eigenvector will be deemed as positive
class and negative entries will be indicative of the negative class.

q, and v is the discrete counterpart of φ in that φ(xi) ≈ v(i).
Then the eigenfunction can be extended by

φ(z) ≈ 1

qλ

q∑
i=1

K(z, xi)v(i). (4)

This is known as the Nyström extension (Williams and
Seeger 2001; Zhang, Tsang, and Kwok 2008; Zhang and
Kwok 2010), which means that the eigenvectors of the em-
pirical kernel matrix evaluated on a finite sample set can be
used as approximators to the whole eigenfunction of the lin-
ear operator. Interestingly, (4) is proportional to the projec-
tion of a test point computed in kernel PCA (Bengio et al.
2004). The approximation can be justified by examining the
convergence of eigenvalues and eigenvectors as the number
of examples increases (Shawe-Taylor and Williams 2003;
Bengio et al. 2004).

Extrapolating Ideal Kernel Eigenfunctions
Motivated by the eigenfunction extension, we propose to
extrapolate the ideal kernel eigenvectors as follows. Sup-
pose we are given the labeled set Xl = {xi}li=1 with la-
bels Y ∈ Rl×c, where c is the number of classes, and the
unlabeled set Xu = {xi}ni=l+1. Then, in order to expand
the ideal kernel eigenfunction from Xl to the whole data set
Xl∪Xu, we can choose {xi}qi=1 in (4) asXl, choose z in (4)
asXl∪Xu, and choose v(i) as the labels ofXl. Suppose the
estimated kernel eigenvectors are denoted as uk ∈ Rn×1 for
k = 1, 2, ..., c, corresponding to the c classes, then we have

uk(i) =
1

lλk

∑
xj∈Xl

K(xi, xj)Yjk. (5)

Here λk is the eigenvalue corresponding to the kth class,
which according to Proposition 1 is proportional to the size
of the kth class (see Appendix). To guarantee that the esti-
mated labels/eigenvector entries are in a reasonable range,
one can also normalize the weighting coefficients K(xi, xj)
by
∑
j K(xi, xj).

The advantage of extrapolating the ideal kernel eigen-
function is that the resultant eigenvector incorporates label
information directly. Therefore, empirically they typically
have higher alignment with the target compared with the
eigenvectors of the kernel matrix, the computation of the lat-
ter being totally irrespective of available class labels. With
such label-aware eigenvectors, we will then have better base
kernels for semi-supervised learning.

Combining Base Kernels
Having obtained a set of extrapolated “ideal” kernel eigen-
vectors, we can use them to span base kernels for semi-
supervised kernel design. However, the number of such
eigenvectors is typically limited (bounded by the number of
classes); on the other hand, in case the number of labeled
sample is very limited, using the ideal kernel eigenvectors
alone may not be sufficient. Therefore, it’s safer to incorpo-
rate traditional kernel eigenvectors as well.

Suppose we have obtained a set of c extrapolated eigen-
vectors u1,u2,..,uc, as well as a set of k eigenvectors v1, v2,
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..., vk from the empirical kernel matrix (or graph Lapacian).
Then we want to learn the following kernel

K̃ =
c∑
i=1

αiuiu
>
i +

k∑
j=1

βjvjv
>
j . (6)

The mixing coefficients can be determined by maximizing
the alignment to the target. In other words, it will be auto-
matically determined which parts take higher weights. If the
problem is easy and kernel eigenvectors already are accurate
enough, then they will play a major role in shaping the new
kernel; on the other hand, if the kernel eigenvectors turn out
to be noisy and poorly aligned to the target, then the label
aware eigenvectors will probably assume higher weights. In
the literatures there has been various ways to compute the
weights such as uniform weighting, independent alignment-
based weighting, or the quadratic programming approach.
We used the alignf procedure (Cortes, Mohri, and Ros-
tamizadeh 2010) in our experiment. The optimal weighting
scheme is not the focus of this paper, instead, we want to
show that the quality of base kernels is the key to a success-
ful alignment.

The learned kernel K̃ can be used directly in SVM (or
SVR). The whole algorithm is summarized in Algorithm 1.

Algorithm 1 Input: labeled samples Xl = {xi}li=1, unla-
beled sample set Xu = {xi}ni=l+1; Gaussian Kernel k(·, ·),
label Y = [y1, y2, ..., yc] ∈ Rl×c.

1. Compute the kernel matrix defined among (Xl ∪Xu)
andXl asKnl ∈ Rn×l; compute the degree matrixDn =
diag(Knl · 1l×1);
2. Compute the extrapolated ideal kernel eigenvectors as
[u1, u2, ..., uc] = D−1n KnlY ;
3. Compute the eigenvectors with dominant k eigenvalues
of the kernel matrix or diminishing k eigenvalues of the
(normalized) graph Laplacian, as [v1, v2, ..., vk];
4. Compute the weighting coefficients of the base eigen-
vectors [u1, u2, ..., uc, v1, v2, ..., vk] using any of the ex-
isting weighting schemes;
5. Compute K̃ =

∑c
i=1 αiuiu

>
i +

∑k
j=1 βjvjv

>
j ;

6. Apply K̃ for training and testing.

Complexity
Most steps in Algorithm 1 requires linear space and time
w.r.t. c, k, and l, which equals number of classes, number
of traditional kernel eigenvectors, and number of labeled
samples, respectively. In step 3, a naive computation takes
O(n2k) time, however, one can use the Nyström low-rank
approximation technique to compute the dominant k eigen-
vectors of n × n kernel matrix with O(nm2) time, where
m � n is number of landmarks selected, see details in
(Zhang, Tsang, and Kwok 2008). In applying the learned
kernel K̃ in SVM, we only need the l × l block of K̃ cor-
responding to labeled samples, and the u × l block corre-
sponding to the block between unlabeled and labeled sam-
ples; therefore the space and time needed isO(nl). In step 6,

the training takes empirically O(l2.3) time using the libsvm
package, and testing takes O(pn+ ln). In practice, we have
l, p � n. Therefore, overall our algorithm has a linear time
and space complexities.

Discussions
The biggest difference between our approach and existing
SSL kernel design methods is that our approach utilizes the
given labels to compute a set of more “accurate” eigenvec-
tors to span the base kernels. On the other hand, there are
many SSL algorithms whose focus is not on kernel design
but instead the estimation of the class labels directly. For ex-
ample, the local and global consistency method (Zhou et al.
2004) iteratively propagates the labels of Xl to the whole
data set by

F (t+ 1) = αSF (t) + (1− α)Y,

where F is the estimated class label, S is the normalized
kernel matrix S = D−1/2KD−1/2, and Y is the class la-
bel (unlabeled entries are filled with 0’s). Zhou’s method re-
quires iterative propagation, which is equivalent to perform-
ing a matrix inverse; in comparison, we only need one step
in extrapolating the ideal kernel eigenvectors.

In (Zhu, Ghahramani, and Lafferty 2003), the authors uti-
lized the harmoic property

f = D−1Kf,

where f is the estimated label, K and D is the kernel ma-
trix and degree matrix. It states that the label of one sample
should be consistent with a linear combination of the labels
from its nearby samples. This is very closely related to eq.
(5). However, Zhu et al. use this property as a global con-
straint, and compute the class labels by solving a linear sys-
tem. In comparison, in our approach, eq. (5) can be deemed
as utilizing this property only on labeled samples as a way
to extrapolate the ideal kernel eigenvector to the whole data
set. Considering this interesting connection, we will empir-
ically compare our approach with Zhu’s method in one task
of wireless sensor localization.

Recently, a generalized Nyström method is proposed to
learn a semi-supervised low-rank approximation of the ker-
nel matrix (Zhang et al. 2008). There, the label information
is utilized to learn a dictionary kernel defined only on a set
of selected landmark points; in comparison, we directly ex-
trapolate the class labels onto the whole data set via Nyström
eigenfunction expansion.

Experiments
This section compares our method with a number of state-
of-the-art algorithms for semi-supervised kernel design, for
both classification and regression.

Classification
In this section, we compare the following methods for semi-
supervised kernel design: (1) cluster kernel (Chapelle, We-
ston, and Scholkopf 2003), where r(·) is chosen as linear
function r(λ) = λ; (2) diffusion kernel r(λ) = exp(−λ/δ)
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Table 1: Classification Performance semi-supervised kernel design schemes. For each cell, the top row is the mean/std of the
kernel alignment score (in [0, 1]) on the test set, and in bracket is the averaged time consumption (in seconds); the bottom row
is the mean/std of classification error (%).

Data Spectral Ours Cluster Kernel Diffusion Kernel Max-Alignment
size/dim Graph Kernel linear Kernel
Digit1 0.29±0.07 (84.9) 0.82±0.02 (1.2) 0.13±0.005 (2.4) 0.10±0.001 (13.0) 0.14±0.001 (12.6)

1500×241 4.31±1.93 4.89± 0.85 5.37±1.23 6.13±1.63 3.82±1.23
USPS 0.23±0.08 (74.9) 0.66±0.04 (1.2) 0.43±0.001 (2.5) 0.06±0.001 (16.0) 0.06±0.01 (12.7)

1500×241 7.47± 4.41 6.64±1.27 6.56±1.02 7.27±0.59 9.81±0.49
COIL2 0.11±0.005 (73.4) 0.55±0.07 (1.2) 0.10±0.001 (2.4) 0.05±0.003 (8.4) 0.07±0.00 (5.3)

1500×241 18.49±2.47 13.44±2.41 18.51±4.66 19.08±2.05 19.32±1.89
BSI 0.07±0.003 (9.9) 0.14±0.04 (0.4) 0.04±0.001 (0.2) 0.07±0.003 (0.4) 0.07±0.002 (0.5)

400× 241 32.95±3.38 32.99±3.10 42.02±2.89 33.58±2.83 34.85±2.75
COIL 0.01±0.001 (199.5) 0.11±0.005 (0.4) 0.08±0.002 (2.58) 0.06±0.001 (8.3) 0.07±0.001 (5.5)

1500×241 21.90±3.24 9.14±0.96 10.89±1.12 11.67±1.43 11.75±1.49
g241n 0.40±0.003 (108.2) 0.33±0.03 (1.4) 0.03±0.007 (2.5) 0.04±0.00 (20.3) 0.04±0.00 (6.7)

1500×241 13.64±1.28 24.11±1.73 26.59±3.96 19.68±1.52 18.61±1.75
Text 0.13±0.01 (181.0) 0.30±0.02 (20.1) 0.03±0.001 (68.1) 0.03±0.00 (208.0) 0.03±0.004 (130.7)

1500×11960 25.55±1.65 23.42±1.46 32.90±6.64 24.89±1.81 26.78±4.88
usps38 0.48±0.004 (77.3) 0.84±0.02 (1.2) 0.12±0.001 (1.6) 0.11±0.001 (6.8) 0.11±0.001 (4.5)

1200×256 4.82±1.33 2.82±0.83 5.10±0.89 6.06±1.01 6.06±0.85
usps49 0.40±0.13 (82.1) 0.86±0.01 (1.2) 0.09±0.001 (1.9) 0.08±0.001 (9.3) 0.07±0.001 (8.9)

1296×256 2.83±0.92 1.98±0.52 6.29±2.11 8.26±0.83 10.67±1.24
usps56 0.48±0.06 (80.0) 0.86±0.01 (1.2) 0.12±0.001 (1.7) 0.09±0.003 (18.2) 0.11±0.001 (5.0)

1220×256 2.87±0.92 2.44±0.59 3.89±1.57 3.85±0.97 5.79±1.06
usps27 0.58±0.004 (101.8) 0.91±0.006 (1.2) 0.37±0.001 (2.3) 0.10±0.001 (11.8) 0.13±0.001 (6.9)

1376×256 1.79±0.42 1.21±0.25 1.80±0.25 2.28±0.56 4.80±1.29
odd/even 0.21±0.008 (419.0) 0.65±0.03 (1.6) 0.12±0.001 (8.8) 0.03±0.004 (38.5) 0.08±0.00 (22.3)
2007×256 10.14±2.11 9.58±1.56 14.59±1.49 14.08±2.04 15.64±2.91

(Kondor and Lafferty 2002); (3) maximal alignment ker-
nel (Cristianini et al. 2002) using the top 0.1n eigenvectors
from the kernel matrix; (4) our approach; (5) non-parametric
graph kernel (Zhu et al. 2004) using the first p = 0.1n
eigenvectors from the normalized Laplacian L̃. Evaluation
is based on the alignment on the unlabeled data, and classi-
fication error of SVM using the learned kernel.

We used the Gaussian kernel K(x1, x2) = exp(−‖x1 −
x2‖2 · b) in all our experiments. In semi-supervised learn-
ing parameter selection is an open problem. In this work,
the parameters are chosen as follows. For the kernel
width, we first compute b0 as the inverse of the average
squared pairwise distances, and then choose b among b0 ·
{ 1
50

1
25 ,

1
10 ,

1
5 , 1, 5, 10} that gives the best performance. The

parameter δ and ε are chosen from {10−5, 10−3, 10−1, 1}.
Each algorithm is repeated 30 times with 50 labeled sam-
ples randomly chosen for each class. Method (1) and (5) use
10%n diminishing eigenvectors from the normalized graph
Lapacian; other methods use the top 10% eigenvectors of
the kernel matrix. Results are reported in Table 1. As can
be seen, our algorithm gives competitive performance and at
the same time very efficient.

In Figure 1, we examine alignment score of the label-
aware eigenvectors (blue circles) and those from the normal-
ized Graph Lapacian2. Here the reported score is the average

2Empirically, eigenvectors from the normalized graph Lapacian
have higher target alignment than those from the kernel matrix.

alignment between one eigenvector and all the c target vari-
ables. As can be seen, the label-aware eigenvectors almost
always have higher or at least very similar alignment scores
compared with the eigenvectors of the graph Lapacian.

Regression
In this section, we report empirical results of our algorithm
in kernel based regression problems. The task is indoor lo-
cation estimation using received signal strength(RSS) that
a client device received from Wi-Fi access points (Yang,
Pan, and Zheng 2000). We compare our result with Zhu’s
method (Zhu, Ghahramani, and Lafferty 2003). In particu-
lar, we have adopted the support vector regression (Smola
and Scholkopf 2004) that works on the learned kernel in Al-
gorithm 1. We have normalized the labels yi’s such that they
scale in the range [0, 1]. We used the Gaussian kernel in the
experiments. The kernel width is selected in a similar way
as the classification tasks. For our method, we set ε = 0.05
in the support vector regression setting. The regularization
parameter C is chosen as{0.1, 1, 10, 100, 1000, 10000}.

In Figure 2, we plot the regression results on the 2-D
plane. Here red circles are the true coordinates, and blue
dots are estimated ones. A line is connected between ev-
ery pair of true and estimated points. As can be seen, our
approach provides better localization results compared with
Zhu’s method. We have used the square root of the mean
squared error to measure the regression quality The error
of standard SVM is 2.5 × 10−3; that of Zhu’e method is
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(a) Text Data set (2 classes)
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(b) USPS data set (2 classes)

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

eigenvector index

in
di

vi
du

al
 a

lig
nm

en
t s

co
re

 

 
Label−aware eigenvectors
Eigenvectors of normalized Graph Lapacian

(c) Coil data set (6 classes)
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(d) BCI data set (2 classes)

Figure 1: The individual target alignment score of label-
aware base eigenvectors and the traditional kernel eigenvec-
tors on the unlabeled data. For simplicity of visualization,
here the reported score is the average alignment between one
eigenvector and all the c target variables/classes.

1.61× 10−3; while ours is around 1.19× 10−3. Our regres-
sion error is reduced by about 25% compared with Zhu’s
method, and more than 50% compared with the standard
supervised SVR. In Figure 3(a), we gradually increase the
number of unlabeled samples from 200 to 2000, and exam-
ine the time consumption. As can be seen, our approach is
orders of magnitudes’ faster compared with Zhu’s method.In
Figure 3(b), we plot the regression error of the two methods
with regard to the Gaussian kernel width. As can be seen,
our approach is more insensitive to the choice of the kernel
parameters. This makes it a practical in real-world applica-
tions. From this example, we can see that semi-supervised
kernel design can give competitive performance compared
with stat-of-the-art SSL algorithms that focus on estimating
the labels (but not learning a kernel). This validates the im-
portance of a good kernel in semi-supervised learning tasks.
Of course there are many SSL algorithms whose focus is not
on learning kernel. We choose the Gaussian field method as
an example for comparison because it has shown to provide
stat-of-the-art results in this localization task (Yang, Pan,
and Zheng 2000).

Conclusion
This paper proposed a new algorithm for semi-supervised
kernel design. Unlike traditional methods that use kernel
eigenvectors to span the base kernel and focus on tuning
their weights, we pay more attention to the quality of the
base kernel. In particular, we compute the label-aware eigen-
vectors via extending the ideal kernel eigenfunction. We
show that our algorithm gives encouraging performance and
scales linearly with sample size and dimension.
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Figure 2: Localization results by different methods. For each
test point, a line is connected between the true and the esti-
mated location/coordinate.
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Figure 3: Gaussian Field method and our approach.

Appendix
Proposition 1 Let the eigenvalue decomposition of K∗
be K∗v∗ = λ∗v∗. Since K∗ only has c different rows
(orthogonal to each other), it has rank c with n − c
zero eigenvalues. Note that the ith entry of v∗ equals
1
λ∗K

∗(i, :)v∗, and K∗ has a block-wise constant struc-
ture. Therefore v∗ is piecewise constant. Write v∗ as
[v1, ..., v1︸ ︷︷ ︸

l1

v2, ..., v2︸ ︷︷ ︸
l2

, ..., vc, ..., vc︸ ︷︷ ︸
lc

]′. Then the eigensystem be-

comesmkvk = λ∗vk for k = 1, 2, ..., c. Each equation leads
to two conditions: λ∗ = lk, or vk = 0. However, the former
condition is infeasible for k = 1, 2, ..., C, since the size of
different classes can be different. So one sets λ∗ equal to
one of the mlk’s, i.e., λ∗ = lk0 , and vk = 0 for all k 6= k0.
There are c different ways to choose k0, i.e., k0 = 1, 2, ..., c.
For each choice of k0, the eigenvalue is λ∗ = lk0 ; as to the
eigenvector, all its entries corresponding to class k (k 6= k0)
will be zero, and the entries corresponding to class k0 will
be 1/

√
lk0 (since they are equal and normalize to 1).
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