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Abstract

Dropout and other feature noising schemes have shown
promising results in controlling over-fitting by artifi-
cially corrupting the training data. Though extensive
theoretical and empirical studies have been performed
for generalized linear models, little work has been done
for support vector machines (SVMs), one of the most
successful approaches for supervised learning. This
paper presents dropout training for linear SVMs. To
deal with the intractable expectation of the non-smooth
hinge loss under corrupting distributions, we develop an
iteratively re-weighted least square (IRLS) algorithm by
exploring data augmentation techniques. Our algorithm
iteratively minimizes the expectation of a re-weighted
least square problem, where the re-weights have closed-
form solutions. The similar ideas are applied to de-
velop a new IRLS algorithm for the expected logistic
loss under corrupting distributions. Our algorithms of-
fer insights on the connection and difference between
the hinge loss and logistic loss in dropout training. Em-
pirical results on several real datasets demonstrate the
effectiveness of dropout training on significantly boost-
ing the classification accuracy of linear SVMs.

Introduction

Artificial feature noising augments the finite training data
with an infinite number of corrupted versions, by corrupting
the given training examples with a fixed noise distribution.
Among the many noising schemes, dropout training (Hin-
ton et al. 2012) is an effective way to control over-fitting by
randomly omitting subsets of features at each iteration of a
training procedure. By formulating the feature noising meth-
ods as minimizing the expectation of some loss functions
under the corrupting distributions, recent work has provided
theoretical understandings of such schemes from the per-
spective of adaptive regularization (Wager, Wang, and Liang
2013); and has shown promising empirical results in vari-
ous applications, including document classification (van der
Maaten et al. 2013; Wager, Wang, and Liang 2013), named
entity recognition (Wang et al. 2013), and image classifica-
tion (Wang and Manning 2013).

Regarding the loss functions, though much work has been
done on the quadratic loss, logistic loss, or the log-loss in-
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duced from a generalized linear model (GLM) (van der
Maaten et al. 2013; Wager, Wang, and Liang 2013; Wang
et al. 2013), little work has been done on the margin-based
hinge loss underlying the very successful support vector ma-
chines (SVMs) (Vapnik 1995). One technical challenge is
that the non-smoothness of the hinge loss makes it hard to
compute or even approximate its expectation under a given
corrupting distribution. Existing methods are not directly
applicable, therefore calling for new solutions. This paper
attempts to address this challenge and fill up the gap by
extending dropout training as well as other feature noising
schemes to support vector machines.

Previous efforts on learning SVMs with feature noising
have been devoted to either explicit corruption or an ad-
versarial worst-case analysis. For example, virtual support
vector machines (Burges and Scholkopf 1997) explicitly
augment the training data, which are usually support vec-
tors from previous learning iterations for computational effi-
ciency, with additional examples that are corrupted through
some invariant transformation models. A standard SVM is
then learned on the corrupted data. Though simple and ef-
fective, such an approach lacks elegance and the compu-
tational cost of processing the additional corrupted exam-
ples could be prohibitive for many applications. The other
work (Globerson and Roweis 2006; Dekel and Shamir 2008;
Teo et al. 2008) adopts an adversarial worst-case analysis to
improve the robustness of SVMs against feature deletion in
testing data. Though rigorous in theory, a worst-case sce-
nario is unlikely to be encountered in practice. Moreover,
the worst-case analysis usually results in solving a complex
and computationally demanding problem.

In this paper, we show that it is efficient to train lin-
ear SVM predictors on an infinite amount of corrupted
copies of the training data by marginalizing out the cor-
ruption distributions, an average-case analysis. We concen-
trate on dropout training, but the results are directly applica-
ble to other noising models, such as Gaussian, Poisson and
Laplace (van der Maaten et al. 2013). For all these nois-
ing schemes, the resulting expected hinge loss can be upper-
bounded by a variational objective by introducing auxil-
iary variables, which follow a generalized inverse Gaus-
sian distribution. We then develop an iteratively re-weighted
least square (IRLS) algorithm to minimize the variational
bounds. At each iteration, our algorithm minimizes the ex-



pectation of a re-weighted quadratic loss under the given
corrupting distribution, where the re-weights are computed
in a simple closed form. We further apply the similar ideas
to develop a new IRLS algorithm for the dropout training
of logistic regression, which extends the well-known IRLS
algorithm for standard logistic regression (Hastie, Tibshi-
rani, and Friedman 2009). Our IRLS algorithms shed light
on the connection and difference between the hinge loss
and logistic loss in the context of dropout training, com-
plementing to the previous analysis (Rosasco et al. 2004;
Globerson et al. 2007) in the supervised learning settings.
Finally, empirical results on classification and a challenging
“nightmare at test time” scenario (Globerson and Roweis
2006) demonstrate the effectiveness of our approaches, in
comparison with various strong competitors.

Preliminaries

We setup the problem in question and review the learning
with marginalized corrupted features.

Regularized loss minimization

Consider the binary classification, where each training ex-
ample is a pair (x,y) with x € R being an input feature
vectorand y € {+1, —1} being a binary label. Given a set of
training data D = {(x,,, yn)}.__;, supervised learning aims
to find a function f € F that maps each input to a label. To
find the optimal candidate, it commonly solves a regularized
loss minimization problem

min Q(f) +2¢- R(D; f), (1)
where R(D; f) is the risk of applying f to the training data;
Q(f) is a regularization term to control over-fitting; and ¢ is
a non-negative regularization parameter.

For linear models, the function f is simply parameterized
as f(x;w,b) = w' x+ b, where w is the weight vector and
b is an offset. We will denote 6 := {w, b} for clarity. Then,
the regularization can be any Euclidean norms', e.g., the
ly-norm, Q(w) = ||w]|, or the £;-norm, Q(w) = ||w]|1.
For the loss functions, the most relevant measure is the
training error, 22;1 0(f(xn;0) # yn), which however
is not easy to optimize. A convex surrogate loss is used
instead, which normally upper bounds the training error.
Two popular examples are the hinge loss and logistic loss?:

9):§:max(0 L
SN

where €(> O) is the: cost of making a wrong predic-

tion, and p(yn|x,, 6) 1/(1 + exp(—ynf(xn;0))) is
the logistic likelihood. Other losses include the quadratic

loss, Zgil(f(xn;O) — yn)?, and the exponential loss,

25:1 exp(—yn f(xn;0)), whose feature noising analyses
are relatively simpler (van der Maaten et al. 2013).

lng Yn|Xn, )) )

'Tt is a common practice to not regularize the offset.
The natural logarithm is not an upper bound of the training
error. We can simply change the base without affecting learning.
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Learning with marginalized corruption

Let x be the corrupted version of the input features x. Con-
sider the commonly used independent corrupting model:

HP (Zalzd;na),

d=1

p(X|x) =

where each individual distribution is a member of the expo-
nential family, with the natural parameter 7. Another com-
mon assumption is that the corrupting distribution is unbi-
ased, that is, I, [X|x] = x, where we use E,[-] := Epx|x)[']
to denote the expectation taken over the corrupting distribu-
tion p(x|x). Such examples include the unbiased blankout
(or dropout) noise, Gaussian noise, Laplace noise, and Pois-
son noise (Vincent et al. 2008; van der Maaten et al. 2013).

For the explicit corruption in (Burges and Scholkopf
1997), each example (x,,,y,) is corrupted M times from
the corrupting model p(X,|x, ), resulting in the corrupted
examples (Xpnm,Yn), m € [M]. This procedure generates

a new corrupted data set D with a larger size of N M. The
generated dataset can be trained by minimizing the average
loss function over M corrupted data points:

Z ZR Xnm,yru

m=1
where R(x,y;0) is the loss function of the model incurred
on the training example (x,y). As £(D; ) scales linearly
with the number of corrupted observations, this approach
may suffer from high computational costs.

Dropout training adopts the strategy of implicit corrup-
tion, which learns the model with marginalized corrupted
features by minimizing the expectation of a loss function
under the corrupting distribution

Z E,[
The objective can be seen as a limit case of (2) when M —
00, by the law of large numbers. Such an expectation scheme
has been widely adopted in previous work (Wager, Wang,
and Liang 2013; van der Maaten et al. 2013; Wang et al.
2013; Wang and Manning 2013).

The choice of the loss function R in (3) can make a sig-
nificant difference, in terms of computation cost and pre-
diction accuracy. Previous work on feature noising has cov-
ered the quadratic loss, exponential loss, logistic loss, and
the loss induced from generalized linear models (GLM). For
the quadratic loss and exponential loss, the expectation in
Eq. (3) can be computed analytically, thereby leading to
simple gradient descent algorithms (van der Maaten et al.
2013). However, it does not have a closed form to compute
the expectation for the logistic loss or the GLM loss. Pre-
vious analysis has resorted to approximation methods, such
as using the second-order Taylor expansion (Wager, Wang,
and Liang 2013) or an upper bound by applying Jensen’s in-
equality (van der Maaten et al. 2013), both of which lead to
effective algorithms in practice. In contrast, little work has
been done on the hinge loss, for which the expectation un-
der corrupting distributions cannot be analytically computed
either, therefore calling for new algorithms.

(@)

X’ﬂ7yn7 )] (3)



Learning SVMs with Corrupting Noise

We now present a simple iteratively re-weighted least square
(IRLS) algorithm to learn SVMs with the expected hinge
loss under corrupting distributions. Our method consists of
a variational upper bound of the expected loss and a sim-
ple algorithm that iteratively minimizes an expectation of a
re-weighted quadratic loss. We also apply the similar ideas
to develop a simple IRLS algorithm for minimizing the
expected logistic loss, thereby allowing for a systematical
comparison of the hinge loss with the logistic and quadratic
losses in the context of feature noising.

A variational bound with data augmentation

Let ¢, := £ — y,(W'X,).> Then, the expected hinge loss
can be written as

N
0) = Z E,’D[ma‘x (0, CH)L
n=1
Since we do not have a closed-form of the expectation of
the max function, minimizing the expected loss (4) is in-
tractable. Here, we derive a variational upper bound based
on a data augmentation formulation of the expected hinge
loss. Let ¢(yn|Xn,0) exp{—2cmax(0,¢,)} be the
pseudo-likelihood of the response variable for sample n.
Then we have

R (D; 6)

“

——ZJE [log ¢(yn[%n, 0)]- )

Using the ideas of data augmentation (Polson and Scott
2011; Zhu et al. 2014), the pseudo-likelihood can be ex-
pressed as

1 (An +¢Cn)?

eXpq ———=— ¢ d\,, (6

o V2 P { 2, ©)

where \,, n € [N], is the augmented variable. Using (6)

and Jensen’s inequality, we can derive a variational upper
bound £ of the expected hinge loss as

al 1
£(8.9(X) = { ~ H(An) + 5Eqllog M)

d)(y’fl |>~(TL7 9)

(N

[ »(An +¢Cn) } } + constant,

where H(\,) is the entropy of the variational distribution
q(An): g(A) :=T1,, ¢(A\,) is joint distribution; and we have
defined Ey[-] := K4 [-] to denote the expectation taken
over a variational distribution g. Now, our variational opti-
mization problem is

Iwl3 + £(8,q(N)),

min
0,9(A)eP
where P is the simplex space of normalized distributions.
‘We should note that when there is no feature noise (i.e., X =
x), the bound is tight and we are learning the standard SVM
classifier. Please see Appendix A for the derivation. We will
empirically compare with SVM in experiments.

®)

3We treat the offset b implicitly by augmenting x,, and %,, with
one dimension of deterministic 1. More details will be given in the
algorithm.
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Iteratively Re-weighted Least Square Algorithm

In the upper bound, we note that when the variational distri-
bution g(A) is given, the term E, [(\, +¢(,,)?] is an expecta-
tion of a quadratic loss, which can be analytically computed.
We leverage such a nice property and develop a coordinate
descent algorithm to solve problem (8). Our algorithm it-
eratively solves the following two steps, analogous to the
common two-step procedure of a variational EM algorithm.

For g(\) (i.e., E-step): infer the variational distribution
g(A). Specifically, optimize £ over ¢(A), we get:

1 1 *E,[¢?]
o {3 (e 2}
1
~GIg ()\n; 3L CZJE,,[@%]) : )
where the second-order expectation is
EPKi] = WT(EP[i7t]E [Xn] + VplXn])w
—20y,w B,y [%,] + £%; (10)

and Vp[X,] is a D x D diagonal matrix with the dth diago-
nal element being the variance of Z,4, under the corrupting
distribution p(X,,|x,). We have denoted GZG(x; p,a,b) x
2P~V exp(—1 (L + ax)) as a generalized inverse Gaussian
distribution. Thus, A, L follows an inverse Gaussian distri-

bution
1
A%, 0) ~ZIG | A\ ———— 1 11
q(A, [%n, 0) G<nC]EK%]> 1D

For 0 := w (i.e., M-step): removing irrelevant terms, this
step involves minimizing the following objective:

N 2
2 ¢ 2
= E n 5 In ) 12
i+ ]
where v, := E,[\,']. We observe that this substep is

equivalent to minimizing the expectation of a re-weighted
quadratic loss, as summarized in Lemma 1, whose proof is
deferred to Appendix B, for brevity.

Lemma 1. Given ¢(\), the M-step minimizes the re-
weighted quadratic loss (with the {o-norm regularizer):

Z'Yn yZ)Z] s

where y"' = (¢ + W)y" is the re-weighted label, and the
re-weights are computed in closed-form:

1
n =B\ = —————
g q[ ] B /7Ep 2]
For low-dimensional data, we can solve for the closed
form solutions by doing matrix inversion. Specifically, op-
timizing Lg) over w, we get*:

2 I X

n=1
“To consider offset, we simply augment x and X with an ad-
ditional unit of 1. The variance V,[X,] is augmented accordingly.
The identity matrix [ is augmented by adding one zero row and one
zero column.

HWH% w Xp — (13)

(14)



where E,[%, %, ] = E,[%,]E,[Xn]" + V,[X,]. However, if
the data are in a high-dimensional space, e.g., text docu-
ments, the above matrix inversion will be computationally
expensive. In such cases, we can use numerical methods,
e.g., the quasi-Newton method.

To summarize, our algorithm iteratively minimizes the ex-
pectation of a simple re-weighted quadratic loss under the
given corrupting distribution, where the re-weights -,, are
computed in an analytic form. Therefore, it is an extension of
the classical iteratively re-weighted least square (IRLS) al-
gorithm (Hastie, Tibshirani, and Friedman 2009) for dropout
training. We also observe that if we fix v,, at % andset{ = 0,
we are minimizing the quadratic loss under the corrupting
distribution, as studied in (van der Maaten et al. 2013). We
will empirically show that our iterative algorithm for the ex-
pected hinge-loss will consistently improve over the stan-
dard quadratic loss by adaptively updating +,,. Finally, as
we assume that the corrupting distribution is unbiased, i.e.,
E,[x|x] = x, we only need to compute the variance of the
corrupting distribution, which is easy for all the existing ex-
ponential family distributions. An overview of the variance
of the commonly used corrupting distributions can be found
in (van der Maaten et al. 2013).

An IRLS algorithm for the logistic Loss

We now extend the above ideas to develop a new IRLS algo-
rithm for the logistic-loss, which also minimizes the expec-
tation of a re-weighted quadratic loss under the corrupting
distribution and computes the re-weights analytically.

Let w, := w ' X,,. Then the expected logistic loss under a

corrupting distribution is
1 . 15
pos ()] - 09

+ eYnWn
Again since the expectation cannot be computed in closed-
form, we derive a variational bound as a surrogate. Specifi-
~ . ~ eCYnwn
cally, let ¢ (yn|%Xn, W) = p°(yn|Xn, W) = G 7mmm bethe
pseudo-likelihood of the response variable for sample n. We
have R;(D;w) = —1 3" E,[log ¥ (yn|%n, w)]. Using the
recent work of data augmentation (Polson, Scott, and Win-
dle 2012; Chen et al. 2013), the pseudo-likelihood can be

expressed as

N eYnWn
Ri(D;w) = — ZEF

n=1

An (ynwn)?
2

1 (oo}
Ul w) = goeten [0 i, (16)
0

where k,, := Sy, and )\, is the augmented Polya-gamma
variable, p(A,,) ~ PG(An;c,0). Using (16), we can derive
the upper bound of the expected logistic loss:

L'(w,q(N))

7)

S { GBI 2] — H)

n=1
—Ey[log p(An)] — gynEp [wn]} + constant,

and get the variational optimization problem

Iwli3 + £'(w, a(\)),

min

(18)
w,q(N)EP
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Table 1: Comparison of hinge loss and logistic loss under
the IRLS algorithmic framework.

Parameter ¢|Parameter c¢|Update ,, |Update v,,
Hinge l c Eq. (14) yh
Logistic - c Eq. (22) vl

where ¢(A) is the variational distribution

We solve the variational problem with a coordinate de-
scent algorithm as follows:

For ¢()) (i.e., E-step): optimizing £’ over ¢(\), we have:

00n) <oxp (= 5B 2] ) DO 0)

~ PG (/\n;c7 Ep[w,%]> (19)
a Polya-Gamma distribution (Polson, Scott, and Windle
2012), where Ep[wi] = WT(Ep[in]Ep [in]T + Vp[Xn])w.

For w (i.e., M-step): removing irrelevant terms, this step
minimizes the objective

N
1 c
EEW] = HWH% + Z aEq[)‘n}Ep[Wi] - iynEp[Wn}- (20)
n=1

We then have the optimal solution”:

W= (I + % Z Eq [AR]EP[iniI]) (Z Z ynEp[in]> :

This is actually equivalent to minimizing the expectation
of a re-weighted quadratic loss, as in Lemma 2. The proof
is similar to that of Lemma 1 and the expectation of a
Polya-Gamma distribution follows (Polson, Scott, and Win-
dle 2012).

Lemma 2. Given q(\), the M-step minimizes the re-
weighted quadratic loss (with the {o-norm regularizer)

2 € ! T2 12
IWli3 + 5 D mEnl(w %0 — 3)°), @1
where y!, = iyn is the re-weighted label, and ~', = I
with
c eV Eplwa] _ 1
Y = Eq[An] (22)

2VE ] 14 Ve

It can be observed that if we fix v, = 5, the IRLS al-
gorithm reduces to minimizing the expected quadratic loss
under the corrupting distribution. This is similar as in the
case with SVMs, where if we set £ = 0 and fix v, = %,
the IRLS algorithm for SVMs essentially minimizes the ex-
pected quadratic loss under the corrupting distribution. Fur-
thermore, by sharing a similar iterative structure, our IRLS
algorithms shed light on the similarity and difference be-
tween the hinge loss and the logistic loss, as summarized in
Table 1. Specifically, both losses can be minimized via itera-
tively minimizing the expectation of a re-weighted quadratic
loss, while they differ in the update rules of the weights ~,,
and the labels y,, at each iteration.

5The offset can be similarly incorporated as in the hinge loss.



Experiments

We now present empirical results on both classification and
the challenging “nightmare at test time” scenario (Globerson
and Roweis 2006) to demonstrate the effectiveness of the
dropout training algorithm for SVMs, denoted by Dropout-
SVM, and the new IRLS algorithm for the dropout train-
ing of the logistic loss, denoted by Dropout-Logistic. We
consider the unbiased dropout (or blankout) noise model®,
that is, p(x = 0) = ¢ and p(x = =.x) = 1 — ¢, where
q € [0, 1) is a pre-specified corruption level. The variance of

this model for each dimension d is V},[Z4] = ﬁxi.

Binary classification

We first evaluate Dropout-SVM and Dropout-Logistic on bi-
nary classification tasks. We use the public Amazon book
review and kitchen review datasets (Blitzer, Dredze, and
Pereira 2007), which consist of the text reviews about books
and kitchen, respectively. In both datasets, each document is
represented as a 20,000 dimensional bag-of-words feature.
The binary classification task is to distinguish whether a re-
view content is positive or negative. Following the previous
settings, we choose 2,000 documents for training and ap-
proximately 4,000 for testing.

We compare our methods with the methods presented
in (van der Maaten et al. 2013) that minimize the quadratic
loss with marginalized corrupted features (MCF), denoted
by MCF-Quadratic, and that minimize the expected logistic
loss, denoted by MCF-Logistic. MCF-Logistic was shown to
be the state-of-the-art method for dropout training on these
datasets, outperforming a wide range of competitors, includ-
ing the dropout training of the exponential loss and the var-
ious loss functions with a Poisson noise model. As we have
discussed, both Dropout-SVM and Dropout-Logistic itera-
tively minimize the expectation of a re-weighted quadratic
loss, with the re-weights updated in closed-form. We include
MCEF-Quadratic as a baseline to demonstrate the effective-
ness of our methods on adaptively tuning the re-weights to
get improved results. We implement both Dropout-SVM and
Dropout-Logistic using C++, and solve the re-weighted least
square problems using L-BFGS methods (Liu and Nocedal
1989), which are very efficient by exploring the sparsity of
bag-of-words features when computing gradients’.

Figure 1 shows classification errors, where the results of
MCF-Logistic and MCF-Quadratic are cited from (van der
Maaten et al. 2013). We can see that on both datasets,
Dropout-SVM and Dropout-Logistic generally outperform
MCF-Quadratic except when the dropout level is larger than
0.9. In the meanwhile, the proposed two models give compa-
rable results with (a bit better than on the kitchen dataset) the
state-of-art MCF-Logistic which means that dropout train-
ing on SVMs is an effective strategy for binary classifica-

%Other noising models (e.g., Poisson) were shown to perform
worse than the dropout model (van der Maaten et al. 2013). We
have similar observations for Dropout-SVM and the new IRLS al-
gorithm for logistic regression.

"We don’t compare time with MCF methods, whose im-
plementation are in Matlab (http://homepage.tudelft.nl/19j49/mct/
Marginalized_Corrupted_Features.html), slower than ours.
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0 ”4 : —{— Dropout-SVM
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* = % -MCF-Quadratic

=
2

Classification error
Classification error

0 02 04 06 08 1 0 02 04 06 08 1
Dropout level Dropout level

(a) books (b) kitchen
Figure 1: Classification errors on the Amazon datasets.

tion. Finally, by noting that Dropout-SVM reduces to the
standard SVM when the corruption level g is zero, we can
see that dropout training can significantly boost the classifi-
cation performance for the simple linear SVMs.

0.17

0.165%
\

0.16[

- ® - Explicit corruption
O Dropout-SVM

0.155

0.15

0.145 N

Classification error

0.14 \i_~§"§-_

0.135

*\L?

013k . . . . . . . .

1 2 4 8 16 32 64 128 256
Number of corrupted copies

Figure 2: Comparison between Dropout-SVM and the ex-
plicit corruption for SVM on the Amazon-books datasets.

Dropout-SVM vs. Explicit corruption

Figure 2 shows the classification errors on the Amazon-
books dataset when a SVM classifier is trained using the ex-
plicit corruption strategy as in Eq. (2). We change the num-
ber of corrupted copies (i.e., M) from 1 to 256. Following
the previous setups (van der Maaten et al. 2013), for each
value of M we choose the dropout model with ¢ selected by
cross-validation. The hyper-parameter of the SVM classifier
is also chosen via cross-validation on the training data. We
can observe a clear trend that the error decreases when the
training set contains more corrupted versions of the origi-
nal training data, i.e., M gets larger in Eq. (2). It also shows
that the best performance is obtained when M approaches
infinity, which is equivalent to our Dropout-SVM.

Multi-class classification

We also evaluate our methods on multiclass classifica-
tion tasks. We choose the CIFAR-10 image categorization
dataset®. The CIFAR-10 dataset is the subset of the 80 mil-
lion tiny images (Torralba, Fergus, and Freeman 2008). It
consists of 10 classes of 32 x 32 tiny images. We follow the
experimental setup of the previous work (Krizhevsky 2009;

8http://www.cs.toronto.edu/~kriz/cifar.html



Table 2: Classification errors on CIFAR-10 data set.

Model No Corrupt|Poisson|Dropout
Dropout-SVM 0.322 0.309 | 0.294
Dropout-Logistic| 0.312 0.302 | 0.293
MCF-Logistic 0.325 0.300 | 0.294
MCF-Quadratic | 0.326 0.291 | 0.323

van der Maaten et al. 2013) and represent each image as
a 8,192 dimensional feature descriptor. We use the same
50,000 images for training and 10,000 for testing. There
are various approaches to applying the binary Dropout-SVM
and Dropout-Logistic to multiclass classification, including
“one-vs-all” and “one-vs-one” strategies. Here we choose
“one-vs-all”, which has shown effectiveness in many appli-
cations (Rifkin and Klautau 2004). The hyper-parameters
are selected via cross-validation on the training set.

Table 2 presents the results, where the results of quadratic
loss and logistic loss under the MCF learning setting’ are
cited from (van der Maaten et al. 2013). We also report the
results using Poisson noise. We can see that all the meth-
ods (except for the quadratic loss) can significantly boost
the performance by adopting dropout training; meanwhile
both Dropout-SVM and Dropout-Logistic are competitive,
in fact achieving comparable performance as the state-of-
the-art method (i.e., MCF-Logistic) under the dropout train-
ing setting. Finally, the Poisson corruption model is slightly
worse than the dropout noise, consistent with the previous
observations (van der Maaten et al. 2013).

Nightmare at test time

Finally, we evaluate our methods under the “nightmare at
test time” (Globerson and Roweis 2006) supervised learn-
ing scenario, where some input features that were present
when building the classifiers may “die” or be deleted at test-
ing time. In such a scenario, it is crucial to design algorithms
that do not assign too much weight to any single feature dur-
ing testing, no matter how informative it may seem at train-
ing. Previous work has conducted the worst-case analysis as
well as the learning with marginalized corrupted features.
We take this scenario to test the robustness of our dropout
training algorithms for both SVM and logistic regression.
We follow the setup of (van der Maaten et al. 2013).
Specifically, we choose the the MNIST dataset, which con-
sists of 60,000 training and 10,000 testing handwritten dig-
ital images from 10 categories (i.e., 0,--- ,9). The images
are represented by 28 x 28 pixels which results in the feature
dimension of 784. We train the models on the full training
set, and evaluate the performance on different versions of
test set in which a certain level of the features are randomly
dropped out, i.e., set to zero. We compare the performance of
our dropout learning algorithms with the state-of-art MCF-
predictors that use the logistic loss and quadratic loss. These
two models also show the state-of-art performance on the
same task to the best of our knowledge. We also compare
with FDROP (Globerson and Roweis 2006), which is a state-
of-the-art algorithm for the “nightmare at test time” setting

The exponential loss was shown to be worse; thus omitted.
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Figure 3: Classification errors of nightmare at test time on

MNIST dataset.

that minimizes the hinge loss under an adversarial worst-
case analysis. During training, we choose the best models
over different dropout levels via cross-validation. For both
Dropout-SVM and Dropout-Logistic, we adopt the “one-vs-
all” strategy as above for the multiclass classification task.

Figure 3 shows the classification errors of different meth-
ods as a function of the random deletion percentage of fea-
tures at the testing time. Following previous settings, for
each deletion percentage, we use a small validation set with
the same deletion level to determine the regularization pa-
rameters and the dropout level ¢ on the whole training data.
From the results, we can see that the proposed Dropout-
SVM is consistently more robust than all the other competi-
tors, including the two methods to minimize the expected
logistic-loss, especially when the feature deletion percent-
age is high (e.g., > 50%). Comparing with the standard
SVM (.e., the method Hinge-L2) and the worst-case anal-
ysis of hinge loss (i.e., Hinge-FDROP), Dropout-SVM con-
sistently boosts the performance when the deletion ratio is
greater than 10%. As expected, Dropout-SVM also signif-
icantly outperforms the MCF method with a quadratic loss
(i.e., MCF-Quadratic), which is a special case of Dropout-
SVM as shown in our theory. Finally, we also note that our
iterative algorithm for the logistic-loss works slightly better
than the previous algorithm (i.e., MCF-Logistic) when the
deletion ratio is larger than 50%.

Conclusions

We present dropout training for SVMs, with an iteratively
re-weighted least square (IRLS) algorithm by using data
augmentation techniques. Similar ideas are applied to de-
velop a new IRLS algorithm for the dropout training of
logistic regression. Our IRLS algorithms provide insights
on the connection and difference among various losses in
dropout learning settings. Empirical results on various tasks
demonstrate the effectiveness of our approaches.

For future work, it is remained open whether the kernel
trick can be incorporated in dropout learning. We are also in-
terested in developing more efficient algorithms, e.g., online
dropout learning, to deal with even larger datasets, and in-
vestigating whether Dropout-SVM can be incorporated into
a deep learning architecture or learning with latent struc-
tures (Zhu et al. 2014).
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Appendix
Appendix A: Derivation of the Upper Bound

We provide details on deriving the variational bound of the
expected hinge loss in (4). To simplify notations, we derive
the bound for a single data point. For a data set with N exam-
ples, a simple summation will give the final bound. Define
9(0;x) := E,[log #(y|x, 0)]. We have

oe{ - SR el

g(G;x):Ep[log/ mexp
:]Ep[log/q(/\q)(i\j;ﬂjexp{ - ()“;7/{70}61)\]
A+ cQ)?

j

[HO) =SB, flog ] — By [ 5 By (0 + 0] } + ¢
where ) is the augmented variable, and ¢’ is a constant. Note
that the data augmentation at the first two equalities are ex-
act and does not incur any approximation. The approxima-
tion is from the assumption that ¢()) is independent of the
“corrupted” observations X. If there is no uncertainty in the
feature corruption (e.g., the corruption level in the dropout
(or blankout) noise is 0), the bound is tight. That is, the op-
timal solution of ¢ will give the original hinge loss.

> By [Eq) log p =

1
(V2T exp { -

Appendix B. Proof of Lemma 1

Proof. Ignore the /5-norm regularizer, we have the objective
of the M-step:

N

S5,

n=1

C2

Liw) >

= [ccn + %Cﬁ} , (23)



where v, := E,[\,,!]. Using the definition of ¢, = ¢ —
ynW | X, and ignoring the constants, we have the simplified
objective function (again without the /5-regularizer):

N 2
C ~ o~ ~
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n=1

C2 N
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= S Y s [(w R — )] @4
n=1

where y" := (C,%n + £)yy is the re-weighted label.

We now derive the equations to compute ~,,. Let z be a
random variable and y = f(z) is a function of x. Then,
we have the transformation rule of probability distributions,

p(x) = p(f(x))\%| For our case, let x = )\,, and
f(z) = ﬁ, we have g(\,) = ﬁQ(ﬁ) Then

1

Eaohel] = [ ),
0 n

o 1 1
—/0 Q(An) 2z P

0
1
=/ q(pn)pdduy,* (define p, = )

o0 n

= /0 q(in) pon dpim

=E -\ (25)
Since q(\;;!) is an inverse Gaussian distribution as shown
in Eq. (11), it is easy to get
oanPatl= S E)

" cVEG]

Combining the above results finishes the proof of LemmDa
1.
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