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Abstract

Classical approaches to visualization directly reduce a docu-
ment’s high-dimensional representation into visualizable two
or three dimensions, using techniques such as multidimen-
sional scaling. More recent approaches consider an interme-
diate representation in topic space, between word space and
visualization space, which preserves the semantics by topic
modeling. We call the latter semantic visualization problem,
as it seeks to jointly model topic and visualization. While pre-
vious approaches aim to preserve the global consistency, they
do not consider the local consistency in terms of the intrin-
sic geometric structure of the document manifold. We there-
fore propose an unsupervised probabilistic model, called SE-
MAFORE, which aims to preserve the manifold in the lower-
dimensional spaces. Comprehensive experiments on several
real-life text datasets of news articles and web pages show
that SEMAFORE significantly outperforms the state-of-the-art
baselines on objective evaluation metrics.

Introduction
Visualization of high-dimensional data is an important ex-
ploratory data analysis task, which is actively studied by var-
ious academic communities. While the HCI community is
interested in the presentation of information, as well as other
interface aspects (Chi 2000), the machine learning commu-
nity (as in this paper) is interested in the quality of dimen-
sionality reduction (Van der Maaten and Hinton 2008), i.e.,
how to transform the high-dimensional representation into
a lower-dimensional representation that can be shown on a
scatterplot. This visualization form is simple, and widely ap-
plicable across various domains. One pioneering technique
is Multidimensional Scaling (MDS) (Kruskal 1964). The
goal is to preserve the distances in the high-dimensional
space in the low-dimensional embedding. This goal also al-
lows an objective evaluation, by verifying how well the rela-
tionships among data points are preserved by the scatterplot.

Consider the problem of visualizing documents on a scat-
terplot. Commonly, a document is represented as a bag of
words, i.e., a vector of word counts. This high-dimensional
representation would be reduced into coordinates on a vi-
sualizable 2D (or 3D) space. When applied to documents,
a visualization technique for generic high-dimensional data,
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e.g., MDS, may not necessarily preserve the topical seman-
tics. Words are often ambiguous, with issues such as pol-
ysemy (same word carries multiple senses), and synonymy
(different words carry the same sense).

In text mining, the current approach to model semantics
in documents in a way that can resolve some of this ambi-
guity is topic modeling, such as PLSA (Hofmann 1999) or
LDA (Blei, Ng, and Jordan 2003). However, a topic model
by itself is not designed for visualization. While one possi-
ble visualization is to plot documents’ topic distributions on
a simplex, a 2D visualization space could express only three
topics, which is very limiting. By going from word space to
topic space, topic modeling is also a form of dimensionality
reduction. Given its utility in modeling document semantics,
we are interested in achieving both forms of dimensionality
reductions (visualization and topic modeling) together.

This coupling is a distinct task from topic modeling or vi-
sualization respectively, as it enables novel capabilities. For
one thing, topic modeling helps to create a richer visualiza-
tion, as we can now associate each coordinate on the visu-
alization space with both topic and word distributions, pro-
viding semantics to the visualization space. For another, the
tight integration potentially allows the visualization to serve
as a way to explore and tune topic models, allowing users to
introduce feedback to the model through a visual interface.
These capabilities support several use case scenarios. One
potential use case is a document organizer system. The visu-
alization can help in assigning categories to documents, by
showing how related documents have been labeled. Another
is an augmented retrieval system. Given a query, the results
may include not just relevant documents, but also other sim-
ilar documents (neighbors in the visualization).

Problem Statement. We refer to the task of jointly mod-
eling topics and visualization as semantic visualization. The
input is a set of documents D. For a specified number of
topics Z and visualization dimensionality (assumed to be
2D, without losing any generality), the goal is to derive, for
every document in D, a latent coordinate on the visualiza-
tion space, and a probability distribution over the Z topics.
While we focus on documents in our description, the same
approach would apply to visualization of other data types for
which latent factor modeling, i.e., topic model, makes sense.

One approach to solve this problem is to undergo two-
step reductions: going from word space to topic space using

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1960



topic modeling, followed by going from topic space to co-
ordinate space using visualization. This pipeline approach
is not ideal, because the disjoint reductions could mean that
errors may propagate from the first to the second reduction.

A better way is a joint approach that builds both reduc-
tions into a single, consistent whole that produces topic dis-
tributions and visualization coordinates simultaneously. The
joint approach was attempted by PLSV (Iwata, Yamada, and
Ueda 2008), which derives the latent parameters by maxi-
mizing the likelihood of observing the documents. This ob-
jective is known as global consistency, which is concerned
with the “error” between the model and the observation.

Crucially, PLSV has not cared to meet the local consis-
tency objective (Zhou et al. 2004), which is concerned with
preserving the observed proximity or distances between doc-
uments. Local consistency is reminiscent of the objective in
classical visualization (Kruskal 1964). This shortcoming is
related to PLSV’s assumption that the document space is Eu-
clidean (a geometrically flat space), by sampling documents’
coordinates independently in a Euclidean space.

The local consistency objective arises naturally from the
assumption that the intrinsic geometry of the data is a
low-rank, non-linear manifold within the high-dimensional
space. This manifold assumption is well-accepted in the ma-
chine learning community (Lafferty and Wasserman 2007),
and finds application in both supervised and unsupervised
learning (Belkin and Niyogi 2003; Zhou et al. 2004; Zhu
et al. 2003). Recently, there is a preponderance of evi-
dence that manifold assumption also applies to text data
in particular (Cai et al. 2008; Cai, Wang, and He 2009;
Huh and Fienberg 2012). We therefore propose to incorpo-
rate this manifold assumption into a new unsupervised, se-
mantic visualization model, which we call SEMAFORE.

Contributions. While visualization and topic modeling
are, separately, well-studied problems, the interface between
the two, semantic visualization, is a relatively new problem,
with very few previous work. To our best knowledge, we
are the first to propose incorporating manifold learning in
semantic visualization, which is our first contribution. As
a second contribution, to realize the manifold assumption,
we propose a probabilistic model SEMAFORE, with a spe-
cific manifold learning framework for semantic visualiza-
tion. Our third contribution is in describing the requisite
learning algorithm to fit the parameters. Our final contribu-
tion is the evaluation of SEMAFORE’s effectiveness on a se-
ries of real-life, public datasets of different languages, which
shows that SEMAFORE outperforms existing baselines on a
well-established and objective visualization metric.

Related Work
Classical visualization aims to preserve the high-
dimensional similarities in the low-dimensional embedding.
One pioneering work is multidimensional scaling (MDS)
(Kruskal 1964), which uses linear distance. Isomap
(Tenenbaum, De Silva, and Langford 2000) uses geodesic
distance, whereas LLE (Roweis and Saul 2000) uses
linear distance but only locally. These are followed by
a body of probabilistic approaches (Iwata et al. 2007;
Hinton and Roweis 2002; Van der Maaten and Hinton 2008;

Bishop, Svensén, and Williams 1998). They are not meant
for semantic visualization, as they do not model topics.

Semantic visualization is a new problem explored in very
few works. The state-of-the-art is the joint approach PLSV
(Iwata, Yamada, and Ueda 2008), which we use as a base-
line. In the same paper, it is shown that PLSV outperforms
the pipeline approach of PLSA (Hofmann 1999) followed
by PE (Iwata et al. 2007). LDA-SOM (Millar, Peterson,
and Mendenhall 2009) is another pipeline approach of LDA
(Blei, Ng, and Jordan 2003) followed by SOM (Kohonen
1990), which produces a different type of visualization.

Semantic visualization refers to joint topic modeling and
visualization of documents. A different task is topic visual-
ization, where the objective is to visualize the topics them-
selves (Chaney and Blei 2012; Chuang, Manning, and Heer
2012; Wei et al. 2010; Gretarsson et al. 2012), in terms of
dominant keywords, prevalence of topics, etc.

(Cai et al. 2008; Cai, Wang, and He 2009; Wu et al. 2012;
Huh and Fienberg 2012) study manifold in the context of
topic models only. The key difference is that we also need
to contend with the visualization aspect, and not only topic
modeling, which creates new research issues.

Semantic Visualization Model
We now describe our model, SEMAFORE, which stands for
SEmantic visualization with MAniFOld REgularization.

Problem Definition
The input is a corpus of documents D = {d1, . . . , dN}. Ev-
ery dn is a bag of words, and wnm denotes the mth word in
dn. The total number of words in dn is Mn. The objective
is to learn, for each dn, a latent distribution over Z topics
{P(z|dn)}Zz=1. Each topic z is associated with a parameter
θz , which is a probability distribution {P(w|θz)}w∈W over
words in the vocabulary W . The words with highest proba-
bilities for a given topic capture the semantic of that topic.

Unlike topic modeling, in semantic visualization, there is
an additional objective, which is to learn, for each document
dn, its latent coordinate xn on a low-dimensionality visual-
ization space. Similarly, each topic z is associated with a
latent coordinate φz on the visualization space. A document
dn’s topic distribution is then expressed in terms of the Eu-
clidean distance between its coordinate xn and the different
topic coordinates Φ = {φz}Zz=1, as shown in Equation 1.
The closer is xn to φz , the higher is the probability P(z|dn).

P(z|dn) = P(z|xn,Φ) =
exp( 1

2
||xn − φz||2)∑Z

z′=1 exp( 1
2
||xn − φz′ ||2)

(1)

Generative Process
We now describe the assumed generative process of docu-
ments based on both topics and visualization coordinates.
Our focus in this paper is on the effects of the manifold as-
sumption on the semantic visualization task. We figure that
the clearest way to showcase these effects is to design a man-
ifold learning framework over and above an existing gen-
erative process, such as PLSV (Iwata, Yamada, and Ueda
2008), which we review below.
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The generative process is as follows:
1. For each topic z = 1, . . . , Z:

(a) Draw z’s word distribution: θz ∼ Dirichlet(α)

(b) Draw z’s coordinate: φz ∼ Normal(0, β−1I)

2. For each document dn, where n = 1, . . . , N :
(a) Draw dn’s coordinate: xn ∼ Normal(0, γ−1I)

(b) For each word wnm ∈ dn:
i. Draw a topic: z ∼ Multi({P(z|xn,Φ)}Zz=1)

ii. Draw a word: wnm ∼ Multi(θz)

Here, α is a Dirichlet prior, I is an identity matrix, β and
γ control the variance of the Normal distributions. The pa-
rameters χ = {xn}Nn=1, Φ = {φz}Zz=1, Θ = {θz}Zz=1, col-
lectively denoted as Ψ = 〈χ,Φ,Θ〉, are learned from doc-
uments D based on maximum a posteriori estimation. The
log likelihood function is shown in Equation 2.

L(Ψ|D) =

N∑
n=1

Mn∑
m=1

log

Z∑
z=1

P(z|xn,Φ)P(wnm|θz) (2)

Manifold Learning
In the above generative process, the document parameters
are sampled independently, which may not necessarily re-
flect the underlying manifold. We therefore assume that
when two documents di and dj are close in the intrinsic
geometry of the manifold Ω, then their parameters ψi and
ψj are similar as well. To realize this assumption, we need
to address several issues, including the representation of the
manifold, and the mechanism to incorporate the manifold.

As a starting point, we consider the Laplacian Eigenmaps
framework for manifold learning (Belkin and Niyogi 2003).
It postulates that a low-dimensionality manifold relating
N high-dimensional data points can be approximated by a
k−nearest neighbors graph. The manifold graph contains an
edge connecting two data points di and dj , with the weight
ωij = 1, if di is in the setNk(dj) of the k−nearest neighbors
of dj , or dj is in the setNk(di). Otherwise, ωij = 0. By def-
inition, edges are symmetric, i.e., ωij = ωji. The collection
of edge weights are collectively denoted as Ω = {ωij}. The
edge weights are binary to isolate the effects of the manifold
graph structure. More complex similarity-based weighting
schemes are possible, and will be explored in the future.

ωij =

{
1, if di ∈ Nk(dj) or dj ∈ Nk(di)

0, otherwise
(3)

One effective means to incorporate a manifold structure
into a learning model is through a regularization framework
(Belkin, Niyogi, and Sindhwani 2006). This leads to a re-
design of the log-likelihood function in Equation 2 into a
new regularized function L (Equation 4), where Ψ consists
of the parameters (visualization coordinates and topic distri-
butions), and D and Ω are the documents and manifold.

L(Ψ|D,Ω) = L(Ψ|D)− λ

2
· R(Ψ|Ω) (4)

The first component L is the log-likelihood function in
Equation 2, which reflects the global consistency between

the latent parameters Ψ and the observation D. The second
componentR is a regularization function, which reflects the
local consistency between the latent parameters Ψ of neigh-
boring documents in the manifold Ω. λ is the regulariza-
tion parameter, commonly found in manifold learning algo-
rithms (Belkin, Niyogi, and Sindhwani 2006; Cai et al. 2008;
Cai, Wang, and He 2009), which controls the extent of regu-
larization (we experiment with different λ’s in experiments).

This design effectively subsumes PLSV as a special case
when λ = 0, and enables us to directly showcase the effects
of the manifold as the key differentiator in the model.

We now turn to the definition of the R function. The
intuition is that the data points that are close in the high-
dimensional space, should also be close in their low-rank
representations, i.e., local consistency. The justification is
the embedding maps approximate the Eigenmaps of the
Laplace Beltrami operator, which provides an optimal em-
bedding for the manifold. One function that satisfies this is
R+ in Equation 5. Here, F is a distance function that oper-
ates on the low-rank space. Minimizing R+ leads to mini-
mizing the distanceF(ψi, ψj) between neighbors (ωij = 1).

R+(Ψ|Ω) =

N∑
i,j=1;i6=j

ωij · F(ψi, ψj) (5)

The above level of local consistency is still insufficient,
because it does not regulate how non-neighbors (i.e., ωij =
0) behave. For instance, it does not prevent non-neighbors
from having similar low-rank representations. Another valid
objective in visualization is to keep non-neighbors apart,
which is satisfied by another objective functionR− in Equa-
tion 6.R− is minimized when two non-neighbors di and dj
(i.e., ωij = 0) are distant in their low-rank representations.
The addition of 1 to F is to prevent division-by-zero error.

R−(Ψ|Ω) =

N∑
i,j=1;i6=j

1− ωij

F(ψi, ψj) + 1
(6)

We hypothesize that neither objective is effective on its
own. A more complete objective would capture the spirits
of both keeping neighbors close, and keeping non-neighbors
apart. Therefore, in this paper, we propose a single function
that combines Equation 5 and Equation 6 in a natural way.
A suitable combination, which we propose in this paper, is
summation, as shown in Equation 7.

R∗(Ψ|Ω) = R+(Ψ|Ω) +R−(Ψ|Ω) (7)

Summation preserves the absolute magnitude of the dis-
tance, and helps to improve the visualization task by keep-
ing non-neighbors separated on a visualizable Euclidean
space. Taking the product is unsuitable, because it con-
straints the ratio of distances between neighbors to distances
between non-neighbors. This may result in the crowding ef-
fect, where many documents are clustered together, because
the relative ratio may be maintained, but the absolute dis-
tances on the visualization space could be too small.

Enforcing Manifold: Visualization vs. Topic Space. We
turn to the definition of F(ψ1, ψ2). In classical manifold
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learning, there is one low-rank representative space. For se-
mantic visualization, there are two: topic and visualization.
We look into where and how to enforce the manifold.

At first glance, they seem equivalent. After all, they are
representations of the same documents. However, this is not
necessarily the case. Consider a simple example of two top-
ics z1 and z2 with visualization coordinates φ1 = (0, 0) and
φ2 = (2, 0) respectively. Meanwhile, there are three doc-
uments {d1, d2, d3} with coordinates x1 = (1, 1), x2 =
(1, 1), and x3 = (1,−1). If two documents have the same
coordinates, they will also have the same topic distributions.
In this example, x1 and x2 are both equidistant from φ1 and
φ2, and therefore according to Equation 1, they have the
same topic distribution P(z1|d1) = P(z1|d2) = 0.5, and
P(z2|d1) = P(z2|d2) = 0.5. If two documents have the
same topic distributions, they may not necessarily have the
same coordinates. d3 also has the same topic distribution as
d1 and d2, but a different coordinate. In fact, any coordinate
of the form (1, ?) will have the same topic distribution.

This example suggests that enforcing manifold on the
topic space may not necessarily lead to having data points
closer on the visualization space. We postulate that reg-
ularizing the visualization space is more effective. There
are also advantages in computational efficiency to doing so,
which we will describe further shortly. Therefore, we define
F(ψi, ψj) as the squared Euclidean distance ||xi−xj ||2 be-
tween the corresponding visualization coordinates.

Model Fitting
One well-accepted framework to learn model parameters us-
ing maximum a posteriori (MAP) estimation is the EM al-
gorithm (Dempster, Laird, and Rubin 1977). For our model,
the regularized conditional expectation of the complete-data
log likelihood in MAP estimation with priors is:

Q(Ψ|Ψ̂) =
N∑

n=1

Mn∑
m=1

Z∑
z=1

P(z|n,m, Ψ̂) log
[
P(z|xn,Φ)P(wnm|θz)

]
+

N∑
n=1

log(P(xn)) +
Z∑

z=1

log(P(φz)) +
Z∑

z=1

log(P(θz))

−
λ

2
R(Ψ|Ω)

Ψ̂ is the current estimate. P(z|n,m, Ψ̂) is the class poste-
rior probability of the nth document and themth word in the
current estimate. P(θz) is a symmetric Dirichlet prior with
parameter α for word probability θz . P(xn) and P(φz) are
Gaussian priors with a zero mean and a spherical covariance
for the document coordinates xn and topic coordinates φz .
We set the hyper-parameters to α = 0.01, β = 0.1N and
γ = 0.1Z following (Iwata, Yamada, and Ueda 2008).

In the E-step, P(z|n,m, Ψ̂) is updated as follows:

P(z|n,m, Ψ̂) =
P(z|x̂n, Φ̂)P(wnm|θ̂z)∑Z

z′=1 P(z′|x̂n, Φ̂)P(wnm|θ̂z′)

In the M-step, by maximizingQ(Ψ|Ψ̂) w.r.t θzw, the next
estimate of word probability θzw is as follows:

θzw =

∑N
n=1

∑Mn
m=1 I(wnm = w)P(z|n,m, Ψ̂) + α∑W

w′=1

∑N
n=1

∑Mn
m=1 I(wnm = w′)P(z|n,m, Ψ̂) + αW

I(.) is the indicator function. φz and xn cannot be solved
in a closed form, and are estimated by maximizing Q(Ψ|Ψ̂)
using quasi-Newton (Liu and Nocedal 1989).

We compute the gradients of Q(Ψ|Ψ̂) w.r.t φz and xn re-
spectively as follows:

∂Q

∂φz

=

N∑
n=1

Mn∑
m=1

(
P(z|xn,Φ)− P(z|n,m, Ψ̂)

)
(φz − xn)− βφz

∂Q

∂xn

=

Mn∑
m=1

Z∑
z=1

(
P(z|xn,Φ)− P(z|n,m, Ψ̂)

)
(xn − φz)− γxn

−
λ

2

∂R(Ψ|Ω)

∂xn

The gradient ofR(Ψ|Ω) w.r.t. xn is computed as follows:

∂R(Ψ|Ω)

∂xn
=

∑
j=1;j 6=n

(
4ωnj(xn − xj)

)
−

∑
j=1;j 6=n

(
4(1− ωnj)

(xn − xj)
(F(ψn, ψj) + 1)2

)
As mentioned earlier, there is an efficiency advantage to

regularizing on the visualization space. R(Ψ|Ω) does not
contain the variable φz if we do regularization on visual-
ization space. The complexity of computing all ∂R(Ψ|Ω)

∂xn
is

O(N2). In contrast, if we do regularization on topic space,
we have to take the gradient of R(Ψ|Ω) w.r.t to φz . That
contributes towards a greater complexity of O(Z2 × N2)

to compute all ∂R(Ψ|Ω)
∂θz

. Therefore, regularization on topic
space would run much slower than on visualization space.

Experiments
Experimental Setup
Datasets. We use three real-life, publicly available datasets1

for evaluation. 20News contains newsgroup articles (in En-
glish) from 20 classes. Reuters8 contains newswire articles
(in English) from 8 classes. Cade12 contains web pages (in
Brazilian Portuguese) classified into 12 classes. These are
benchmark datasets frequently used for document classifica-
tion. While our task is fully unsupervised, the ground-truth
class labels are useful for an objective evaluation.

Following (Iwata, Yamada, and Ueda 2008), we create
balanced classes by sampling fifty documents from each
class. This results in, for one sample, 1000 documents for
20News, 400 for Reuters8, and 600 for Cade12. The vo-
cabulary sizes are 5.4K for 20News, 1.9K for Reuters8,
7.6K for Cade12. As the algorithms are probabilistic, we
generate five samples for each dataset, conduct five runs for
each sample, and average the results across a total of 25 runs.

1http://web.ist.utl.pt/acardoso/datasets/
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Metric. For a suitable metric, we return to the funda-
mental principle that a good visualization should preserve
the relationship between documents (in high-dimensional
space) in the lower-dimensional visualization space. User
studies, even when well-designed, could be overly subjec-
tive and may not be repeatable across different users reli-
ably. Therefore, for a more objective evaluation, we rely on
the ground-truth class labels found in the datasets. This is
a well-established practice in many clustering and visualiza-
tion works in machine learning. The basis for this evaluation
is the reasonable assumption that documents of the same
class are more related than documents of different classes,
and therefore a good visualization would place documents of
the same class as near neighbors on the visualization space.

For each document, we hide its true class, and predict its
class by taking the majority class among its t-nearest neigh-
bors as determined by Euclidean distance on the visualiza-
tion space. Accuracy(t) is defined as the fraction of docu-
ments whose predicted class matches the truth. By default,
we use t = 50, because there are 50 documents in each class.
The same metric is used in (Iwata, Yamada, and Ueda 2008).
While accuracy is computed based on documents’ coordi-
nates, the same trends will be produced if computed based
on topic distributions (due to their coupling in Equation 1).

Comparative Methods. As semantic visualization seeks
to ensure consistency between topic model and visualiza-
tion, the comparison focuses on methods producing both
topics and visualization coordinates, which are listed in Ta-
ble 1. SEMAFORE is our proposed method that incorpo-
rates manifold learning into semantic visualization. PLSV
is the state-of-the-art, representing the joint approach with-
out manifold. LDA/MDS represents the pipeline approach,
topic modeling with LDA (Blei, Ng, and Jordan 2003), fol-
lowed by visualizing documents’ topic distributions with
MDS (Kruskal 1964). There are other pipeline methods,
shown inferior to PLSV in (Iwata, Yamada, and Ueda 2008),
which are not reproduced here to avoid duplication.

Parameter Study
We study the effects of model parameters. Due to space con-
straint, we rely on 20News for this discussion (similar ob-
servations can be made for the other two datasets). When
unvaried, the defaults are number of topics Z = 20, neigh-
borhood size k = 10, and regularizationR∗ with λ = 1.

Regularization. One consideration is the regularization
component, both the function as well as the λ. To investigate
this, we compare our three proposed functions: neighbor
onlyR+ (Equation 5), non-neighbor onlyR− (Equation 6),
and combined R∗ (Equation 7). For completeness, we in-
clude another functionRDTM , proposed by (Huh and Fien-
berg 2012) for a different context (topic modeling alone).

Figure 1(a) shows the accuracy at different settings of
λ ∈ [0.1, 1000] (log scale). Among the three proposed func-
tions,R∗ has the best accuracy at any λ, which is as hypoth-
esized given that it incorporates the manifold information
from both neighbors and non-neighbors. R∗ is also signifi-
cantly better thanRDTM , which is not designed for seman-
tic visualization.R+ andR− are worse thanRDTM , which
also incorporates some information from non-neighbors. As

Visualization Topic model Joint model Manifold
SEMAFORE X X X X
PLSV X X X
LDA/MDS X X

Table 1: Comparative Methods
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Figure 1: SEMAFORE: Vary Parameters

λ increases, R∗’s accuracy initially increases, but stabilises
from λ = 1 onwards. Subsequently, we useR∗ at λ = 1.

Neighborhood Size. To construct the manifold graph
Ω = {ωij}, we represent each document as a tf-idf vector.
We have experimented with different vector representations,
including word counts and term frequencies, and found tf-idf
to give the best results. The distance between two document
vectors is measured using cosine distance. The k−nearest
neighbors to i is assigned ωij = 1. The rest are assigned
ωij = 0. In Figure 1(b), we plot the accuracy for different
k’s, withR∗ and λ = 1. As k increases, the accuracy at first
increases, and then decreases. This is expected as neighbors
that are too far away may no longer be related, and begin to
introduce noise into the manifold. The optimum is k = 10.

Comparison against Baselines
Accuracy. In Figure 2(a), we show the performance in
accuracy(50) on 20News, while varying the number of
topics Z. Figures 2(c) and 2(e) show the same for Reuters8
and Cade12 respectively. From these figures, we draw the
following observations about the comparative methods. (#1)
SEMAFORE performs the best on all datasets across vari-
ous numbers of topics (Z). The margin of performance with
respect to PLSV is statistically significant in all cases. SE-
MAFORE beats PLSV by 20% to 42% on 20News, by 8–
21% on Reuters8, and by 22–32% on Cade12. This ef-
fectively showcases the utility of manifold learning in en-
hancing the quality of visualization. (#2) PLSV performs
better than LDA/MDS, which shows that there is utility to
having a joint, instead of separate, modeling of topics and
visualization. (#3) In Figures 2(b), 2(d), and 2(f), we show
the accuracy(t) at different t’s for Z = 20 for the three
datasets. The accuracy(t) values are stable. At any t, the
comparison shows outperformance by SEMAFORE over the
baselines. (#4) The above accuracy results are based on vi-
sualization coordinates. We have also computed accuracies
based on topic distributions, which have similar trends.

Heretofore, we will focus on the comparison between SE-
MAFORE and the closest competitor PLSV.
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Figure 2: Accuracy Comparison

Visualization. To provide an intuitive appreciation, we
briefly describe a qualitative comparison of visualizations.
Figure 4 shows a visualization of 20News dataset as a scat-
terplot (best seen in color). Each document has a coordinate,
and is assigned a shape and color based on its class. Each
topic also has a coordinate, drawn as a black, hollow circle.
SEMAFORE’s Figure 4(a) shows that the different classes
are well separated. There are distinct blue cluster and pur-
ple cluster on the right for hockey and baseball classes re-
spectively, orange and pink clusters at the top for cryptog-
raphy and medicine, etc. Beyond individual classes, the vi-
sualization also places related classes2 nearby. Computer-
related classes are found on the lower left. Politics and reli-
gion classes are on the lower right. Figure 4(b) by PLSV is
significantly worse. There is a lot of crowding at the center.
For instance, motorcycle (green) and autos (red) are mixed
at the center without a good separation.

Figure 5 shows the visualization outputs for Reuters8
dataset. SEMAFORE in Figure 5(a) is better at separating
the eight classes into distinct clusters. In an anti-clockwise
direction from the top, we have green triangles (acq), red
squares (crude), purple crosses (ship), blue asterisks (grain),
red dashes (interest), navy blue diamonds (money-fx), or-
ange circles (trade), and finally the light blue earn on the

2http://qwone.com/∼jason/20Newsgroups/
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Figure 3: Perplexity Comparison

upper right. In comparison, PLSV in Figure 5(b) shows that
several classes are intermixed at the center, including red
dashes (interest), orange circles (trade), and navy blue dia-
monds (money-fx). Figure 6 shows the visualization outputs
for Cade12. This is the most challenging dataset. Even so,
SEMAFORE in Figure 6(a) still achieves a better separation
between the classes, as compared to PLSV in Figure 6(b).

Perplexity. One question is whether SEMAFORE’s gain
in visualization quality over the closest baseline PLSV is
at the expense of the topic model. To investigate this, we
compare the perplexity of SEMAFORE and PLSV, which
share a core generative process. Perplexity is a well-accepted
metric that measures the generalization ability of a topic
model on a held-out test set. For each dataset, we draw a
sixth sample as test set, excluding documents that already
exist in the first five samples. Perplexity is measured as
exp{−

∑M
d=1 log p(wd)∑M

d=1Nd
}, where M is the number of docu-

ments in the test set, Nd is the number of words in a doc-
ument, and p(wd) is the likelihood of a test document by a
topic model. Lower perplexity is better.

Figure 3 shows the perplexity as the number of topics Z
varies. Perplexity values for both SEMAFORE and PLSV are
close. In most cases (13 out of 15 cases), t-tests at 1% signif-
icance level indicate that the differences are not significant,
except for a couple of data points (in 1 case SEMAFORE is
better, in 1 case PLSV is better). This result is not unex-
pected, as both are optimized for log-likelihood. SEMAFORE
further ensures that the document parameters (coordinates
and topic distributions) that optimize the log-likelihood also
better reflect the manifold. Our emphasis is on enhancing
visualization, and indeed SEMAFORE’s gain in visualization
quality has not hurt the generalizability of its topic model.

Conclusion
We address the semantic visualization problem, which
jointly conducts topic modeling and visualization of docu-
ments. We propose a new framework to incorporate man-
ifold learning within a probabilistic semantic visualization
model called SEMAFORE. Experiments on real-life datasets
show that SEMAFORE significantly outperforms the base-
lines in terms of visualization quality, providing evidence
that manifold learning, together with joint modeling of top-
ics and visualization, is important for semantic visualization.
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Figure 4: Visualization of 20News for Z = 20

Figure 5: Visualization of Reuters8 for Z = 20

Figure 6: Visualization of Cade12 for Z = 20
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