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Abstract

The local neighborhood selection plays a crucial role
for most representation based manifold learning algo-
rithms. This paper reveals that an improper selection
of neighborhood for learning representation will intro-
duce negative components in the learnt representations.
Importantly, the representations with negative compo-
nents will affect the intrinsic manifold structure preser-
vation. In this paper, a local non-negative pursuit (LNP)
method is proposed for neighborhood selection and
non-negative representations are learnt. Moreover, it is
proved that the learnt representations are sparse and
convex. Theoretical analysis and experimental results
show that the proposed method achieves or outperforms
the state-of-the-art results on various manifold learning
problems.

Introduction
Manifold learning is generally to learn a data representa-
tion which can uncovers the intrinsic manifold structure. It
is extensively used in machine learning, pattern recognition
and computer vision (Wright et al. 2009; Lv et al. 2009;
Liu, Lin, and Yu 2010; Cai et al. 2011).

To learn a data representation, the neighbors of a data
point should be selected in advance. There are many neigh-
borhood selection methods, which can be divided into two
categories: K nearest neighbors (KNN) methods and `1
norm minimization methods. Accordingly, the representa-
tion learning is divided into: KNN-based learning algo-
rithms, such as Locally Linear Embedding (LLE, (Roweis
and Saul 2000)), Laplacian eigenmaps (LEM, (Belkin and
Niyogi 2003)); and `1 based learning algorithms, such as
Sparse Manifold Clustering Embedding (SMCE, (Wright et
al. 2009)).

However, the Knn method is heuristic. It is not easy to
select proper neighbors of a data point in practical applica-
tions. On the other hand, the working mechanism of `1 based
methods has not been fully elucidated (Zhang, Yang, and
Feng 2011). The solution of `1 norm minimization does’t
indicate the space distribution feature of the samples.

More importantly, the representations learnt by these al-
gorithms cannot avoid the existence of negative compo-
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nents. The representations with negative components can-
not correctly reflect the essential relations between data
pairs. The intrinsic structure of the data would be broken.
Hoyer (Hoyer 2002) proposed Non-negative Sparse Cod-
ing (NSC) to learn sparse non-negative representations; re-
cently, Zhuang et al. (Zhuang et al. 2012) also proposed
non-negative low rank and sparse representations for semi-
supervised learning. Unfortunately, the following concerns
haven’t been discussed. Why do the negative components of
learnt representation exist and what is the influence of it on
the intrinsic manifold structure preservation?

In this paper, we firstly reveals that an improper neigh-
borhood selection will result in the existence of negative
components of learnt representations. It is illustrated that
the representations with negative components will destroy
the intrinsic manifold structure. In order to avoid the exis-
tence of negative components and well preserve the intrinsic
structure of the data, a local non-negative pursuit (LNP) is
proposed to select the neighbors and learn the non-negative
representations. The selected neighbors construct a convex
set so that non-negative affine representations are learnt. Fur-
ther, we have proves the representations are sparse and non-
negative, which are useful to manifold dimensionality esti-
mation and intrinsic manifold structure preservation. Theo-
retical analysis and experimental results show that the pro-
posed method achieves or outperforms the state-of-the-art
results on various manifold learning problems.

Notations and Preliminaries
A = {ai ∈ Rm}ni=1 is the data set, which lies on a manifold
M of intrinsic dimension d(� m). A = [a1, a2, · · · , an] is
the matrix form of A. Generally, the representation learning
for a manifold involves to solve the following problem:

A = AX, (1)

where X = [x1, x2, · · · , xn] ∈ Rn×n is the representation
matrix of A. Accordingly, xi = [xi1, xi2, · · · , xin]> is the
representation of ai ∈ A (i = 1, 2, · · · , n). X should pre-
serves the intrinsic structure ofM . With different purposes,
various constraints could be added on X so that some par-
ticular representations can be obtained, such as sparse rep-
resentation.

In this paper, three famous representation learning algo-
rithms (LLE, LEM, and SMCE) will be used to compare
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with our algorithm in various manifold learning problems.
LLE learns the local affine representations with an assump-
tion that the local neighborhood of a point on the manifold
can be well approximated by the affine subspace spanned
by the neighbors of the point. LEM learns the heat kernel
representations that best preserves locality instead of local
linearity in LLE. SMCE learns a sparse affine representation
by solving an `1 minimization problem which can achieve
datum-adaptive neighborhood.

Given a particular representation X, the corresponding
low-dimensional embeddings are obtained by solving the
trace minimization problem below (Yan et al. 2007).

min
YY>=Id

trace(YΦ(X)Y>), (2)

where Id is an identity matrix and Y ∈ Rd×n is the final
embedding of A. Φ(X) is a symmetric and positive definite
matrix w.r.t X.

Four kinds of subspace w.r.t. A that used in this paper are
defined as:
• non-negative subspace: S{A}+ = {

∑
i ciai|∀ci ≥ 0}

• negative subspace: S{A}− = {
∑
i ciai|∀ci < 0}

• affine subspace: Sa{A} = {
∑
i ciai|

∑
i ci = 1}

• convex set: Sa{A}+ = {
∑
i ciai|

∑
i ci = 1,∀ci ≥ 0}

where ci is the combinational coefficient w.r.t ai. In addition,
PS and PSa denotes the projection operator on the subspace
S and Sa, respectively.

Motivation
Three methods mentioned above and their extensions have
been wildly studied and applied in many fields (He and
Niyogi 2003; Lv, Zhang, and Kok Kiong 2007; Elhamifar,
Sapiro, and Vidal 2012). The performance of these methods
suffers due to negative components of the learnt represen-
tations, and the intrinsic manifold structure cannot be pre-
served well.

From Eqs.(1), ai is the i-th column of A, xi is the i-th
column of X (i = 1, 2, · · · , n). The point a∗i = Axi, is the
reconstruction of ai. Suppose there are t non-zero compo-
nents in xi, define a subset Ai = {aλj |xiλj 6= 0}tj=1 ⊆ A,
where λj denotes the index of the j-th non-zero component
in xi. Thus, a∗i is a linear combination of points inAi, where
the combination should involves both additive and subtrac-
tive interactions in terms of the components of xi.

Clearly, from the definition of S{·}+, if a∗i /∈ S{Ai}+,
then ∃xij < 0(j = 1, · · · , n). The negative components will
broke the intrinsic manifold structure. The following exam-
ple will illustrate this problem.

Suppose A = {a1 = (9.8, 15.4)>, a2 =
(12.35, 13.70)>, a3 = (11.75, 8.2)>, a4 = (4.90, 1.95)>}
which is sampled from a 1-d manifold as shown in Figure
1(a). For ∀ai ∈ A(i = 1, 2, 3, 4), denotes Ai = A \ {ai}.
LLE is used to learn the affine representation of A with the
neighborhood size is three. The local affine representation
X can be obtained as: X = [ (0,1.7408,-1.1470,0.4062)>,
(0.5541,0,0.6871,-0.2412)>, (-0.7562,1.4021,0,0.3541)>,
(1.8100,-3.4338,2.6238,0)>].

a1
a2

a4

y1

x32

(a) (b) (c)

y2 y4a3 y3

Sa{A3}+
x34

x33
x31

Figure 1: (a): Data manifold and Sa{A3}+; (b): The affine
representation of a3 learnt by LLE; (c): The corresponding
1-d embedding of A, denoted by Y = {y1, y2, y3, y4}.

It is easy to see that each Sa{Ai} is the whole plane of
R2, thus ai ∈ Sa{Ai} and the reconstruction error is zero,
i.e., ‖ai − Axi‖2 = 0. However, ∀ai /∈ Sa{Ai}+. Thus,
the corresponding representation xi must contains negative
components. Figure 1(b) shows the representation of a3.

By solving Eqs.(2) with Φ(X) = (I−X)>(I−X), where
I is the identity matrix, the corresponding 1-d embedding of
A can be obtained (Figure 1(c)). It shows that the intrinsic
manifold structure is changed.

Furthermore, non-negative representations are required
for some clustering algorithms (Von Luxburg 2007). For ex-
ample, spectral clustering algorithm requires to construct a
non-negative graph weights matrix. Generally, let X = |X|.
Clearly, the graph weights matrix |X| is generally not same
with original X, the weights in |X| would no longer reflect
the inherent relationships between data points if there exist
negative components in X.

Clearly, an improper subset Ai will result in includes
some negative components in the learnt representation so
that the local manifold structure is broken. Generally, the
subset Ai is determined according to the neighborhood of
ai. Thus, to select a proper neighborhood and learn a non-
negative representation is crucial to preserve the intrinsic
manifold structure.

Local Non-negative Pursuit
Manifold assumption (Saul and Roweis 2003): If sufficient
sampling can be obtained from the manifold, then the local
structure of the manifold is linear which can be well approx-
imated by the local affine subspace. Based on this assump-
tion, we suppose that for each data point, there exists an op-
timal neighborhood which satisfies: 1) the size of this neigh-
borhood is less than d + 1; 2) the corresponding affine pro-
jection of the point is located inside the non-negative affine
subspace spanned by its neighboring points. More precisely:

Assumption 1 Given a data set A that is sampled from a
sufficient dense sampled manifold M, for ∀ai ∈ A, con-
sider a linear patch U ⊆ A that contains K(≥ d + 1)
nearest neighbors of ai. We assume that: ∃Aopt ⊆ U such
that PSa{Aopt}ai ∈ Sa{Aopt}+, where Aopt ∈ Rm×k,
k ≤ d+ 1.

Such Sa{Aopt}+ is called as a sparse convex patch ofM
at ai. Generally, if ai is a boundary point, |Aopt| < d + 1,
otherwise, |Aopt| = d+ 1 where |.| is the set cardinality.
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Clearly, U is the K nearest neighbors of ai. Rewrite
U = Ak ∪ Ak where Ak is a set that contains any k(≤ K)
neighbors of ai andAk is the complementary set ofAk. De-
note Gk = {gt = ai − at|∀at ∈ Ak}, we have the following
result.

Theorem 1 For ∀aj ∈ Ak, if PSa{Ak}ai ∈ Sa{Ak}+ and
PS{Gk}gj ∈ S{Gk}−, it holds that:

PSa{Ak+1}ai ∈ Sa{Ak+1}+.

where gj = ai − aj and Ak+1 = Ak ∪ {aj}.
The proof can be found in Appendix A. According to the

theorem, a Local Non-negative Pursuit (LNP) method is pro-
posed to select the proper neighboring points from U one by
one. The algorithm is as follows.

Algorithm 1 Find Aopt: Local Non-negative Pursuit

1: Input: ai ∈ Rm, U ∈ Rm×K .
2: Initialize: k = 0, Ak,Gk = ∅.
3: Let k = 1, select the the nearest neighbor from U by

aλ1
= arg min

aj∈U
‖ai − aj‖2. (3)

4: Updating: A1 = {aλ1
}, G1 = {gλ1

}, k = 2.
5: while true{

aλk
= arg min

aj∈U
‖ai − aj‖2,

s.t. PS{Gk−1}gj ∈ S{Gk−1}−.
(4)

6: if Eqs.(4) has solution, updating:{ Ak = Ak−1 ∪ {aλk
};

Gk = Gk−1 ∪ {gλk
};

k = k + 1.
(5)

7: else Break.
8: endwhile
9: Output: Aopt = Ak = {aλ1 , aλ2 , · · · , aλk

}.

λj(j = 1, 2, · · · , k) above denotes the index of the j-th
point that is selected by LNP. Clearly, the points in Aopt are
from the local ofM at ai and are affine independent of each
other, which is very useful properly for manifold learning.

The algorithm converges fast with computational com-
plexity of O(k(K − k)/2), where k = |Aopt| and K = |U|.
The following theorem describes the problem.

Theorem 2 The LNP never selects the same data point
twice. Thus, it must converges in no more than K steps.

The proof can be found in Appendix A. The LNP will
stopped when no appreciate neighbors can be selected. e.g.
if no neighbor can be selected at step t(< K), the algorithm
will stopped since it never select the same point twice.

Clearly, PSa{Ak}ai is the affine reconstruction of ai at
step k. Denote rk = ai − PSa{Ak}ai. The following the-
orem shows the reconstruction error is decreasing.

Theorem 3 For ∀k > 1, ‖rk‖2 < ‖rk−1‖2.

The proof can be found in Appendix A.

Based on the selected neighbors set Aopt, a non-negative
sparse affine representation of ai is given by minimizing the
following objective function:

min
xi

1
2‖ai − Axi‖22,

s.t.
k∑
j=1

xiλj
= 1; xit = 0 if at /∈ Aopt.

(6)

Denote G = [ai − aλ1
, ai − aλ2

, · · · , ai − aλk
] and M =

(G>G)−1, where ∀aλj
∈ Aopt(j = 1, 2, · · · , k). A closed

form solution is:
xiλj =

1>mj

1>M1
, for aλj ∈ Aopt;

xit = 0, for at /∈ Aopt.

(7)

where mj is the j-th column of M and 1 ∈ Rk is the vector
of all ones.
Theorem 4 The representation xi learnt by Eqs.(6) is sparse
and convex.
The proof can be found in Appendix A. Such a non-negative
sparse affine representation is referred as Sparse Convex
Representation (SCR) in this paper.

Experiments and Discussions
In this section, a series of synthetic and real-world data sets
are used for the experiments. The proposed method is com-
pared with the three methods, LLE, LEM and SMCE. All
the experiments were carried out using MATLAB on a 2.2
GHz machine with 2.0GB RAM.

Manifold dimensionality estimation. By using the pro-
posed method, the learnt SCRs are sparse with ‖xi‖0 ≤
d + 1(i = 1, · · · , n). Based on the sparsity of SCR, an in-
trinsic dimensionality estimation method is given. We firstly
sort the components of xi in descending order and denote
x′i = [x′i1, x

′
i2, · · · , x′in] with x′i1 ≥ x′i2 ≥ · · · ≥ x′in. Then,

a manifold dimensionality estimation vector (dev) of M is
defined as:

dev(M) ,
1

n

n∑
i=1

x′i = [ρ1, ρ2, · · · , ρn]>. (8)

Thus, the intrinsic dimension d ofM can be determined by:

d = arg max
l
{ρl − ρl+1}k−1l=1 − 1. (9)

Multi-manifold clustering and embedding. The SCRs
of a data set can be learnt by using the proposed method.
The SCRs, X = [x1, · · · , xn] ∈ Rn×n, can be used for
multi-manifold clustering and embedding. Firstly, a similar-
ity matrix W = max(X>,X) is constructed. Then, the nor-
malized Laplacian matrix is calculated by L = D−

1
2 WD−

1
2 ,

where D is a diagonal matrix with the diagonal element
dii =

∑n
j=1 wij . Finally, the standard spectral clustering

(Von Luxburg 2007) is used to obtain the nc clusters, de-
noted by {Mi}nc

i=1. For each cluster Mi, the intrinsic di-
mension di is estimated by Eqs.(9) and the di-dimension
embedding is obtained by Eqs.(2).
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Evaluate metric. It is important to preserve the intrinsic
structure of a manifold after embedding. Some method, such
as MMRE (Lee and Verleysen 2009) and LCMC (Chen and
Buja 2009) have been proposed to assess the intrinsic struc-
ture preservation by computing the neighborhood overlap.
MMRE not only computes the neighborhood alignment ac-
curacy, but also considers the order of the neighbors. Based
on the MMRE method, this paper assesses the quality of the
intrinsic structure preservation with different method, LLE,
LEM, SMCE and our method.

For the data set A = {ai}ni=1, its corresponding low-
dimensional embedding is denoted by Y = {yi}ni=1.
Clearly, yi is the embedding of ai. Λi = {λij}sij=1 is the
indices set of the selected si neighbors of ai with ‖ai −
aλij
‖2 ≤ ‖ai − aλi,j+1

‖2(j = 1, · · · , si). Γi = {γij}tij=1
is the indices set of the selected ti neighbors of yi with
‖yi − yγij‖2 ≤ ‖yi − yγi,j+1

‖2(j = 1, · · · , ti). The neigh-
borhood alignment accuracy (nalac) is given as:

nalac ,
1

n

n∑
i=1

min(si,ti)∑
j=1

δ(λij = γij)

min(si, ti)
, (10)

where δ(·) is the delta function. Another average alignment
accuracy is formulated as follows:

soft− nalac , 1

n

n∑
i=1

|Λi ∩ Γi|
max(si, ti)

. (11)

It is clear that the bigger the value of nalac (soft-nalac),
the change of neighborhood is smaller. Thus, a bigger value
of nalac (soft-nalac) indicates a better behaviour of intrinsic
manifold structure preservation .
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Figure 2: The employed four data sets.

Synthetic Data. 110 data points are sampled from a tre-
foil that is embedded in R100 with small Gaussian white
noises (Figure 2(a)). LLE, LEM, SMCE and LNP scheme
are used to learn a low dimensional manifold with K =
2, 3, · · · , 100 and λ = 60

2 ,
60
3 , · · · ,

60
100 for SMCE. Figure

(6) a reports the corresponding time costs. Figure 3 shows
the final embedding results and the corresponding devs. It is
shown that the SCRs learnt by our method are always non-
negative and sparse. The devs of our method always reflect
the intrinsic dimension of the data. For different neighbor-
hood sizes K (λ for SMCE), only our method can always
provide a good embedding result.
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Figure 3: Embeddings of trefoil. For each method, the left is
the obtained embeddings while the right is the correspond-
ing devs.

The corresponding nalac and soft-nalac are shown in Fig-
ure 4 (a) and (b) respectively. Clearly, by using the proposed
method, the neighborhood alignment accuracy is highest.
That means the intrinsic structure is preserved better com-
pared with the other methods.

Next, consider a case where the manifolds are intertwined
and close to each other as shown in Figure 2 (b). 400 points
are sampled from a 2-trefoil-knots, which are embedded in
R100 and are corrupted with small Gaussian white noise.
These mehtods, LLE, LEM, SMCE and LNP are used for
manifold clustering with different neighborhood sizes. Fig-
ure 5 (a) reports the misclassification rates and Figure 6 (b)
reports the corresponding time costs. The results shows that
the proposed method can always achieve the stable and good
clustering behaviour while the time costs are lowest among
all other methods.

Real data. Two most-used real datasets, COIL-20 and
ExtendedYaleB are used in this section, as shown in Fig-
ure 2 (c) and (d) respectively. The COIL-20 dataset includes
20 objects. Each object has 72 images of different posi-
tions and the size of each image is 192 × 168. Meanwhile,
the 72 duck images is used for manifold embedding. These
methods, LLE, LEM, SMCE and LNP, are used to learn
the low dimension manifold with K = 2, 3, · · · , 71 and
λ = 60

2 ,
60
3 , · · · ,

60
71 for SMCE. Figure 6 (c) reports the cor-

responding time costs, which shows that the LNP is running
fast. Figure 7 shows the final embedding results and the cor-
responding devs. The results shows that the SCRs learnt by
LNP scheme are always non-negative and sparse. The devs
of our method always reflect the intrinsic dimension of the
data. The corresponding nalac and soft-nalac are reported
in Figure 4 (c) and (d) respectively, which indicates that the
proposed method has a good performance of intrinsic struc-
ture preservation.
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Figure 4: Intrinsic manifold structure preservation behaviour
of various manifold learning methods.
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Figure 5: Manifold clustering behaviour of various methods.

The ExtendedYaleB data set contains about 2, 414 frontal
face images of 38 individuals with that the size of each im-
age is 192× 168. LLE, LEM, SMCE and LNP, are used for
manifold clustering with different neighborhood sizes. Fig-
ure 5 (b) reports the misclassification rates and Figure 6 (d)
reports the corresponding time costs. These results show that
the proposed method can always obtain good performance
of manifold clustering and the time costs are low. Figure 8
shows the embedding results and the corresponding devs of
first two clusters which are obtained by using proposed LNP
method.

Conclusion

This paper devotes to analyze the essence of the existence
of negative components in the representation. A local Non-
negative Pursuit (LNP) algorithm is proposed to select the
neighbors of a data point and the Sparse Convex Repre-
sentations (SCR) are learnt. It has been shown that the
SCRs learnt by using the proposed method are sparse and
non-negative. Experimental results show that the proposed
method achieves or outperforms the state-of-the-art results.
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Figure 6: The execution time of various methods.
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Figure 8: The embeddings of first two clusters of Ex-
tendedYaleB, which are given by using the proposed LNP
scheme, and the corresponding dev at the right bottom.
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Appendix A
The proof of Theorem 1: Since PSa{Ak}ai ∈ Sa{Ak}+,
PSa{Ak}ai can be written as

PSa{Ak}ai =
k∑
t=1

xtat, (12)

with at ∈ Ak, t = 1, · · · , k and
k∑
t=1

xt = 1, xt ≥ 0. (13)

Let rk = ai − PSa{Ak}ai. Clearly,

rk = ai −
k∑
t=1

xtat =

k∑
t=1

xt(ai − at) =

k∑
t=1

xtgt, (14)

where gt = ai − at and xt ≥ 0(t = 1, · · · , k). Thus, rk ∈
S{Gk}+.

Since PS{Gk}gj ∈ S{Gk}−, it holds that

90◦ < ∠(rk, gj) ≤ 180◦.

Let o = [0, 0, · · · , 0]> ∈ Rm, we have

PSa{rk,gj}o ∈ Sa{rk, gj}
+.

It means that

PSa{ai−rk,ai−gj}(ai − o) ∈ Sa{ai − rk, ai − gj}+.

Then, we can get

PSa{PSa{Ak}ai,aj}ai ∈ Sa
{
PSa{Ak}ai, aj

}+
⇒ P

Sa

{
k∑

t=1
xtat,aj

}ai ∈ Sa

{
k∑
t=1

xtat, aj

}+

. (15)

By the definition of Sa{·}+, we have

Sa

{
k∑
t=1

xtat, aj

}+

=

{
η1(

k∑
t=1

xtat) + η2aj

}
= {(η1x1)a1 + · · ·+ (η1xk)ak + (η2)aj} ,

where η1 + η2 = 1, η1, η2 ≥ 0. Clearly,

η1x1 + η1x2 + · · ·+ η1xk + η2
= η1(x1 + x2 + · · ·+ xk) + η2
= η1 + η2
= 1.

Thus,

Sa

{
k∑
t=1

xtat, aj

}+

≡ Sa {Ak+1}+ . (16)

By Eqs.(15) and Eqs.(16), we have

PSa{Ak+1}ai ∈ Sa{Ak+1}+

The proof is complete. �
The proof of Theorem 2: Let at ∈ A is the point selected

at step k. If at ∈ Ak−1, it means that at ∈ S{Ak−1}+
and PS{Ak−1}at = at. Thus PS{Ak−1}at ∈ S{Ak−1}+. It
follows that

PS{Ak−1}at ∈ S{Ak−1}
+

⇔ PS{Gk−1}gt ∈ S{Gk−1}
+. (17)

where Gk−1 = {ai − aj |aj ∈ Ak−1} and gt = ai − at.
Clearly, it is contradict with the condition (4). Thus, at

can not be selected twice. The proof is complete. �
The proof of Theorem 3: The space spanned by A can

be written in a direct sum:

S{A} = Sa{A} ⊕ {Sa{A}}⊥.
Clearly, PSa{Ak}ai ∈ Sa{Ak} and

ai − PSa{Ak}ai ∈ {Sa{Ak}}
⊥. (18)

Since Sa{Ak−1} $ Sa{Ak}, we have

PSa{Ak−1}ai ∈ Sa{Ak},
thus,

(PSa{Ak}ai − PSa{Ak−1}ai) ∈ Sa{Ak}. (19)

From Eqs.(18) and Eqs.(19), we have

(ai − PSa{Ak}ai) ⊥ (PSa{Ak}ai − PSa{Ak−1}ai).
Since

(ai − PSa{Ak−1}ai) = (ai − PSa{Ak}ai)
+ (PSa{Ak}ai − PSa{Ak−1}ai),

From the Pythagorean theorem, it holds that:

‖ai − PSa{Ak−1}ai‖
2
2 = ‖ai − PSa{Ak}ai‖

2
2

+ ‖PSa{Ak}ai − PSa{Ak−1}ai‖
2
2,

i.e.,

‖rk−1‖22 = ‖rk‖22 + ‖PSa{Ak}ai − PSa{Ak−1}ai‖
2
2.

Clearly, ‖PSa{Ak}ai−PSa{Ak−1}ai‖22 > 0, thus ‖rk‖2 <
‖rk−1‖2. The proof is complete. �

The proof of Theorem 4: Clearly,

Axi =
k∑
j=1

xiλj aλj = PSa{Aopt}ai,

where aλj
∈ Aopt and

∑k
j=1 xiλj

= 1.
It is easy to see that PSa{Aopt}ai ∈ Sa{Aopt}+. Thus,

the learnt affine representation xi is non-negative. Since
‖xi‖0 = k(≤ d+ 1), x is also sparse (Elad 2010). The proof
is complete. �
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