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Abstract

Density-based techniques seem promising for handling data
uncertainty in uncertain data clustering. Nevertheless, some
issues have not been addressed well in existing algorithms. In
this paper, we firstly propose a novel density-based uncertain
data clustering algorithm, which improves upon existing al-
gorithms from the following two aspects: (1) it employs an
exact method to compute the probability that the distance be-
tween two uncertain objects is less than or equal to a bound-
ary value, instead of the sampling-based method in previous
work; (2) it introduces new definitions of core object prob-
ability and direct reachability probability, thus reducing the
complexity and avoiding sampling. We then further improve
the algorithm by using a novel assignment strategy to en-
sure that every object will be assigned to the most appropriate
cluster. Experimental results show the superiority of our pro-
posed algorithms over existing ones.

Introduction
Clustering plays an important role in many fields such as
pattern recognition and data mining. Traditional clustering
algorithms deal with certain data. However, in many real ap-
plications only uncertain data is available, such as biomedi-
cal measurement (Liu et al. 2005), sensor networking (Desh-
pande et al. 2005), motion tracking (Trajcevski et al. 2004),
financial and market data analysis, meteorological forecast-
ing and so on (Aggarwal 2009). Uncertain data has posed a
huge challenge to traditional clustering algorithms.

Several algorithms for uncertain data clustering have
been proposed. Partition-based algorithms, e.g., UK-means
(Chau et al. 2006), UK-medoids (Gullo, Ponti, and Tagarelli
2008), extend traditional clustering algorithms k-means and
k-medoids by use of expected distance or uncertain distance.
However, these partition-based approaches could not handle
the uncertain information well (Gullo and Tagarelli 2012).
Density-based algorithms, e.g., FDBSCAN (Kriegel and
Pfeifle 2005a), do not suffer from the issues of the partition-
based algorithms. Nevertheless, there still exist several prob-
lems that have not been addressed well in FDBSCAN, which
is the foundation of other density-based algorithms.

In this paper, we firstly propose a novel density-based un-
certain data clustering algorithm which improves upon ex-
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isting algorithms from the following two aspects: (1) it em-
ploys an exact method to compute the probability that the
distance between two uncertain objects is less than or equal
to a boundary value, instead of the sampling-based method
in previous work; (2) it introduces new definitions of core
object probability and direct reachability probability, thus
reducing the complexity and avoiding sampling. We then
further improve the algorithm by introducing maximal di-
rect reachability probability instead of the fixed threshold
used in previous work to guarantee that every object will be
assigned to the most appropriate cluster. Experimental re-
sults show the superiority of our proposed algorithms over
existing ones.

Related Work
We briefly review the main algorithms for uncertain data
clustering. A comprehensive survey of uncertain data min-
ing could be found in (Aggarwal and Yu 2009).

Partition-based Algorithms
One of the earliest attempts to solve the problem of uncer-
tain data clustering is UK-means (Chau et al. 2006). It is an
adaptation of k-means by use of expected distance instead
of accurate distance. (Ngai et al. 2006), (Kao et al. 2008),
(Kao et al. 2010), (Ngai et al. 2011) and (Lukic, Köhler,
and Slavek 2012) improve the efficiency of UK-means with
some pruning techniques to avoid the computation of redun-
dant expected distances. CK-means (Lee, Kao, and Cheng
2007) is a variant of UK-means which resorts to the mo-
ment of inertia of rigid bodies in order to reduce the time for
computing expected distances. UK-medoids (Gullo, Ponti,
and Tagarelli 2008) employs uncertain distance for uncer-
tain data and exploits a k-medoids scheme. (Cormode and
McGregor 2008) proposes guaranteed approximation algo-
rithms for clustering uncertain data by using k-means, k-
median and k-center. MMvar (Gullo, Ponti, and Tagarelli
2010) takes a criterion based on the minimization of the vari-
ance of cluster mixture models. However, partition-based
approaches could not handle the uncertain information well
(Gullo and Tagarelli 2012).

Density-based Algorithms
The fuzzy version of the DBSCAN (Ester et al. 1996) al-
gorithm, FDBSCAN (Kriegel and Pfeifle 2005a), is the
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foundation of other density-based algorithms for uncertain
data clustering. FOPTICS (Kriegel and Pfeifle 2005b) is
extended from the hierarchical density-based clustering al-
gorithm OPTICS (Ankerst et al. 1999) to deal with uncer-
tain data. (Günnemann, Kremer, and Seidl 2010) extends the
density-based algorithm to subspace clustering for high di-
mensional uncertain data. Density-based algorithms do not
suffer from the issues of the partition-based algorithms, thus
they seem more promising for uncertain data. Nevertheless,
as we point out in the following section, there still exist sev-
eral problems that have not been addressed well.

FDBSCAN Issues
In this section, we review the FDBSCAN algorithm and
point out several issues that have not been addressed well.

FDBSCAN Basics
In general, data uncertainty can be considered at table, tuple
or attribute level, and is usually specified by fuzzy models,
evidence-oriented models, or probabilistic models (Sarma et
al. 2009). Here we focus on the attribute-level uncertainty
in a probabilistic model. In particular, an uncertain object is
represented by a probability density function (pdf), which
describes the probability that the object appears at any posi-
tion in a multidimensional space.

Definition 1 Distance Density Function: o and o′ are two
objects in database D. Let d : D×D → IR+

0 be a distance
function, and let P (a 6 d(o, o′) 6 b) denote the probability
that d(o, o′) is between a and b. Then a probability density
function pd : D × D → (IR+

0 → IR+
0 ∪ ∞) is called a

distance density function if the following condition holds:

P (a 6 d(o, o′) 6 b) =

∫ b

a

pd(o, o
′)dx (1)

Definition 2 Distance Distribution Function: o and o′ are
two objects in database D. Let d : D × D → IR+

0 be a
distance function, and let P (d(o, o′) 6 b) denote the prob-
ability that d(o, o′) is smaller than b. Then a probability
distribution function Pd : D × D → (IR+

0 → [0...1]) is
called a distance distribution function if the following con-
dition holds:

Pd(o, o
′)(b) = P (d(o, o′) 6 b) (2)

From definition 1, Pd(o, o′)(b) =
∫ b
−∞ pd(o, o

′)dx.

Definition 3 Core Object Probability: Let D be a database,
and let Pd : D × D → (IR+

0 → [0...1]) be a distance
distribution function. Then, the core object probability of an
object o is defined as:

P coreEps,MinPts,d,D(o) =
∑

A ⊆ D
|A| > MinPts∏

p∈A
Pd(p, o)(Eps)

∏
p′∈D\A

(1− Pd(p
′, o)(Eps))

(3)

where Eps denotes a distance threshold, MinPts denotes
the minimum number of objects contained in the Eps-range

Figure 1: Issues of FDBSCAN

of a core object. From this definition, we can get that the core
object probability P coreEps,MinPts,d,D(o) is equal to the prob-
ability value P (|NEps(o)| > MinPts), which indicates the
likelihood that o is a core object (Kriegel and Pfeifle 2005a).
|NEps(o)| denotes the number of the objects in the Eps-
range of o. If P coreEps,MinPts,d,D(o) > 0.5, object o can be
regarded as a core object.

Definition 4 Reachability Probability: Let D be a database,
and let Pd : D × D → (IR+

0 → [0...1]) be a distance
distribution function. p and o are two objects in D. Then,
the reachability probability of p w.r.t. o is defined as follows:

P reachEps,MinPts,d,D(p, o) = P coreEps,MinPts−1,d,D\{p}(o)

·Pd(p, o)(Eps)
(4)

If P reachEps,MinPts,d,D(p, o) > 0.5, object p can be regarded as
directly density-reachable to object o.

Based on the above definitions, FDBSCAN extends the
traditional DBSCAN algorithm for handling uncertain data.

Unaddressed Issues
The following issues are not addressed well in FDBSCAN.
Losing uncertain information: FDBSCAN does not pro-
vide an exact function for calculating pd(o, o

′). Instead, it
uses the sampling method to calculate the probability that
the distance between two uncertain objects is less than or
equal to a boundary value. However, sampling may lose
some uncertain information, even cause wrong results. Take
an example in Figure 1. a and o are two uncertain objects,
the rectangles are their uncertain regions, Eps is a distance
threshold. We need to calculate the probability that the dis-
tance between a and o is less than or equal to Eps. The sam-
pling rate is 3. If the sampling objects of a are a1, a2, a3 and
the sampling objects of o are o1, o2, o3, then the probability
we want to calculate equals 0. But the real distance between
a and o is probably less than or equal to Eps, i.e., the prob-
ability should not be 0.
High time complexity: When computing the core object
probability, FDBSCAN needs to determine for each sub-
set A of D having a cardinality higher than MinPts, the
probability that only the objects of A are within an Eps-
range of o but no objects of D\A (Kriegel and Pfeifle
2005a). So the number of the subsets we need to consider is
CMinPts
|D| +CMinPts+1

|D| + ...+C
|D|
|D| = 2|D|−C0

|D|−C1
|D|−

...−CMinPts−1
|D| , where C is the combinatorial symbol in the

binomial formula, MinPts denotes the minimum number
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of objects contained in the Eps-range of a core object and
|D| denotes the object number of the whole database. Thus
we nearly need to find every subset of the whole database if
MinPts is very small. Take an example in Figure 1. a, b, c,
d and o are five uncertain objects, the rectangles are their un-
certain regions. a, b, c and d are perhaps in the Eps-range of
o, MinPts is 2, if we want to get the core object probability
of o, we have to consider 25−C0

5 −C1
5 = 26 cases. Assume

that there are 500 uncertain objects in the Eps-range of o
and MinPts is very small, then the number of the subsets
we need to consider will be as large as 2500, so the compu-
tation is too time consuming.
Nonadaptive threshold: FDBSCAN applies a fixed thresh-
old (f value) to judge whether an object is a core object and
whether an object is directly density-reachable. The fixed
threshold may cause error. For example, there are two ob-
jects p, q and only one cluster T , we set f value = 0.5, the
direct reachability probability between p and any core ob-
ject in T is 0.51, the direct reachability probability between
q and any core object in T is 0.49. Because f value = 0.5, p
could be assigned to T , q could not be assigned to T , though
the direct reachability probability gap between p and q is
very small. Obviously it is not reasonable.

The Proposed Algorithms
In this section, we describe our new clustering algorithms
for uncertain data. Firstly we give some necessary defini-
tions. Secondly we present the basic algorithm. Thirdly we
propose an improved version of the algorithm by introduc-
ing a new assignment strategy. Finally we analyze the time
complexity of the proposed algorithms.

Definitions
Consider a set of uncertain objects D = {o1, o2, ..., on} in
m-dimensional independent space Rm with a distance func-
tion d : Rm ×Rm → R defining the distance d(oi, oj) > 0
between any objects oi, oj ∈ D. Each uncertain object
oi is associated with a probability density function (pdf)
fi : Rm → R, which gives the probability density of oi
in the uncertain region. The proposed algorithms are based
on the following definitions.

Definition 5 Given two uncertain objects oi, oj , whose as-
sociated pdfs are fi, fj respectively, x is the uncertain di-
mensionalities of oi, y is the uncertain dimensionalities of
oj , objects and dimensionalities are independent of each
other respectively, Eps is a distance threshold. Then the
probability of d(oi, oj) 6 Eps, denoted by Pd(oi,oj)6Eps,
is defined as:{

Pd(oi,oj)6Eps =
∫

x∈Rm

∫
y∈Rm

fi(x) · fj(y)dxdy

∀d(oi, oj) 6 Eps
(5)

Here fi(x) · fj(y) can be regarded as the joint probability
density function. d(oi, oj) 6 Eps is the additional limiting
condition for determining the integral interval.

Take an example in Figure 2, suppose there are two un-
certain objects ov and ow, either of them is in a linear uncer-
tain region with uniform distribution. The object ov moves

Figure 2: Computation of Equation 5

on x axis in [0, 3] and ow moves on y axis in [0, 4]. We
need to compute the probability that the distance between
ov and ow is less than or equal to 3. The pdfs of ov and
ow are fv = 1/3 and fw = 1/4 respectively, the con-
straint condition is d(ov, ow) 6 3, so the probability can
be computed as Pd(ov,ow)63 =

∫∫
fv(x) · fw(y)dxdy =

1/12 ·
∫ 3

0
dx
∫√9−x2

0
dy = 9π

48 .

Definition 6 op is an uncertain object in database D, ∀oi ∈
D, then the probability Eps-neighborhood of op, denoted by
PNeighborhood(op), is defined as:

PNeighborhood(op)←
{
oi|Pd(oi,op)6Eps > 0

}
(6)

Definition 7 op is an uncertain object in database D, ∀oi ∈
D, then PNEps(op) could be defined as:

PNEps(op) =
∑

oi∈PNeighborhood(op)

Pd(oi,op)6Eps (7)

Set a parameter MinPts which denotes the minimum num-
ber of objects contained in the Eps-range of a core object, if
PNEps(op) > MinPts, op can be treated as a core object.

Definition 8 op is an uncertain object in database D,
∀oi ∈ D, then the core object probability of op, denoted
by P coreEps,MinPts,D(op), is defined as:

P coreEps,MinPts,D(op) = PNEps(op)/ |NEps(op)| (8)

where |NEps(op)| is the number of the objects in
PNeighborhood(op).

Definition 9 Given two uncertain objects op and oq
in database D, op is a core object, then the di-
rect reachability probability of oq w.r.t. op, denoted by
P dir−reachEps,MinPts,D(oq, op), is defined as:

P dir−reachEps,MinPts,D(oq, op) = P coreEps,MinPts−1,D\{oq}(op)

·Pd(oq,op)6Eps
= (PNEps(op)− Pd(oq.op)6Eps)/

(|NEps(op)| − 1) · Pd(oq,op)6Eps

(9)

Explanation: P coreEps,MinPts−1,D\{oq}(op) means the prob-
ability that at least MinPts−1 objects from D\oq are lo-
cated in the Eps-range of op; Pd(oq,op)6Eps means the prob-
ability that the distance between op and oq is less than
or equal to Eps. As these two events are independent of
each other, their product means the probability that at least
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MinPts objects from D are located in the Eps-range of op
and oq is one of them.

Through these definitions, we can use the new methods to
compute core object probability and direct reachability prob-
ability, without finding most subsets of the whole dataset and
using any sampling method, thus reducing the complexity
and avoiding the loss of uncertain information.

PDBSCAN Algorithm
Our proposed algorithm is a probabilistic density-based un-
certain data clustering algorithm, called PDBSCAN. It is
based on the principle that a cluster is a set of objects which
are directly density-reachable from an arbitrary core object
in the cluster.

Algorithm 1 and Algorithm 2 show the details of
PDBSCAN algorithm and the expand cluster procedure.
clu num = k means the current cluster number is k, k is
a positive integer. class(i) = 0, −1 or 1...k respectively
means that the object oi currently does not belong to any
cluster, has been determined to belong to noise or belong to
cluster 1, ..., cluster k. type(i) = 0, −1 or 1 respectively
means the object oi is a border object, a noise object or a
core object. visited(i) = 1 or 0 respectively means the ob-
ject oi has been processed or not.

After a preliminary phase (Lines 1-2), PDBSCAN starts
from an unvisited object op, calculates the corresponding
PNeighborhood and PNEps (Lines 3-5). If PNEps equals
1, it indicates that the checked object is the only object in
its Eps-range, obviously it is a noise object (Lines 6-7). If
PNEps is between 1 and MinPts, the information is not
enough to straightly judge the type of the checked object,
PDBSCAN does not need to do anything here, so this if-
condition is left out in the algorithm. If PNEps is greater
than or equal to MinPts, it means that the checked object is
a core object, then PDBSCAN adds the objects whose direct
reachability probability from the checked object are greater
than or equal to the given threshold (f value) as the cluster
members (Lines 8-16), and calls the expand cluster proce-
dure which further expands the cluster by adding the objects
whose direct reachability probability from the core objects
in the cluster members are greater than or equal to the given
threshold (f value) (Line 17). After the expansion proce-
dure, if no objects can be added to the current cluster, the
algorithm finds another core object, adds cluster members
and expands the cluster. The procedure is repeated until no
objects can be added to any cluster, and the remaining ob-
jects are treated as outliers (Lines 21-23).

Improved PDBSCAN Algorithm
PDBSCAN has addressed the first two issues in FDBSCAN.
We continue to solve the third issue by using the maximal di-
rect reachability probability instead of the fixed direct reach-
ability probability threshold. The definition of the maximal
direct reachability probability is as below.

Definition 10 oi is an uncertain object in database D, for
an arbitrary core object op ∈ D, the maximal direct reach-
ability probability of oi, denoted by P dir−reach−max

Eps,MinPts,D (oi), is
defined as:

Algorithm 1 PDBSCAN
Input: Uncertain dataset D = {o1, o2, ..., on}, Eps, MinPts, f value

Output: A set of clusters, types of all objects in D

1: Compute the probability Pd(oi,oj)6Eps , ∀oi, oj ∈ D by Equation 5

2: Initialization: ∀oi ∈ D, class(i) = 0, type(i) = 0,
visited(i) = 0, clu num = 1

3: for each unvisited object op in dataset D do
4: Compute PNeighborhood(op) by Equation 6
5: Compute PNEps(op) by Equation 7
6: if PNEps(op) = 1 then
7: class(p)← −1,type(p)← −1,visited(p)← 1

8: else if PNEps(op) > MinPts then
9: class(p)← clu num,type(p)← 1,visited(p)← 1

10: Compute Pdir−reach
Eps,MinPts,D

(oi, op), ∀oi ∈ PNeighborhood(op)

11: for oi ∈ PNeighborhood(op) do
12: if Pdir−reach

Eps,MinPts,D
(oi, op) > f value then

13: class(i)← clu num

14: PNeighborhood(op)
′ ←

{oi|P
dir−reach
Eps,MinPts,D

(oi, op) > f value}
15: end if
16: end for
17: Expand cluster(PNeighborhood(op)

′, clu num, f value,MinPts)

18: clu num← clu num + 1

19: end if
20: end for
21: for each oi which satisfies class(i) = 0 do
22: class(i)← −1, type(i)← −1,visited(i)← 1

23: end for

Algorithm 2 Expand cluster(PNeighborhood(op)
′,

clu num, f value,MinPts)
1: for each object oq in PNeighborhood(op)

′ do
2: if oq is unvisited then
3: visited(q)← 1

4: Compute PNeighborhood(oq) by Equation 6
5: Compute PNEps(oq) by Equation 7
6: if PNEps(oq) > MinPts then
7: class(q)← clu num, type(q)← 1

8: Compute Pdir−reach
Eps,MinPts,D

(oi, oq), ∀oi ∈ PNeighborhood(oq)

9: for oi ∈ PNeighborhood(oq) do
10: if Pdir−reach

Eps,MinPts,D
(oi, oq) > f value then

11: class(i)← clu num

12: PNeighborhood(oq)
′ ←

{oi|P
dir−reach
Eps,MinPts,D

(oi, oq) > f value}
13: end if
14: end for
15: end if
16: PNeighborhood(op)

′ ←
PNeighborhood(op)

′ ∪ PNeighborhood(oq)
′

17: else if oq is visited then
18: Remove oq from PNeighborhood(op)

′

19: end if
20: end for

Algorithm 3 PDBSCANi
Input: Uncertain dataset D = {o1, o2, ..., on}, Eps, MinPts

Output: A set of clusters, types of all objects in D

1-10: The same with lines 1-10 in PDBSCAN, the only change is that PDBSCANi adds
Pdir−reach−max
Eps,MinPts,D

(oi) and its initialization value is 0
11: for oi ∈ PNeighborhood(op) do
12: if Pdir−reach

Eps,MinPts,D
(oi, op) > Pdir−reach−max

Eps,MinPts,D
(oi) then

13: class(i)← clu num

14: PNeighborhood(op)
′ ← {oi|

Pdir−reach
Eps,MinPts,D

(oi, op) > Pdir−reach−max
Eps,MinPts,D

(oi)}

15: Pdir−reach−max
Eps,MinPts,D

(oi)← Pdir−reach
Eps,MinPts,D

(oi, op)

16: end if
17: end for
18: Expand cluster max(PNeighborhood(op)

′,
clu num,Pdir−reach−max

Eps,MinPts,D
(oi),MinPts)

19-24: The same with lines 18-23 in PDBSCAN

P dir−reach−max
Eps,MinPts,D (oi)← max

{
P dir−reachEps,MinPts,D(oi, op)

}
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Algorithm 4 Expand cluster max(PNeighborhood

(op)
′, clu num,P dir−reach−max

Eps,MinPts,D (oi),MinPts)

1-9: The same with lines 1-9 in Expand cluster

10: if Pdir−reach
Eps,MinPts,D

(oi, oq) > Pdir−reach−max
Eps,MinPts,D

(oi) then
11: class(i)← clu num

12: PNeighborhood(oq)
′ ← {oi|

Pdir−reach
Eps,MinPts,D

(oi, oq) > Pdir−reach−max
Eps,MinPts,D

(oi)}

13: Pdir−reach−max
Eps,MinPts,D

(oi)← Pdir−reach
Eps,MinPts,D

(oi, oq)

14: end if
15-21: The same with lines 14-20 in Expand cluster

If oi is a core object, then P dir−reach−max
Eps,MinPts,D (oi) = 1; If oi is

a noise object, then P dir−reach−max
Eps,MinPts,D (oi) = 0.

Algorithm 3 and Algorithm 4 show the improved version
of PDBSCAN (PDBSCANi) and the new expand cluster
procedure. For PDBSCANi, the algorithm framework is
similar to PDBSCAN. Because of the limited space, the
same part has been left out in the algorithm description. The
important change is when finding cluster members, for each
object oi, with the update of the maximal direct reachabil-
ity probability of oi, PDBSCANi keeps recording the cor-
responding core object op from which oi gets the maximal
direct reachability probability, further assigns oi to the cor-
responding cluster which op belongs to.

Through this way, we can address the nonadaptive thresh-
old issue and guarantee that every object will be assigned
to the most appropriate cluster, thus further improving the
performance.

Time Complexity
For PDBSCAN, let n denote the number of uncertain ob-
jects, m denote the dimensionality of the uncertain data, S
denote the number of independent probability density func-
tions employed for representing probability distributions. In
the preparation phase, the computation of the probability
Pd(oi,oj)6Eps for ∀oi, oj ∈ D has a time complexity of
O(n2mS2). During the main loop, in the worst case we need
n scans, the time complexity is O(n). Then the overall time
complexity of the algorithm is O(n2mS2). PDBSCANi has
the same complexity as PDBSCAN.

Experiments
Settings
We use 7 UCI1 benchmark datasets for evaluation. The de-
scription of the datasets is shown in Table 1. These datasets
are originally established as collections of data with deter-
ministic values, we follow the method in (Gullo et al. 2008)
to generate uncertainty in these datasets. We generate uncer-
tainty with three kinds of distribution: uniform distribution,
normal distribution and Laplace distribution.

We compare PDBSCAN and PDBSCANi with exist-
ing typical uncertain data clustering algorithms, UK-means,
CK-means, UK-medoids, FDBSCAN and FOPTICS. For
UK-means, CK-means and UK-medoids, the sets of initial
centroids are randomly selected. Therefore, to avoid that the
clustering results are affected by random chance, we average

1http://archive.ics.uci.edu/ml/

Table 1: Datasets used in the experiment
Dataset Objects Attributes Classes

Iris 150 4 3
Wine 178 13 3
Glass 214 9 6
Ecoli 327 7 5
Yeast 1484 8 10
Image 2310 19 7

Abalone 4124 7 17

the results over 100 different runs. For FDBSCAN and FOP-
TICS, we follow the methods in (Kriegel and Pfeifle 2005a)
and (Kriegel and Pfeifle 2005b) respectively and choose a
sampling rate of s = 30. For FDBSCAN, FOPTICS, PDB-
SCAN and PDBSCANi, these algorithms are sensitive to pa-
rameters, so we adjust the parameters continuously until the
accuracy of each method becomes the best and stable, the
method of determining the parameters could refer to (Ester
et al. 1996) and (Ankerst et al. 1999).

Accuracy
We use purity (Manning, Raghavan, and Schütze 2008),
which is one of the most commonly used criteria, to evalu-
ate the accuracy of the clustering results. To compute purity,
each cluster is assigned to the class which is most frequent in
the cluster, and then the accuracy of this assignment is mea-
sured by counting the number of correctly assigned objects
and dividing by the whole number. Formally:

purity(Ω, C) =
1

N

∑
k

max
j
|wk ∩ cj | (10)

where Ω = {w1, w2, ..., wk} is the set of clusters and C =
{c1, c2, ..., ck} is the set of classes.

Table 2 shows the accuracy results. The last three rows of
this table report, for each algorithm, (i) the score for each
type of pdf averaged over all datasets (for short, Avg.); (ii)
the score averaged over all datasets and pdfs (for short, all
avg.score); (iii) the overall gain of PDBSCANi computed as
the difference between the overall average score of PDB-
SCANi and the overall average scores of the other algo-
rithms (for short, all avg.gain).

From the overall average scores, it can be seen that the
score of PDBSCANi is always higher than those of the other
algorithms. PDBSCAN also performs better than the com-
petitive algorithms in most cases, whereas PDBSCANi is
better than PDBSCAN with 0.0527 all avg.gain. Density-
based algorithms generally perform better than partition-
based algorithms on average, the reason is that the computa-
tion of expected distances or uncertain distances may cause
the loss of uncertain information. UK-medoids performs the
worst on average. PDBSCANi is the best with 0.7604 all
avg.score.

While the accuracy scores of the competitive algorithms
vary largely on different datasets, the accuracy score of
PDBSCANi is relatively stable with more than 0.5 in the
worst case. Specifically, for yeast and abalone, all the com-
petitive algorithms get very low accuracy scores. This is be-
cause that these two datasets both contain large numbers of
clusters which are highly imbalanced in sizes and complex
in distributions, thus they are hard for the competitive algo-
rithms to detect. However, PDBSCANi still gets more than
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Table 2: Accuracy results of the experiment
Dataset pdf UK-means CK-means UK-medoids FDBSCAN FOPTICS PDBSCAN PDBSCANi

Iris
Uniform 0.8760 0.8858 0.9533 0.9667 0.9733 0.9800 0.9800
Normal 0.7467 0.8600 0.8750 0.7933 0.9600 0.9533 0.9800
Laplace 0.7067 0.8733 0.8740 0.7800 0.9533 0.9200 0.9800

Wine
Uniform 0.7213 0.6757 0.7118 0.6742 0.6798 0.7584 0.8483
Normal 0.4916 0.6348 0.4899 0.6573 0.6685 0.7303 0.8146
Laplace 0.6742 0.6067 0.4893 0.6517 0.6742 0.7079 0.8146

Glass
Uniform 0.5706 0.5659 0.5098 0.5888 0.5093 0.6168 0.6168
Normal 0.4593 0.4631 0.4776 0.6215 0.5234 0.6402 0.6822
Laplace 0.4907 0.5248 0.4921 0.5748 0.5234 0.5935 0.6355

Ecoli
Uniform 0.7135 0.7119 0.6379 0.6850 0.7523 0.8135 0.8165
Normal 0.5841 0.7682 0.6599 0.6820 0.6850 0.7156 0.8991
Laplace 0.7645 0.6618 0.6453 0.6820 0.7462 0.7676 0.7982

Yeast
Uniform 0.3396 0.3394 0.3538 0.3854 0.4030 0.6651 0.6651
Normal 0.3346 0.3382 0.3313 0.3774 0.4023 0.6058 0.6806
Laplace 0.3384 0.3327 0.3323 0.3666 0.3982 0.6489 0.6631

Image
Uniform 0.5042 0.4920 0.4165 0.4766 0.5299 0.8359 0.8359
Normal 0.5246 0.5330 0.4679 0.4593 0.5290 0.7996 0.8398
Laplace 0.5143 0.5295 0.4862 0.4459 0.5294 0.6879 0.8286

Abalone
Uniform 0.2076 0.1662 0.2455 0.2000 0.2056 0.5335 0.5336
Normal 0.2162 0.1659 0.2224 0.1967 0.2049 0.4867 0.5456
Laplace 0.1988 0.1620 0.2067 0.1942 0.2022 0.4003 0.5112

Avg.
Uniform 0.5618 0.5481 0.5469 0.5681 0.5790 0.7433 0.7566
Normal 0.4796 0.5376 0.5034 0.5411 0.5676 0.7045 0.7774
Laplace 0.5268 0.5273 0.5037 0.5279 0.5753 0.6752 0.7473

all avg.score 0.5227 0.5377 0.5180 0.5457 0.5740 0.7077 0.7604
all avg.gain 0.2377 0.2227 0.2424 0.2147 0.1864 0.0527 —

(a) Iris (b) Wine (c) Glass (d) Ecoli

(e) Yeast (f) Image (g) Abalone

Figure 3: Efficiency results of the experiment

0.5 accuracy scores on these two datasets, since it avoids the
shortcomings of both partition-based algorithms and previ-
ous density-based algorithms.

In summary, PDBSCAN performs better than the com-
petitive algorithms, but not so good as PDBSCANi. PDB-
SCANi performs the best among all the tested algorithms.

Efficiency
Figure 3 shows the efficiency results (in milliseconds) on
different datasets for different distributions. From the re-
sults, it can be seen that UK-means and UK-medoids are the
two slowest algorithms. CK-means runs faster than our pro-
posed algorithms PDBSCAN and PDBSCANi on uniform
distribution, but slower than ours on the other two distri-
butions. The runtime of FOPTICS is always a little higher
than PDBSCAN and PDBSCANi. When the scale of the

database is small, the speed of FDBSCAN is almost equal to
PDBSCAN and PDBSCANi. However, it runs slower than
PDBSCAN and PDBSCANi on large scale datasets. Over-
all PDBSCAN and PDBSCANi are competitive compared
to other algorithms in terms of efficiency.

Conclusion
In this paper, we have proposed a novel density-based uncer-
tain data clustering algorithm, which improves upon existing
algorithms by new definitions and computational methods.
We then improve the algorithm by a more appropriate clus-
ter assignment strategy. The proposed algorithms address re-
maining issues in existing density-based algorithms. Exper-
imental results show that the proposed algorithms outper-
form existing algorithms in terms of accuracy. From an ef-
ficiency view, the proposed algorithms are also competitive
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compared to existing algorithms. For future work, we will
extend the definitions and methods to hierarchical clustering
and subspace clustering for uncertain data.
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