
Exact Subspace Clustering in Linear Time

Shusen Wang, Bojun Tu, Congfu Xu

College of Computer Science and Technology,
Zhejiang University, Hangzhou, China
{wss, tubojun, xucongfu}@zju.edu.cn

Zhihua Zhang
Key Laboratory of Shanghai Education Commission
for Intelligent Interaction and Cognitive Engineering,
Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai, China
zhihua@sjtu.edu.cn

Abstract

Subspace clustering is an important unsupervised learning
problem with wide applications in computer vision and data
analysis. However, the state-of-the-art methods for this prob-
lem suffer from high time complexity—quadratic or cubic
in n (the number of data instances). In this paper we ex-
ploit a data selection algorithm to speedup computation and
the robust principal component analysis to strengthen robust-
ness. Accordingly, we devise a scalable and robust subspace
clustering method which costs time only linear in n. We
prove theoretically that under certain mild assumptions our
method solves the subspace clustering problem exactly even
for grossly corrupted data. Our algorithm is based on very
simple ideas, yet it is the only linear time algorithm with
noiseless or noisy recovery guarantee. Finally, empirical re-
sults verify our theoretical analysis.

Introduction
Subspace clustering, also well known as subspace segmen-
tation, is an unsupervised learning problem widely stud-
ied in the literature (Adler, Elad, and Hel-Or 2013; Baba-
can, Nakajima, and Do 2012; Elhamifar and Vidal 2009;
Favaro, Vidal, and Ravichandran 2011; Li et al. 2012; Liu,
Lin, and Yu 2010; Liu, Xu, and Yan 2011; Lu et al. 2012;
2013; Soltanolkotabi and Candès 2011; Vidal 2011; Vidal,
Ma, and Sastry 2005; Wang et al. 2011; Wang and Xu 2013).
Given n unlabeled data instances X = [x1, · · · ,xn] ∈
Rd×n drawn from k subspaces S1, · · · ,Sk ⊂ Rd, subspace
clustering aims to find these k underlying subspaces. Sub-
space clustering has extensive applications in data analysis
and computer vision, such as dimensionality reduction (Vi-
dal, Ma, and Sastry 2005), rigid body motion segmenta-
tion (Rao et al. 2008; Tron and Vidal 2007; Vidal and Hart-
ley 2004), image clustering under varying illuminations (Ho
et al. 2003), image compression (Hong et al. 2006), image
segmentation (Yang et al. 2008), system identification (Vidal
et al. 2003), etc.

Many approaches have been proposed for dealing with
the subspace clustering problem. Among them the most ef-
fective ones are the optimization based methods, such as
sparse subspace clustering (SSC) (Adler, Elad, and Hel-
Or 2013; Elhamifar and Vidal 2009; Soltanolkotabi and

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Candès 2011), low-rank representation (LRR) (Liu, Lin,
and Yu 2010; Liu, Xu, and Yan 2011), subspace segmenta-
tion via quadratic programming (SSQP) (Wang et al. 2011),
groupwise constrained reconstruction method (GCR) (Li et
al. 2012), and the trace LASSO based method (Lu et al.
2013). These optimization based methods were illustrated
to achieve the state-of-the-art performance in terms of clus-
tering accuracy. In this paper we focus on the optimization
based methods. For the readers who are interested in other
subspace clustering methods, please refer to the review pa-
pers (Vidal 2011; Elhamifar and Vidal 2013).

The major drawback of the optimization-based meth-
ods is that their time complexity is high in n. Since the
methods work on a so-called self-expression matrix of size
n × n, they require at least O(n2) time to obtain the self-
expression matrix. The time complexity for solving the low-
rank representation model (LRR) of (Liu, Lin, and Yu 2010;
Liu, Xu, and Yan 2011) is even higher —O(n3). As a result,
these methods are prohibitive when facing a large number
of data instances. The application of the optimization based
methods is thereby limited to small-scale datasets.

In this paper we propose a subspace clustering method
which requires time only linear in n. Our method is based
on the idea of data selection. When n � d, there is much
redundancy in the data; a small number of the instances are
sufficient for reconstructing the underlying subspaces. Ac-
cordingly, we propose to solve the subspace clustering prob-
lem in three steps: selection, clustering, and classification.
Our approach first selects a few “informative” instances by
certain rules, then performs some subspace clustering algo-
rithm such as SSC or LRR over the selected data, and fi-
nally assigns each of the unselected instances to one of the
classes. Theoretical analysis shows that our method can sig-
nificantly reduce computational costs without affecting clus-
tering accuracy. If the subspaces are linearly independent,
our method is exact, as well as SSC (Elhamifar and Vidal
2009) and LRR (Liu, Lin, and Yu 2010).

Additionally, we observe that robust principal component
analysis (RPCA) (Candès et al. 2011) exactly recovers the
underlying sparse and low-rank matrices under certain as-
sumptions which are much milder than that of all the theoret-
ically guaranteed subspace clustering methods. So we pro-
pose to employ RPCA for denoising prior to subspace clus-
tering when the data are noisy. Interestingly, this simple idea

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2113

leads to a much tighter theoretical error bound than the ex-
isting subspace clustering methods (Liu, Xu, and Yan 2011;
Soltanolkotabi and Candès 2011). By combining RPCA and
data selection, we are able to solve the subspace clustering
problem exactly in linear time, even in presence of heavy
data noise.

In sum, this paper offers the following contributions:
• We devise a data selection algorithm to speedup subspace

clustering. Using data selection, subspace clustering can
be solved in time linear in n (i.e. the number of data in-
stance), while other optimization based methods all de-
mands time square or cubic in n.

• We prove theoretically that subspace clustering with data
selection is still exact on noiseless data. To the best of
our knowledge, our work provides the only linear time
algorithm with noiseless recovery guarantee.

• We propose to use the ensemble of data selection and
RPCA for subspace clustering, such that subspace clus-
tering can be solved exactly even when the data are heav-
ily noisy, and the time complexity is still linear in n. This
work is the first one to apply RPCA to subspace cluster-
ing; though simple and straightforward, this idea results
in the strongest known error bound among all subspace
clustering methods.
The remainder of this paper is organized as follows. We

first present the notation used in this paper, and make two
assumptions which are necessary for the correctness of sub-
space clustering. Then we we discuss some related work: the
optimization based subspace clustering methods and RPCA.
Next we describe our method in detail and show the theoret-
ical correctness of our method. Finally we conduct empirical
comparisons between our method and three state-of-the-art
methods on both synthetic and real-world data.

Notation and Assumptions
For a matrix A = [aij] ∈ Rd×n, let aj be its j-th column
and |A| = [|aij |] be the nonnegative matrix of A. Let [n]
denote the set {1, · · · , n}, I ⊂ [n] be an index set, Ī be
the set [n] \ I, and AI be an d × |I| matrix consisting of
the columns of A indexed by I. We let A = UAΣAVT

A
be the singular value decomposition (SVD) of A and σi
be the i-th top singular value of A. Then we define the
following matrix norms: ‖A‖1 =

∑
i,j |aij | denotes the

`1-norm, ‖A‖2,1 =
∑n

j=1 ‖aj‖2 denotes the `2,1-norm,
‖A‖F = (

∑
i,j a

2
ij)

1/2 denotes the Frobenius norm, and
‖A‖∗ =

∑
i σi be the nuclear norm of A. Furthermore, let

A† = VAΣ−1A UT
A be the Moore-Penrose inverse of A, and

BB†A be the projection of A onto the column space of B.
We make the following conventions throughout this pa-

per: n is the number of data instances and can be very
large; d is the dimension of each instance and is usually
small; X = [x1, · · · ,xn] is the data matrix. The n instances
are drawn from k subspaces S1, · · · ,Sk, each of dimension
r1, · · · , rk, respectively. We let r1 + · · · + rk = r. All of
the provable methods require the following two assump-
tions (Elhamifar and Vidal 2009; Liu, Lin, and Yu 2010;
Lu et al. 2012; Wang et al. 2011).

Assumption 1 (Inter-Subspace Independence). The k
subspaces are linearly independent: Si ∩ Sj = {0} for all
i 6= j. That is, no instance within a subspace can be ex-
pressed as a linear combination of instances on the rest sub-
spaces. This assumption implies that r = r1 + · · · + rk =
rank(X).

Assumption 2 (Inner-Subspace Dependence). For any
subspace Si (i ∈ [k]), the index set

L =
{
l ∈ [n]

∣∣ xl ∈ Si
}

cannot be partitioned into two non-overlapping sets L′ and
L′′ such that

Range
(
XL′

)⋂
Range

(
XL′′

)
= {0}.

Here Range(A) denotes the column space of matrix A.

The two assumptions are necessary for the correctness of
subspace clustering. If Assumption 1 is violated, which im-
plies that some instances can lie on multiple subspaces si-
multaneously, there are ambiguities in such instances. If As-
sumption 2 is violated, there are at least k + 1 linearly inde-
pendent subspaces underlying the data, which leads to that
the result of subspace clustering is not unique.

Related Work
Our work relies on the optimization-based subspace cluster-
ing methods (Elhamifar and Vidal 2009; Liu, Lin, and Yu
2010) and RPCA (Candès et al. 2011). We describe these
methods in this section.

Optimization Based Subspace Clustering Methods
Optimization based methods are the most effective ap-
proaches to the subspace clustering problem. The methods
include sparse subspace clustering (SSC) (Elhamifar and Vi-
dal 2009; Soltanolkotabi and Candès 2011), low-rank repre-
sentation (LRR) (Liu, Lin, and Yu 2010; Liu, Xu, and Yan
2011), subspace segmentation via quadratic programming
(SSQP) (Wang et al. 2011), etc.

Typically, the optimization based methods are based on
the idea of “self expression;” that is, each instance is ex-
pressed as a linear combination of the rest instances. Specif-
ically, one represents xi as xi =

∑
j 6=i wijxj and imposes

some regularization such that the resulting weight wij = 0
if xi and xj are drawn from different subspaces. By solving
such an optimization problem, one obtains the n × n self-
expression matrix W, which reflects the affinity between the
instances; i.e., large |wij | implies that xi and xj are more
likely on the same subspace. Finally, spectral clustering is
applied upon the similarity matrix 1

2 |W + WT | to obtain
the clustering results.

Under Assumptions 1 and 2, SSC and LRR solve the sub-
space clustering problem exactly (Elhamifar and Vidal 2009;
Liu, Lin, and Yu 2010). By further assuming that the angles
between the subspaces are large enough, SSQP also solves
the problem exactly (Wang et al. 2011). If the data are con-
taminated by noise, only SSC and LRR are guaranteed the-
oretically, which was studied in (Soltanolkotabi and Candès

2114

2011; Liu, Xu, and Yan 2011). Notice that SSC and LRR re-
quire relatively strong assumptions over the data noise. For
example, they allow only a small fraction of the n instances
corrupted, and LRR additionally requires the magnitude of
the noise be small.

In this paper we are mainly concerned with SSC and
LRR, because they have been theoretically guaranteed for
either clean data or contaminated data. But our method is
not restricted to SSC and LRR; all subspace clustering meth-
ods can fit in our framework. SSC seeks to obtain the self-
expression matrix W by solving the following optimization
problem:

min
W
‖X−XW‖2F + λ‖W‖1; s.t. diag(W) = 0. (1)

This takes at least O(n2) time if d is regarded as a constant.
LRR is built on the following optimization problem:

min
W
‖X−XW‖2,1 + λ‖W‖∗, (2)

which can be solved by the alternating direction method
with multiplier (ADMM) in O(n3) time (Lin, Liu, and Su
2011). Although another algorithm in (Lin, Liu, and Su
2011) solves this model in O(n2r) time, in our off-line ex-
periments, it is sometimes numerically instable when r is
not sufficiently small. So we use ADMM to solve LRR in
this paper.

Our work is also related to the distributed low-rank sub-
space segmentation method of (Talwalkar et al. 2013), which
is motivated by the divide-and-conquer matrix factorization
idea (Mackey, Talwalkar, and Jordan 2011). This method
can also perform subspace clustering exactly under some as-
sumptions, but the theoretical result is weaker than ours.

Robust Principal Component Analysis (RPCA)
The RPCA model (Candès et al. 2011) is a powerful tool
for low-rank and sparse matrix recovery. Assume that the
observed data matrix X is the superposition of a low-rank
matrix L0 and a sparse matrix S0. RPCA recovers the low-
rank component and the sparse component respectively from
the observation X by the following optimization model:

min
L,S
‖S‖1 + λ‖L‖∗; s.t. L + S = X. (3)

Many algorithms have been proposed for solving RPCA,
among which ADMM is the most widely used. The
ADMM algorithm of (Lin et al. 2009) runs in time
O(min{n2d, nd2}) for any d× n matrix X.

The theoretical analysis of (Candès et al. 2011) shows that
RPCA exactly recovers the low-rank component L0 and the
sparse component S0 from the observation X with probabil-
ity near 1, provided that the rank of L0 is not high and the
number of nonzero entries in S0 is not large. We observe that
the assumptions made by RPCA are much milder than those
of SSC (Soltanolkotabi and Candès 2011) and LRR (Liu,
Xu, and Yan 2011). The analysis for SSC (Soltanolkotabi
and Candès 2011) and LRR (Liu, Xu, and Yan 2011) allows
only a small fraction of the instances to be contaminated.
The analysis for LRR (Liu, Xu, and Yan 2011) makes fur-
ther assumptions on the magnitude of data noise. In contrast,

Algorithm 1 Exact Subspace Clustering in Linear Time
1: Input: data matrix X ∈ Rd×n, classes number k.
2: Denoising: process X using RPCA when the data are noisy;
3: Normalization: for l = 1, · · · , n, normalize xl such that
‖xl‖ = 1;

4: Selection: XI ← select a fraction of columns of X by Algo-
rithm 2;

5: Clustering: conduct subspace clustering for XI using a base
method, e.g., SSC or LRR;

6: Classification: assign each column of XĪ to one of the k
classes.

Algorithm 2 Data Selection
1: Input: data matrix X ∈ Rd×n, class number k, r = rank(X).
2: Initialize I0 = {p} for an arbitrary index p ∈ [n];
3: for i = 1, · · · , r − 1 do
4: Compute the residual D = X−XI0X

†
I0X;

5: Select an arbitrary index q ∈ Ī0 such that ‖dq‖ > 0;
6: Add q to I0;
7: end for
8: I ← I0; (its cardinality is |I0| = r)
9: Build a “disjoint sets” (Cormen et al. 2001, Chapter 21) data

structure (denoted by DS) which initially contains r sets:D1 =
{1}, · · · ,Dr = {r};

10: repeat
11: Select an arbitrary index from Ī without replacement,

say l;
12: Solve xl = XI0β to obtain βopt;
13: Compute J =

{
j
∣∣ |βopt

j | > 0
}

;
14: for each pair {i, j} ⊂ J do
15: In DS, find the sets containing i and j;
16: if the two sets are disjoint then
17: Add l to I if l 6∈ I, and union the two sets;
18: end if
19: end for
20: until there are no more than k sets in DS;
21: (Optional) Uniformly sample O(r) additional indices from Ī

and add them to I;
22: return XI .

RPCA does not make such requirements at all. We therefore
suggest using RPCA for preprocessing before subspace clus-
tering. Interestingly, this simple idea results in the strongest
error bound for subspace clustering.

Methodology
Our subspace clustering method is sketched in Algorithm 1
and described in detail in the following subsections. Af-
ter the denoising and normalization preprocess, our method
runs in three steps: selection, clustering, and classification.
Our method costs O(nr2d + nd2) time which is linear in
n, so it is especially useful when n � d, r. We defer the
theoretical analysis to the next section.

Denoising
We assume that the data are drawn from a union of low-rank
subspaces and then perturbed by noise and outliers. We thus
employ RPCA to process the observed data X. The RPCA
model (3) can be solved in O(nd2) time by ADMM (Lin

2115

et al. 2009). After solving (3), we replace X by its low-
rank component L. Under some mild assumptions, L is ex-
actly the uncontaminated data drawn from the low-rank sub-
spaces.

Data Selection
Our data selection algorithm is sketched in Algorithm 2. It
selects O(r) instances in O(nr2d) time. Here r is the sum
of the dimensions of the subspaces.

The subspace clustering problem requires recovering the
k subspaces from X. If the selected data XI also satisfy As-
sumptions 1 and 2, then the underlying k subspaces will be
recovered exactly from XI . So the aim of the data selection
algorithm is to make XI satisfy Assumptions 1 and 2. When
n � d, we show in Theorem 1 that a small subset of the n
instances suffices for reconstructing the k subspaces.

Theorem 1. Let XI be the matrix consists of the data
selected by Algorithm 2. We have that Range

(
XI
)

=

Range
(
X
)
. Furthermore, if the given data X satisfies As-

sumptions 1 and 2, the selected data XI also satisfies As-
sumptions 1 and 2. Algorithm 2 runs in O(nr2d) time.

More specifically, Range(XI) = Range(X) is achieved
by Lines 2 to 7 in the algorithm. Since X satisfies Assump-
tion 1, XI satisfies Assumption 1 trivially. Furthermore, the
selection procedure in Lines 9 to 20 makes XI satisfy As-
sumption 2.

Empirically, we find it better to implement the selection
operations in Line 5 and 11 randomly than deterministically,
and uniform sampling works well in practice. Furthermore,
Line 21 is optional and it does not affect the correctness of
the algorithm. When the data are clean, Line 21 is not neces-
sary; but when the data are perturbed by noise, Line 21 can
make the algorithm more robust.

Base Method
We have discussed previously that some methods fulfill
subspace clustering exactly when the data satisfy Assump-
tions 1 and 2. Theorem 1 ensures that, if the given data X
satisfy Assumptions 1 and 2, then the selected data instances
XI also satisfy Assumptions 1 and 2. So we can safely ap-
ply such a subspace clustering method upon the selected
data XI to reconstruct the underlying subspaces. We refer
to such a subspace clustering method as base method. For
example, SSC or LRR can be employed as a base method.

Classifying the Unselected Data Instances
After clustering the selected instances, the k subspaces are
reconstructed. The remaining problem is how to classify the
unselected instances into the k classes. It can be solved by
linear regression.

Let I be the index set corresponding to the selected in-
stances, and let I1, · · · , Ik be the clustering results of Line 5
in Algorithm 1. We have Ii ∩ Ij = ∅ for all i 6= j, and
I1 ∪ · · · ∪ Ik = I. Without loss of generality, we can re-
arrange the columns of XI to be XI =

[
XI1 , · · · ,XIk

]
.

Then for each of the unselected instances, say l ∈ Ī, we

solve the least-squares regression problem

bopt = argmin
b

∥∥xl −XIb
∥∥2

= argmin
b

∥∥∥xl −
k∑

i=1

XIib(i)

∥∥∥2

.

Letting boptT =
[
bopt
(1)

T
, · · · ,bopt

(k)

T]
, we assign xl to the

j-th class where
j = argmax

i∈[k]

∥∥bopt
(i)

∥∥.

In addition, if the column number of XI , i.e. the number of
selected instances, is greater than d, we impose a small `2-
norm penalty on b in the least square regression, which has
a closed form solution

bopt =
(
XT
IXI + εI

)−1
XT
Ixl,

where ε > 0 is the weight of the `2-norm penalty. Here one
can set ε to be a small constant.

Theoretical Analysis
In this section we show theoretically that our method solves
the subspace clustering problem exactly under certain mild
assumptions. We present our theoretical analysis for noise-
free data and noisy data respectively in the two subsections.
In both cases, our method requires only O(n) time as d and
r stay constant.

Subspace Clustering for Noise-free Data
If the data are noise-free, our method has the same theo-
retical guarantee as SSC (Elhamifar and Vidal 2009) and
LRR (Liu, Lin, and Yu 2010), which is stronger than
SSQP (Wang et al. 2011).
Theorem 2 (Exact Subspace Clustering for Noise-free
Data). Let Assumptions 1 and 2 hold for the given data X.
If the base method (Line 5 in Algorithm 1) solves the sub-
space clustering problem exactly, then Algorithm 1 (without
the denoising step) also solves the problem exactly for X.
Moreover, the time complexity of Algorithm 1 is linear in n.

Subspace Clustering for Noisy Data
If a small proportion of the entries in the data matrix are
contaminated by data noise, no matter what the magnitude of
the noise is, our method is guaranteed to solve the subspace
clustering problem exactly.

Suppose we are given a d × n data matrix X = X0 + S,
(n ≥ d), where X0 denotes the n instances drawn from
k subspaces of dimensions r1, · · · , rk, and S captures the
noise. Theorem 3 follows directly from Theorem 2 and
(Candès et al. 2011, Theorem 1.1).
Theorem 3 (Exact Subspace Clustering for Noisy Data).
Suppose that Assumptions 1 and 2 hold for X0, and the sup-
port of S is uniformly distributed among all sets of cardinal-
ity m. Then there exists a constant c such that with proba-
bility at least 1 − cn−10, Algorithm 1 solves the subspace
clustering problem exactly for X, provided that
r1 + · · ·+ rk ≤ ρrµ−1d(log n)−2 and m ≤ ρsnd,

where ρr and ρs are constants, and µ is the incoherence con-
stant for X0. Moreover, the time complexity of Algorithm 1
is linear in n.

2116

0 0.2 0.4 0.6 0.8 1 1.2
20

30

40

50

60

70

80

90

100

110

Ac
cu

ra
cy

 (%
)

Standard Deviation of the Gaussian Noises (σ)

RPCA+Selection+SSC
RPCA+Selection+LRR
Selection+SSC
Selection+LRR
SSC
LRR
SSQP

(a) Results on the data with 30% entries contami-
nated by i.i.d. Gaussian noiseN (0, σ2).

0 0.1 0.2 0.3 0.4 0.5
20

30

40

50

60

70

80

90

100

110

Ac
cu

ra
cy

 (%
)

Percentage of Contaminated Entries (%)

RPCA+Selection+SSC
RPCA+Selection+LRR
Selection+SSC
Selection+LRR
SSC
LRR
SSQP

(b) Results on the data contaminated by a proportion
of independent Bernoulli noise ±1.

Figure 1: Subspace clustering accuracy on the synthetic data.

Theorem 3 is the tightest known error bound for the sub-
space clustering problem. Theorem 3 is much stronger than
the error bounds of SSC (Soltanolkotabi and Candès 2011)
and LRR (Liu, Xu, and Yan 2011). Both SSC and LRR al-
low only a small fraction, not all, of the n instances to be
contaminated. Additionally, LRR requires the magnitude of
the noise be small. In contrast, our method does not make
such requirements at all.

Experiments
In this section we empirically evaluate our method in com-
parison with three state-of-the-art methods which have the-
oretical guarantees: sparse subspace clustering (SSC) (El-
hamifar and Vidal 2009), low-rank representation method
(LRR) (Liu, Lin, and Yu 2010), and subspace segmentation
via quadratic programming (SSQP) (Wang et al. 2011). Al-
though some other methods like the groupwise constrained
reconstruction (Li et al. 2012) and spectral local best-fit flats
(Zhang et al. 2012) achieves comparable accuracy with SSC
and LRR, they have no theoretical guarantee on subspace
clustering accuracy, so we do not compare with them. We
conduct experiments on both synthetic data and real-world
data. We denote our method by “Selection+SSC” if it em-
ploys SSC as the base method and “RPCA+Selection+SSC”
if it further invokes RPCA for denoising; the notations “Se-
lection+LRR” and “RPCA+Selection+LRR” are similarly
defined.

Setup
We conduct experiments on a workstation with Intel Xeon
2.4GHz CPU, 24GB memory, and 64bit Windows Server

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

100

200

300

400

500

600

700

800

900

1000

El
ap

se
d

Ti
m

e
(s

)

Data Instance Number n

RPCA+Selection+SSC
RPCA+Selection+LRR
SSC
LRR
SSQP

Figure 2: The growth of lapsed time with data instance num-
ber n.

2008 system. Our method is implemented in MATLAB; for
the three compared methods, we use the MATLAB code re-
leased by their authors. To compare the running time, we
set MATLAB in the single thread mode. Each of the SSC,
LRR and SSQP methods has one tuning parameter, while
our method has two tuning parameters: one for RPCA and
one for the base method. The parameters of each method are
all tuned best for each input dataset.

More specifically, our method has the following settings.
We use data selection only when the instance number n is
large, say n > 20r. In the data selection step, Line 21 in
Algorithm 2 is used such that exactly min{20r, n} instances
are selected. The selection operations in Line 5 and 11 in Al-
gorithm 2 are uniformly at random. In the classification step
(Line 6 in Algorithm 1), we use the least square regression
method (with a very small fixed `2-norm penalty when the
number of selected instances is greater than d).

We report the clustering accuracy and elapsed time of the
compared methods. When the data selection algorithm is ap-
plied, the results are nondeterministic, so we repeat the al-
gorithms ten times and report the means and standard devi-
ations of the clustering accuracy.

Synthetic Datasets
We generate synthetic data in the same way as that in (Liu,
Lin, and Yu 2010; Wang et al. 2011). The bases of each
subspace are generated by U(l+1) = TU(l) ∈ Rd×rl ,
where T ∈ Rd×d is a random rotation matrix, and U(1)

is a random matrix with orthogonal columns. Then we
randomly sample n

k instances from the l-th subspace by
X

(l)
0 = U(l)Q(l), where the sampling matrix Q(l) ∈ Rrl×n

k

is a standard Gaussian random matrix. We denote X0 =

[X
(1)
0 , · · · ,X(k)

0].
In the first set of experiments, we fix the data size to be

n = 1000, d = 100, k = 5, r1 = · · · = r5 = 4, and then
add varying noise to X0 to form data matrix X. The noise is
generated in the following ways.

• Noises with increasing magnitude. We add Gaussian
noise i.i.d. from N (0, σ2) to 30% entries of X0 to con-
struct X. We vary σ from 0 to 1.2 and report the clustering
accuracy in Figure 1(a).

2117

Table 1: Descriptions of the Hopkins155 Database and the Pen-Based Handwritten Digit Dataset.

Datasets in Hopkins155 (Tron and Vidal 2007) Handwritten Digit Dataset (Alimoglu and Alpaydin 1996)
#instance #feature #class #instance #feature #class
hundreds tens 2 or 3 10, 992 16 10

Table 2: Clustering accuracy and elapsed time of each method on the Hopkins155 Database and the Pen-Based Handwritten
Digit Dataset.

Selection+SSC Selection+LRR SSC LRR SSQP
Hopkins155 database (Tron and Vidal 2007)
Accuracy (%) 97.15± 0.45 96.80± 0.39 98.71 97.87 98.50
Time (s) 4, 508 217 12, 750 11, 516 3, 144

Pen-Based Handwritten Digit Dataset (Alimoglu and Alpaydin 1996)
Accuracy (%) 71.07± 4.78 71.96± 2.79 73.98 75.90 73.84
Time (s) 172 39 42, 596 1.17× 106 3.19× 105

• Noises added to an increasing proportion of entries. We
then add i.i.d. Bernoulli noise of ±1 to p% entries of X0

to construct X. We vary p% from 0 to 50% and report the
clustering accuracy in Figure 1(b).
In the second set of experiments, we analyze the growth

of the computation time with n. Here we fix d = 100, k =
5, r1 = · · · = r5 = 4, but vary n. We generate an d ×
n data matrix X0 and then add Gaussian noise i.i.d. from
N (0, 0.52) to 30% entries of the data matrix X0. We vary n
from 50 to 5, 000, and plot the running time of each method
in Figure 2.

The empirical results fully agree with our theoretical anal-
ysis. That is,
• The results in Figure 2 demonstrate the efficiency of our

method. Figure 2 shows that the elapsed time of our
method grows linearly (not constantly) in n, which is
much lower than the growth of SSC, LRR, and SSQP.

• The results in Figure 1 show that using RPCA for denois-
ing significantly improves the clustering accuracy. When
RPCA is invoked, the clustering results are not affected by
the magnitude of noise (see Figure 1(a)), and the methods
can still work well when all of the n instances are con-
taminated (see Figure 1(b)).

• The results in Figure 1 also show that, for the noisy data
(i.e. when RPCA is not invoked), using data selection
does not do much harm to clustering accuracy.
In sum, the above empirical results show that using data

selection and RPCA in subspace clustering is a great suc-
cess. Data selection brings tremendous speedup, and RPCA
makes subspace clustering more robust. Specifically, when
n � d, r, using data selection for subspace clustering leads
to significant speedup without affecting the accuracy much.
Moreover, when all of the n data instances are contaminated
or when the magnitude of noise is large, SSC and LRR are
liable to fail, while the RPCA+Selection ensemble method
still works well. This verifies our theoretical analysis.

Real-World Datasets
We also evaluate the subspace clustering methods on real-
world datasets—the Hopkins155 Database and the Pen-
Based Handwritten Digit Dataset—which are described in

Table 1 . The Hopkins155 Database contains 155 datasets
with varying instance numbers and feature numbers. We
choose the datasets because they satisfy that n � d, which
is the assumption of our method.

For the Hopkins155 Database, we set up the experi-
ments according to (Elhamifar and Vidal 2009; Liu, Lin,
and Yu 2010; Wang et al. 2011). For SSC, SSQP, and our
method, we project the data onto 12-dimension subspace
by PCA; for LRR, we use the original data without projec-
tion; such preprocess leads to higher accuracy, as was re-
ported in (Elhamifar and Vidal 2009; Liu, Lin, and Yu 2010;
Wang et al. 2011). Additionally, for our method, we do not
use RPCA (Line 2 in Algorithm 1) because the data are
nearly noise free. We report in Table 2 the average clustering
accuracy and total elapsed time on the 155 datasets.

For the Pen-Based Handwritten Digit Dataset, we directly
apply the subspace clustering methods without preprocess-
ing the data. We do not use RPCA for our method because
the feature size d = 16 is too small to satisfy the require-
ments by Theorem 3. The clustering accuracy and elapsed
time are also reported in Table 2.

The results on the real-world data demonstrate the effec-
tiveness and efficiency of our method. Our method achieves
clustering accuracy nearly as good as the state-of-the-art
methods, while the computational costs are dramatically re-
duced. Especially, on the Handwritten Digit Dataset where
n is large, LRR spends 13 days to fulfill the task, while our
“Selection+LRR” costs less than a minute to achieve a com-
parable clustering accuracy!

Conclusions
In this paper we have proposed a subspace clustering method
which has lower time complexity and tighter theoretical
bound than the state-of-the-art methods. The method em-
ploys data selection for speeding up computation and RPCA
for denoising, and the ensemble of the two techniques yields
an exact solution in time linear in n even for grossly cor-
rupted data. The experiments have further verified the effec-
tiveness and efficiency of our method.

Acknowledgement
Wang is supported by Microsoft Research Asia Fellowship
2013 and the Scholarship Award for Excellent Doctoral Stu-

2118

dent granted by Chinese Ministry of Education. Xu is sup-
ported by the National Natural Science Foundation of China
(No. 61272303) and the National Program on Key Basic Re-
search Project of China (973 Program, No. 2010CB327903).
Zhang is supported by the National Natural Science Founda-
tion of China (No. 61070239).

References
Adler, A.; Elad, M.; and Hel-Or, Y. 2013. Probabilistic
subspace clustering via sparse representations. Signal Pro-
cessing Letters, IEEE 20(1):63–66.
Alimoglu, F., and Alpaydin, E. 1996. Methods of com-
bining multiple classifiers based on different representations
for pen-based handwriting recognition. In Proceedings of
the Fifth Turkish Artificial Intelligence and Artificial Neural
Networks Symposium.
Babacan, S.; Nakajima, S.; and Do, M. 2012. Probabilistic
low-rank subspace clustering. In Advances in Neural Infor-
mation Processing Systems (NIPS).
Candès, E. J.; Li, X.; Ma, Y.; and Wright, J. 2011. Ro-
bust principal component analysis? Journal of the ACM
58(3):11:1–11:37.
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2001. Introduction to algorithms, 2ed. MIT press.
Elhamifar, E., and Vidal, R. 2009. Sparse subspace cluster-
ing. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).
Elhamifar, E., and Vidal, R. 2013. Sparse subspace cluster-
ing: Algorithm, theory, and applications. IEEE Transactions
on Pattern Analysis and Machine Intelligence 35(11):2765–
2781.
Favaro, P.; Vidal, R.; and Ravichandran, A. 2011. A closed
form solution to robust subspace estimation and clustering.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR).
Ho, J.; Yang, M.-H.; Lim, J.; Lee, K.-C.; and Kriegman, D.
2003. Clustering appearances of objects under varying il-
lumination conditions. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
Hong, W.; Wright, J.; Huang, K.; and Ma, Y. 2006. Multi-
scale hybrid linear models for lossy image representation.
IEEE Transactions on Image Processing 15(12):3655–3671.
Li, R.; Li, B.; Zhang, K.; Jin, C.; and Xue, X. 2012. Group-
wise constrained reconstruction for subspace clustering. In
International Conference on Machine Learning (ICML).
Lin, Z.; Chen, M.; Wu, L.; and Ma, Y. 2009. The augmented
lagrange multiplier method for exact recovery of corrupted
low-rank matrices. UIUC Technical Report, UILU-ENG-09-
2215.
Lin, Z.; Liu, R.; and Su, Z. 2011. Linearized alternating
direction method with adaptive penalty for low-rank repre-
sentation. In Advances in Neural Information Processing
Systems (NIPS).
Liu, G.; Lin, Z.; and Yu, Y. 2010. Robust subspace segmen-
tation by low-rank representation. In International Confer-
ence on Machine Learning (ICML).

Liu, G.; Xu, H.; and Yan, S. 2011. Exact subspace seg-
mentation and outlier detection by low-rank representation.
CoRR abs/1109.1646.

Lu, C. Y.; Zhu, L.; Yan, S.; and Huang, D. 2012. Robust and
efficient subspace segmentation via least squares regression.
In European Conference on Computer Vision (ECCV).

Lu, C.; Feng, J.; Lin, Z.; and Yan, S. 2013. Correlation adap-
tive subspace segmentation by trace lasso. In International
Conference on Computer Vision (ICCV).

Mackey, L. W.; Talwalkar, A.; and Jordan, M. I. 2011.
Divide-and-conquer matrix factorization. In Advances in
Neural Information Processing Systems (NIPS).

Rao, S.; Tron, R.; Ma, Y.; and Vidal, R. 2008. Motion
segmentation via robust subspace separation in the presence
of outlying, incomplete, or corrupted trajectories. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR).

Soltanolkotabi, M., and Candès, E. 2011. A geometric
analysis of subspace clustering with outliers. arXiv preprint
arXiv:1112.4258.

Talwalkar, A.; Mackey, L.; Mu, Y.; Chang, S.-F.; and Jordan,
M. I. 2013. Distributed low-rank subspace segmentation. In
International Conference on Computer Vision (ICCV).

Tron, R., and Vidal, R. 2007. A benchmark for the compari-
son of 3-d motion segmentation algorithms. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR).

Vidal, R., and Hartley, R. 2004. Motion segmentation with
missing data using power factorization and gpca. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR).

Vidal, R.; Soatto, S.; Ma, Y.; and Sastry, S. 2003. An al-
gebraic geometric approach to the identification of a class
of linear hybrid systems. In Proceeding of the 42nd IEEE
Conference on Decision and Control.

Vidal, R.; Ma, Y.; and Sastry, S. 2005. Generalized principal
component analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence 27(12):1–15.

Vidal, R. 2011. Subspace clustering. IEEE Signal Process-
ing Magazine 28(2):52–68.

Wang, Y.-X., and Xu, H. 2013. Noisy sparse subspace clus-
tering. In International Conference on Machine Learning
(ICML).

Wang, S.; Yuan, X.; Yao, T.; Yan, S.; and Shen, J. 2011.
Efficient subspace segmentation via quadratic programming.
In AAAI Conference on Artificial Intelligence (AAAI).

Yang, A.; Wright, J.; Ma, Y.; and Sastry, S. 2008. Un-
supervised segmentation of natural images via lossy data
compression. Computer Vision and Image Understanding
110(2):212–225.

Zhang, T.; Szlam, A.; Wang, Y.; and Lerman, G. 2012. Hy-
brid linear modeling via local best-fit flats. International
journal of computer vision 100(3):217–240.

2119

Proof of Theorems
Key Lemmas
Lemma 4. Let XI be the matrix consists of the data se-
lected by Algorithm 2. We have that

Range
(
XI0

)
= Range

(
XI
)

= Range
(
X
)
.

Proof. It is easy to show that the column space of XI0 ∈
Rd×r is exactly the same as X, i.e., Range

(
XI0

)
=

Range
(
X
)
, because X has a rank at most r. And since

I0 ⊂ I ⊂ [n], we have that

Range
(
XI0

)
⊂ Range

(
XI
)
⊂ Range

(
X
)
,

and thus Range
(
XI0

)
= Range

(
XI
)

= Range
(
X
)
.

Lemma 5. Assume the given data X satisfies Assumptions 1
and 2. Lines 9 to 20 in Algorithm 2 select at most r − k
columns. Finally, in the disjoint sets data structure, the in-
stances on the same subspace are in the same set, and in-
stances on different subspaces are in different sets. This pro-
cedure costs O(nr2d) time.

Proof. Here we study Lines 9 to 20 in Algorithm 2. After
Line 9, there are r sets in the disjoint set data structure DS.
Now we show that, under Assumptions 1 and 2, the r sets
will be combined into k disjoint sets.

Let S1, · · · ,Sk be the k underlying subspaces. Assump-
tion 1 ensures that we can partition the set I0 into k non-
overlapping sets I(1)0 , · · · , I(k)0 , such that the columns of X

indexed by I(p)0 are all on the subspace Sp. Lemma 4 en-
sures Range

(
XI0

)
= Range

(
X
)
, so we have that for any

l ∈ [n] there is some β ∈ Rr such that xl = XI0β. Without
loss of generality, we can rearrange the indices such that

XI0 = [XI(1)0
, · · · ,XI(k)

0
], βT = [βT

(1), · · · ,β
T
(k)].

If xl ∈ Sp, Assumption 1 implies that

xl =
k∑

i=1

XI(i)0
β(i) = XI(p)0

β(p),

that is,
β(i) = 0 for all i 6= p.

Thus instances from different subspaces can never appear in
the same set (in the disjoint set data structure DS) according
to the criterion in Line 14. It remains to be shown that data
instances on the same subspace will surely be grouped into
the same set (in the disjoint set data structure).

If the set I(p)0 could be further partitioned into two non-
overlapping sets J and K such that

Range
(
XJ

)⋂
Range

(
XK
)

= {0}

and the instances in {xi | i ∈ [n],xi ∈ Sp} were in either
Range(XJ) or Range(XK), then Assumption 2 would be
violated. Thus there does not exist two non-overlapping in-
dex sets J an K such that for any index l ∈

{
i ∈ [n] |xi ∈

Sp, i 6∈ I(p)0

}
, the solution βopt

(p) to the linear system

xl = XI(p)0
β(p)

is supported on either J or K. Therefore, finally in the data
structure DS, the instances on the same subspace are in the
same set; otherwise I(p)0 could be partitioned into such two
non-overlapping sets J and K.

Hence after Line 20, in the disjoint set data structure DS,
there are exactly k sets, and the instances on the same sub-
space are in the same set.

After Line 4 there are r non-overlapping sets. If a column
is selected in Line 17, then at least two sets are merged, and
the number of sets in DS decreases by at least 1. Therefore,
after at most r − k columns being selected, there are k dis-
joint sets in DS.

Now we analyze the time complexity. Solving the linear
equations in Line 12 requires O(r2d) time. Since β is a
r dimension vector, so there are no more than r2 pairs in
Line 14. The disjoint set data structure support union and
find in near constant time (Cormen et al. 2001, Chapter 21),
so Lines 14 to 19 require O(r2) time. This procedure runs
in at most n − r loops, so the overall time complexity is
O(nr2d).

Proof of Theorem 1
Proof. Firstly, Lemma 4 shows that Range

(
XI0

)
=

Range
(
XI
)

= Range
(
X
)
.

Assumption 1 holds for the data XI trivially. Now we
prove Assumption 2 holds for XI . Let S1, · · · ,Sk be the k
underlying subspaces. We can partition the set I into k non-
overlapping sets I(1), · · · , I(k) according to the k sets in
the data structure DS. Lemma 5 indicates that the instances
indexed by I(p) are on a same subspace Sp, for any p ∈ [k].
The construction in the proof of Lemma 5 ensure that I(p)
cannot be partitioned into two non-overlapping sets J and
K such that

Range
(
XJ

)⋂
Range

(
XK
)

= {0}.

Thus Assumption 2 also holds for the data XI .
Lines 2 to 7 run in r loops; each loop costs O(nrd)

time. Lines 9 to 20 costs O(nr2d) time, which is shown
by Lemma 5. Thus Algorithm 2 costs totally O(nr2d)
time.

Proof of Theorem 2
Proof. When the data are noise free, Algorithm 1 simply
skips the denoising step. Theorem 1 shows that the column
space of XI contains all of the k subspaces, and that the
selected data instances XI satisfies Assumptions 1 and 2.
So the clustering result of Line 5 exactly reconstructs the k
subspaces. Then we need only to assign the unselected data,
i.e., those indexed by Ī, to their nearest subspaces. This can
be done inO(nr2d) time, and the result is also exact because
the subspaces are independent.

In Algorithm 1, Line 2 costs O(nd2) time, Line 3 costs
O(nd) time, Line 4 costsO(nr2d) time, Line 5 costsO(r2)
orO(r3) time, and Line 6 costO(nr2d) time. Thus the time
complexity of our method isO(nr2d+nd2), which is linear
in n.

2120

