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Abstract

We consider the class of convex minimization prob-
lems, composed of a self-concordant function, such as
the log det metric, a convex data fidelity term h(·)
and, a regularizing – possibly non-smooth – function
g(·). This type of problems have recently attracted a
great deal of interest, mainly due to their omnipres-
ence in top-notch applications. Under this locally Lip-
schitz continuous gradient setting, we analyze the con-
vergence behavior of proximal Newton schemes with
the added twist of a probable presence of inexact eval-
uations. We prove attractive convergence rate guaran-
tees and enhance state-of-the-art optimization schemes
to accommodate such developments. Experimental re-
sults on sparse covariance estimation show the merits
of our algorithm, both in terms of recovery efficiency
and complexity.

Introduction
Convex `1-regularized log det divergence criteria have been
proven to produce – both theoretically and empirically –
consistent modeling in diverse top-notch applications. The
literature on the setup and utilization of such criteria is
expanding with applications in Gaussian graphical learn-
ing (Dahl, Vandenberghe, and Roychowdhury 2008; Baner-
jee, El Ghaoui, and d’Aspremont 2008; Hsieh et al. 2011),
sparse covariance estimation (Rothman 2012), Poisson-
based imaging (Harmany, Marcia, and Willett 2012), etc.

In this paper, we focus on the sparse covariance estima-
tion problem. Particularly, let {xj}Nj=1 be a collection of n-
variate random vectors, i.e., xj 2 Rn, drawn from a joint
probability distribution with covariance matrix ⌃. In this
context, assume there may exist unknown marginal inde-
pendences among the variables to discover; we note that
(⌃)kl = 0 when the k-th and l-th variables are indepen-
dent. Here, we assume ⌃ is unknown and sparse, i.e., only a
small number of entries are nonzero. Our goal is to recover
the nonzero pattern of ⌃, as well as compute a good approx-
imation, from a (possibly) limited sample corpus.
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Mathematically, one way to approximate ⌃ is by solving:

⇥

⇤
= argmin

⇥

n

� log det(⇥) + h(⇥) + g(⇥)

o

, (1)

where ⇥ 2 Rn⇥n is the optimization variable, h(·) :=

1/(2⇢) · k⇥ � b

⌃k2F where b

⌃ is the sample covariance and
g(·) := �/⇢ · k⇥k1 is a convex nonsmooth regularizer func-
tion, accompanied with an easily computable proximity op-
erator (Combettes and Wajs 2005). and ⇢, � > 0.

Whereas there are several works (Becker and Fadili 2012;
Lee, Sun, and Saunders 2012) that compute the minimizer
of such composite objective functions, where the smooth
term is generally a Lipschitz continuous gradient function, in
(1) we consider a more tedious task: The objective function
has only locally Lipschitz continuous gradient. However,
one can easily observe that (1) is self-concordant; we refer
to some notation and definitions in the Preliminaries sec-
tion. Within this context, (Tran-Dinh, Kyrillidis, and Cevher
2013a) present a new convergence analysis and propose a
series of proximal Newton schemes with provably quadratic
convergence rate, under the assumption of exact algorithmic
calculations at each step of the method.

Here, we extend the work of (Tran-Dinh, Kyrillidis, and
Cevher 2013a) to include inexact evaluations and study how
these errors propagate into the convergence rate. As a by-
product, we apply these changes to propose the inexact Self-
Concordant OPTimization (iSCOPT) framework. Finally,
we consider the sparse covariance estimation problem as a
running example for our discussions. The contributions are:

(i) We consider locally Lipschitz continuous gradient convex
problems, similar to (1), where errors are introduced in the
calculation of the descent direction step. Our analysis in-
dicates that inexact strategies achieve similar convergence
rates as the corresponding exact ones.

(ii) We present the inexact SCOPT solver (iSCOPT) for the
sparse covariance estimation problem, with several varia-
tions that increase the convergence rate in practice.

Preliminaries
Notation: We reserve vec(·) : Rn⇥n ! Rn2⇥1 to denote
the vectorization operator which maps a matrix into a vector,
by stacking its columns and, let mat(·) : Rn2⇥1 ! Rn⇥n

be the inverse operation. I denotes the identity matrix.
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Definition 1 (Self-concordant functions (Nesterov and
Nemirovskii 1994)). A convex function '(·) : dom(') !
R is self-concordant if |'000

(x)|  2'

00
(x)

3/2
, 8x 2

dom('). A function  (·) : dom( )! R is self-concordant
if '(t) ⌘  (x + tv) is self-concordant 8x 2 dom( ),v 2
Rn.

For v 2 Rn, we define kvk
x

⌘ �

v

Tr2
f(x)v

�1/2 as the
local norm around x 2 dom(f) with respect to f(·). The
corresponding dual norm is kvk⇤

x

⌘ maxkuk
x

1 u
T
v =

�

v

Tr2
f(x)

�1
v

�1/2. We define !(·) : R ! R+ as !(t) ⌘
t � ln(1 + t), and !⇤(·) : [0, 1] ! R+ as !⇤(t) ⌘ �t �
ln(1 � t). Note that !(·) and !⇤(·) are both nonnegative,
strictly convex, and increasing.
Problem reformulation: We can transform the matrix for-
mulation of (1) in the following vectorized problem:

min

x2Rp

n

F (x) := � log det(mat(x)) + h(x)

| {z }

=f(x)

+g(x)

o

, (2)

for mat(x) ⌘ ⇥, x 2 Rp
, p = n

2, where f(x) is a convex,
self-condordant function and g(x) is a proper, lower semi-
continuous and non-smooth convex regularization term. For
our discussions, we assume g(x) is `1-norm-based.

The algorithm in a nutshell
For our convenience and without loss of generality, we use
the vectorized reformulation in (2). Here, we describe the
SCOPT optimization framework, proposed in (Tran-Dinh,
Kyrillidis, and Cevher 2013a). SCOPT generates a sequence
of putative solutions {xi}i�0, according to:

xi+1 = (1� ⌧i)xi + ⌧i�
?
i , ⌧i =

1

�i + 1

, (3)

where �?i�xi 2 Rp is a descent direction, �i := k�?i�xikxi

and ⌧i > 0 is a step size along this direction. To compute
�?i , we minimize the non-smooth convex surrogate of F (·)
around xi; observe that �i assumes exact evaluations of �?i :

�?i = argmin

�2Rp
{U(�,xi) + g(�)} ; (4)

U(�,xi) is a quadratic approximation of f(·) such that
U(�,xi) := f(xi) + rf(xi)

T
(� � xi) +

1
2 (� �

xi)
Tr2

f(xi)(� � xi), where rf(xi) and r2
f(xi) denote

the gradient (first-order) and Hessian (second-order) infor-
mation of function f(·) around xi 2 dom(F ), respectively.

While quadratic approximations of smooth functions (of
the form U(�,xi)) have become de facto approaches for
general convex smooth objective functions, to the best of our
knowledge, there are not many works considering a com-
posite non-smooth and non-Lipschitz gradient minimization
case with provable convergence guarantees under the pres-
ence of errors in the descent direction evaluations.

Inexact solutions in (4)
An important ingredient for our scheme is the calculation
of the descent direction through (4). For sparsity based ap-
plications, we use FISTA – a fast `1-norm regularized gra-
dient method for solving (4) (Beck and Teboulle 2009) –

and describe how to efficiently implement such solver for
the case of sparse covariance estimation where f(x) =

1
2⇢kx� vec(

b

⌃)k22 � log det(mat(x)).
Given the current estimate xi, the gradient and the Hes-

sian of f(·) around xi can be computed respectively as:
rf(xi) =

1
⇢

⇣

xi � vec(

b

⌃)

⌘

�vec �mat(xi)
�1

� 2 Rp⇥1
,

r2
f(xi) =

I

⇢+(mat(xi)
�1⌦mat(xi)

�1
) 2 Rp⇥p

. Given
the above, let z := rf(xi)�r2

f(xi)xi. After calculations
on (4), we easily observe that (4) is equivalent to:

�i = argmin

�

n

1

2

�Tr2
f(xi)� + z

T �
| {z }

'(�)

+g(�)
o

, (5)

where '(·) is smooth and convex with Lipschitz constant L:

L =

1

⇢

+

1

�

2
min(mat(xi))

, (6)

where �min(·) denotes the minimum eigenvalue of a matrix.
Combining the above quantities in a ISTA-like procedure
(Daubechies, Defrise, and De Mol 2004), we have:

�k+1
= S �

L⇢

✓

�k � 1

L

r'(�k)
◆

, (7)

where we use superscript k to denote the k-th iteration of
the ISTA procedure (as opposed to the subscript i for the
i-th iteration of (3)). Here, r'(�k) = r2

f(xi)�
k
+ z

and S �
L⇢

(x) := sign(x)max{|x|� �
L⇢ , 0}. Furthermore, to

achieve an O(1/k

2
) convergence rate, one can use acceler-

ation techniques that lead to the FISTA algorithm, based on
Nesterov’s seminal work (Nesterov 1983). We repeat and ex-
tend FISTA’s guarantees, as described in the next theorem;
the proof is provided in the supplementary material.
Theorem 1. Let {�k}k�1 be the sequence of estimates gen-
erated by FISTA. Moreover, define G(�) := U(�,xi)+g(�)
where �? is the minimizer with k�?k22  c for some global
constant c > 0. Then, to achieve a solution �K such that:

G(�K)�G(�?)  ✏, ✏ > 0, (8)

the FISTA algorithm requires at least K :=

l

q

2Lc
✏ � 1

m

iterations. Moreover, it can be proved that:

G(�K)�G(�?) � 1

2

k�? � �Kk2
xi

We note that, given accuracy ✏, �K satisfies (8) and �i  
�K in the recursion (3). In general, c is not known apriori;
in practice though, such a global constant can be found dur-
ing execution, such that Theorem 1 is satisfied. A detailed
description is given in the supplementary material.

For the sparse covariance problem, one can observe that
L and z are precomputed once before applying FISTA it-
erations. Given xi, we compute �min(mat(xi)) in O(n

3
)

time complexity, while z can be computed with O(n

3
) time

cost using the Kronecker product property vec(AXB) =

(B

T ⌦ A)vec(X). Similarly, r'(�k) can be iteratively
computed in O(n

3
) time cost. Overall, the FISTA algorithm

for this problem has O(K · n3
) computational cost.
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iSCOPT: Inexact SCOPT
Assembling the ingredients described above leads to Al-
gorithm 1, which we call as the Inext Self-Concordant
Optimization (iSCOPT) with the following convergence
guarantees; our objective function satisfies the assumptions
A.1, defined in (Tran-Dinh, Kyrillidis, and Cevher 2013a);
the proof is provided in the supplementary material.
Theorem 2 (Global convergence guarantee). Let ⌧i :=

"i�
p
2✏

"i("i�
p
2✏+1)

2 (0, 1) where "i := k�i � xikxi is the New-
ton decrement, �i is the solution of (4) and ✏ is the requested
accuracy for solving (4). Assume "i �

p
2✏, 8i, and let

the set {x 2 dom(F ) : F (x)  F (x0)} be bounded. Then,
iSCOPT generates {xi}i�0 such that xi+1 satisfies:

F (xi+1)  F (xi)� ⇠(⌧i), where

⇠(⌧i) = �!⇤(⌧i"i) � ⌧i
⇣

✏� 1
2

�

"i �
p
2✏

�2 � 1
2"

2
i

⌘

� 0,

8i, i.e., {F (xi)}i�0 is a strictly non-increasing sequence.

Quadratic convergence rate of iSCOPT algorithm
For strictly convex criteria with unique solution x

?, the
above proof guarantees convergence, i.e., {xi}i�0 ! x

? for
sufficiently large i. Given this property, we prove the conver-
gence rate towards the minimizer using local information in
norm measures: as long as kxi+1 � xik is away from 0, the
algorithm has not yet converged to x

?. On the other hand, as
kxi+1 � xik ! 0, the sequence {F (xi)}i�0 converges to
its minimum and {xi}i�0 ! x

?, as i increases.

Algorithm 1 Inexact SCOPT for sparse cov. estimation
1: Input: x0, ⇢,� > 0, � =

3
40 , ✏, � > 0.

2: while "i  � or i  I

max do
3: Solve (4) for �i with accuracy ✏ and parameters ⇢,�.
4: Compute "i = k�i � xikxi

5: if ("i > �)

6: xi+1 = (1� ⌧i)xi + ⌧i�i for ⌧i = "i�
p
2✏

"i("i�
p
2✏+1)

.
7: else xi+1 = �i
8: end while

In our analysis, we use the weighted distance kxi+1 �
xikxi to characterize the rate of convergence of the puta-
tive solutions. By (3) and given �i is a computable solution
where k�i � �?i kxi 

p
2✏, we observe:

kxi+1 � xikxi = k⌧i (�i � xi) kxi / k�i � xikxi := "i.

This setting is nearly algorithmic: given xi and �i at each
iteration, we can observe the behavior of kxi+1 � xikxi

through the evolution of {"i}i�0 and identify the region
where this sequence decreases with a quadratic rate.
Definition 2. We define the quadratic convergence region
Q = {xi : xi 2 dom(F )} as such where {xi}i�0 satisfies
"i+1  �"

2
i + c, for some constant � > 0, "i < 1 and

bounded and small constant c > 0.
The following lemma provides a first step for a concrete

characterization of � for the iSCOPT algorithm; the proof
can be found in the supplementary material.

Lemma 1. For any ⌧i selection, 8i, the iSCOPT algorithm
generates the sequence {"i}i�0 such that (9) holds.

We provide a series of corollaries and lemmata that justify
the local quadratic convergence of our approach in theory.
Corollary 1. In the ideal case where �?i is computable ex-
actly, i.e., ✏ = 0, the iSCOPT algorithm is identical to
the SCOPT algorithm (Tran-Dinh, Kyrillidis, and Cevher
2013a).

We apply the bound
p
2✏  "i to simplify (9) as:

"i+1  2

1� 2⌧i"i
· 1� ⌧i + 2⌧

2
i "i

1� 8⌧i"i + 8⌧

2
i "

2
i

· "i +
p
2✏ (10)

Next, we describe the convergence rate of iSCOPT for
the two distinct phases in our approach: full step size and
damped step size; the proofs are provided in the supplemen-
tary material.
Theorem 3. Assume ⌧i = 1. Then, iSCOPT satisfies:

"i+1  �"2i + c,

where � =

4
(1�2"i)(1�8"i+8"2i )

= O
⇣

1
1�"i

⌘

, c =

p
2✏ and

✏ is user-defined. I.e., iSCOPT has locally quadratic con-
vergence rate where c > 0 is small-valued and bounded.
Moreover, for "i  3

40 , 8i, "i+1  14"

2
i +
p
2✏.

Theorem 4. Assume the damped-step case where ⌧i =

"i�
p
2✏

"i("i�
p
2✏+1)

2 (0, 1). Then, iSCOPT satisfies:

"i+1  �"2i + c,

where � =

2
(

"i�
p
2✏+1

)

1�2"i("i�
p
2✏
)

· "2i+3"i+2✏

(

2+6
p
2✏+2✏

)

�"i(6+2
p
2✏
)

=

O
⇣

1
1�"i

⌘

and ✏ is user-defined. I.e., iSCOPT has locally
quadratic convergence rate where c > 0 is small-valued and
bounded. Moreover, for "i  3

20 , 8i, "i+1  14"

2
i +
p
2✏.

An iSCOPT variant
Starting from a point far away from the true solution,
Newton-like methods might not show the expected conver-
gence behavior. To tackle this issue, we can further per-
form Forward Line Search (FLS) (Tran-Dinh, Kyrillidis,
and Cevher 2013a): starting from the current estimate ⌧i,
one might perform a forward binary search in the range
[⌧i, 1]. The selection of the new step size b⌧i is taken as the
maximum-valued step size in [⌧i, 1], as long as b⌧i decreases
the objective function F (·), while satisfying any constraints
in the optimization. The supplementary material contains il-
lustrative examples which we omit due to lack of space.

Application to sparse covariance estimation
Covariance estimation is an important problem, found in
diverse research areas. In classic portfolio optimization
(Markowitz 1952), the covariance matrix over the asset re-
turns is unknown and even the estimation of the most signif-
icant dependencies among assets might lead to meaningful
decisions for portfolio optimization. Other applications of
the sparse covariance estimation include inference in gene
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"i+1 
�

1� ⌧i"i + ⌧i

p
2✏

�

�

1� ⌧i"i � ⌧i
p
2✏

� ·
�

1� ⌧i
�

1�p2✏�+ �

2⌧

2
i � ⌧i

�

"i

�

1� 4⌧i

�

p
2✏+ "i

�

+ 2⌧

2
i

�

p
2✏+ "i

�2

⇣p
2✏+ "i

⌘

+

p
2✏ (9)

Table 1: Summary of related work on sparse covariance estimation. Here, [1]: (Xue, Ma, and Zou 2012), [2]: (Bien and
Tibshirani 2011), [3]: (Rothman 2012), [4]: (Wang 2012). All methods have the same O(n

3
) time-complexity per iteration.

[1] [2] [3] [4] This work

# of tuning parameters 2 1 2 1 2
Convergence guarantee X X X – X

Convergence rate Linear – –† –† Quadratic
Covariate distribution Any Gaussian Any Gaussian Any
†To the best of our knowledge, block coordinate descent algorithms have known convergence only for the case
of Lipschitz continuous gradient objective functions (Beck and Tetruashvili 2013).

dependency networks (Schäfer and Strimmer 2005), fMRI
imaging (Varoquaux et al. 2010), data mining (Alqallaf et
al. 2002), etc. Overall, sparse covariance matrices come
with nice properties such as natural graphical interpretation,
whereas are easy to be transfered and stored.

To this end, we consider the following problem:
PROBLEM I: Given n-dimensional samples {xj}Nj=1, drawn
from a joint probability density function with unknown
sparse covariance ⌃ � 0, we approximate ⌃ as the solution
to the following optimization problem for some �, ⇢ > 0:

⇥

?
= argmin

⇥

n

1

2⇢

k⇥� b

⌃k2F � log det(⇥) +

�

⇢

k⇥k1
o

A summary of the related work on the sparse covariance
problem is given in Table 1 and a more detailed discussion
is provided in the supplementary material.

Experiments
All approaches are carefully implemented in MATLAB code
with no C-coded parts. In all cases, we set Imax

= 500, � =

10

�10 and ✏ = 10

�8. A more extensive presentation of these
results can be found in the supplementary material.

Benchmarking iSCOPT: time efficiency
To the best of our knowledge, only (Rothman 2012) consid-
ers the same objective function as in PROBLEM I. There, the
proposed algorithm follows similar motions with the graph-
ical Lasso method (Friedman, Hastie, and Tibshirani 2008).

To show the merits of our approach as compared with
the state-of-the-art in (Rothman 2012), we generate ⌃ ⌘
⌃3 as a random positive definite covariance matrix with
k⌃3k0 = k. In our experiments, we test sparsity levels k

such that k
n2 = {0.05, 0.1, 0.2} and n 2 {100, 1000, 2000}.

Without loss of generality, we assume that the variables are
drawn from a joint Gaussian probability distribution. Given
⌃, we generate {xj}Nj=1 random n-variate vectors accord-
ing to N (0,⌃), where N =

n
2 . Then, the sample covari-

ance matrix b

⌃ =

1
N

PN
j=1 xjx

T
j is ill-conditioned in all

cases with rank(b⌃)  n
2 . We observe that the number of

unknowns is
�n
2

�

=

n(n�1)
2 ; in our testbed, this corresponds

to estimation of 4950 up to 1, 999, 000 variables. To com-
pute L in (6), we use a power method scheme with Pw = 20

iterations. All algorithms under comparison are initialized
with x0 = vec(diag(b⌃)). As an execution wall time, we set
T = 3600 seconds (1 hour). In all cases, we set ⇢ = 0.1.

Table 2 contains the summary of results. Overall, the pro-
posed framework shows superior performance across di-
verse configuration settings, both in terms of time com-
plexity and objective function minimization efficiency: both
iSCOPT and iSCOPT FLS find solutions with lower objec-
tive function value, as compared to (Rothman 2012), within
the same time frame. The regular iSCOPT algorithm per-
forms relatively well in terms of computational time as com-
pared to the rest of the methods. However, its convergence
rate heavily depends on the conservative ⌧i selection. We
note that (4) benefits from warm-start strategies that result
in convergence in Step 3 of Algorithm 1 within a few steps.

Benchmarking iSCOPT: reconstruction efficiency
We also measure the ⌃ reconstruction efficacy by solving
PROBLEM I, as compared to other optimization formula-
tions for sparse covariance estimation. We compare our ⇥?

estimate with: (i) the Alternating Direction Method of Mul-
tipliers (ADMM) implementation (Xue, Ma, and Zou 2012),
and (ii) the coordinate descent algorithm (Wang 2012).

Table 3 aggregates the experimental results in terms of the
normalized distance k⇥?�⌃kF

k⌃kF
and the captured sparsity pat-

tern in ⌃. Without loss of generality, we fix � = 0.5, ⇢ = 0.1

for the case n = 100 and, � = 1.5, ⇢ = 0.1 for the case
n = 2000. iSCOPT framework is at least as competitive
with the state-of-the-art implementations for sparse covari-
ance estimation. It is evident that the proposed iSCOPT
variant, based on self-concordant analysis, is at least one
order of magnitude faster than the rest of algorithms un-
der comparison. In terms of reconstruction efficacy, using
our proposed scheme, we can achieve marginally better ⌃
reconstruction performance, as compared to (Xue, Ma, and
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Table 2: Summary of comparison results for time efficiency.

Model F (⇥?) (⇥102) Time (secs)

n � [3] iSCOPT iSCOPT FLS [3] iSCOPT iSCOPT FLS

⌃3

100

k
n2 = 0.05 1 32.013 31.919 31.919 8.288 9.996 3.584

k
n2 = 0.1 0.5 36.190 34.689 34.689 10.470 12.761 5.012

k
n2 = 0.2 0.5 62.143 53.081 53.081 18.446 14.720 6.257

1000

k
n2 = 0.05 1 � � 2711.931 > T > T 759.724

k
n2 = 0.1 1 � � 4734.251 > T > T 875.344

k
n2 = 0.2 1 � � 5553.508 > T > T 1059.709

Table 3: Summary of comparison results for reconstruction of efficiency.

Model k⇥? � ⌃kF /k⌃kF Time

n N [4] [1] iSCOPT FLS [4] [1] iSCOPT FLS

⌃3

100

n/2 1.180 0.912 0.908 0.456 0.252 2.604

n 0.920 0.554 0.542 0.494 0.108 0.155

10n 0.396 0.192 0.190 0.451 0.108 0.054

2000

n/2 � 0.428 0.428 > T 350.145 203.515

n � 0.352 0.352 > T 385.340 167.688

10n � 0.211 0.209 > T 401.970 122.535

Zou 2012).

Sparse covariance estimates for portfolio
optimization
Classical mean-variance optimization (MVO) (Markowitz
1952) corresponds to the following optimization problem:

minimize
w

w

T
⌃w

subject to w

T
r = µ,

X

i

wi = C, wi � 0, 8i. (11)

Here, ⌃ 2 Sn+ is the true covariance matrix over a set of
asset returns, r 2 Rn denotes the true asset returns of n

stocks, w represents a weighted probability distribution over
the set of assets such that

P

i wi = C and C is the total
capital to be invested. Without loss of generality, one can
assume a normalized capital such that

P

i wi = 1. In such
case, wT

⌃w is both the risk of the investment as well as a
metric of variance of the portfolio selection.

In practice, both r and ⌃ are unknown and MVO re-
quires an estimation for both. Empirical estimates, such as
b

⌃, quickly become problematic in the large scale: the data
amount required increases quadratically to be commensu-
rate with the degree of dimensionality. Due to such diffi-
culties, even a simple equal weighted portfolio w such that
wi = 1/n, 8i, is often preferred in practice (DeMiguel, Gar-
lappi, and Uppal 2009). Nevertheless, practitioners assume
that many elements of the covariance matrix are zero, a prop-
erty which is appealing due to its interpretability and ease of

estimation. Moreover, there are cases in practice where most
of the variables are correlated to only a few others.

Figure 1 shows some representative correlation esti-
mates that we observed during the period 01.09.2009 and
31.08.2013. For this purpose, we use iSCOPT with � = 0.1

and ⇢ = 1 to solve PROBLEM I and sort the non-diagonal
elements of ⇥? to keep the most important correlations. We
observe in practice some strong correlations between assets,
while most of the rest entries in ⇥

? have significantly small
magnitude. This dataset contains 2833 stocks over a trading
period of 1038 days, crawled from the Yahoo Finance web-
site1. Stocks are retrieved from stock markets in the America
(e.g., Dow Jones, NYSE, etc.), Europe (e.g., London Stock
Exchange, etc.), Asia (e.g., Nikkei, etc) and Africa (e.g.,
South Africa’s exchange).
Out-of-sample performance with synthetic data: It is ap-
parent that both strong and weak correlations among stock
assets are evident in practice. The behavior of non-diagonal
entries in correlation matrix estimates is such that it is not
easily distinguishable whether small values indicate weak
dependence between variables or estimation fluctuations.
Under these settings, (Hero and Rajaratnam 2011) propose
that small values should be considered as zeros while only
large values can be considered as good covariate estimates.

To measure the performance of using a sparse covariance
estimate in MVO, we assume the following synthetic case:
Let ⌃ � 0 be a synthetically generated Gaussian covariance
matrix to represent the correlations among assets. Further-

1http://finance.yahoo.com
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AMEC AMEC Group UTX United Tech.
BAC Bank of America RCI Rogers Comm.
PKX Posco EMX EMX Industries

FXPO Ferrexpo ARM ARM Holdings
EOG EOG Resources AZEM Azem Chemicals
PTR PetroChina NCR NCR Electronics
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DB Deutsche Bank RVG Retro Virology

USB U.S. Bank Corp. SNY Sanofi health
AURR Aurora Russia IPO Intellectual Property
GLE Glencore VCT Victrex Chemicals
IBM IBM PEBI Port Erin BioFarma

Figure 1: We focus on three sectors: (i) bank industry (light purple), (ii) petroleum industry (dark purple), (iii) Computer
science and microelectronics industry (light yellow), (iv) Pharmaceuticals/Chemistry industry (green). Any miscellaneous
companies are denoted with dart yellow. Positive correlations are denoted with blue arcs; negative correlations with black arcs.
The width of the arcs denotes the strength of the correlation - here, the maximum correlation (in magnitude) is 0.3934.

Table 4: Summary of portfolio optimization results– all strategies considered achieve the requested return µ.
Model Risk wT⌃w

� k
n2 (%) w(

b⌃) wequal w(⇥?
)

⌃3

(n =

1000,
N = 90)

1.4 0.5 0.0760 0.0065 0.0053

1.7 1 0.0810 0.0078 0.0059

2.3 5 0.0902 0.0158 0.0129

2.7 7 0.1968 0.0188 0.0159

3.0 10 0.2232 0.0223 0.0196

3.8 15 0.2463 0.0267 0.0231

4.5 20 0.2408 0.0307 0.0257

4.5 30 0.4925 0.0375 0.0365

Model Risk wT⌃w

� k
n2 (%) w(

b⌃) wequal w(⇥?
)

⌃3

(n =

1000,
N = 180)

1.4 0.5 0.0223 0.0066 0.0050

1.7 1 0.0233 0.0076 0.0072

2.3 5 0.0513 0.0157 0.0115

2.7 7 0.0529 0.0183 0.0139

3.0 10 0.0706 0.0217 0.0177

3.8 15 0.0876 0.0264 0.0202

4.5 20 0.0872 0.0307 0.0227

4.5 30 0.1075 0.0373 0.0291

more, assume that only k entries of ⌃ are sufficiently larger
than the rest of the entries. In our experiments below we set
n = 1000 and consider a time window of N = 90, 180 days
(i.e., a 3- and 6-month sampling period).

Given the above, both b

⌃ and ⇥

? are calculated – we use
our algorithm for the latter. Using these two quantities, we
then solve (11) for ⌃  b

⌃ and ⌃  ⇥

? for various ex-
pected returns µ and record the computed minimum risk
portfolios w(

b

⌃) and w(⇥

?
), respectively. Finally, given

w(

b

⌃) and w(⇥

?
), as well as the equal-weight portfolio

wequal :=
1
n · n⇥1, we report the risk/variances achieved by

the constructed portfolios, using the ground truth covariance
⌃. In Table 4, we report lower variances wT

⌃w for portfo-
lios w trained when ⇥

? is used in (11), compared with the
risk achieved by the equally-weighted portfolio or the sam-
ple covariance estimation where b

⌃ is used. However, our
approach comes with some cost to compute ⇥?. The empir-
ical strategy with w(

b

⌃) has the worst performance in terms
of minimum risk achieved for most of our testings; we point
out that, in this case, b⌃ is a rank-deficient positive semidef-
inite matrix.

Discussion
A drawback of our approach is the combined setup of the
parameters � and ⇢: one needs to identify selections that
perform well on-the-fly, via a trial-and-error strategy. Un-
fortunately, such process might be inefficient in practice, es-
pecially in high dimensional cases. An interesting question
to pursue is the adaptive setup of at least one of �, ⇢. Such
adaptive strategies have attracted a great deal of interest ;
c.f., (Hale, Yin, and Zhang 2008). One idea is to devise a
path-following scheme with an adaptive ⇢ selection, where
the resulting scheme solves approximately a series of prob-
lems as ⇢! 0 is adaptively updated (Tran-Dinh, Kyrillidis,
and Cevher 2013b). We hope this paper triggers future ef-
forts towards this research direction for further investigation.
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