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Abstract

In multi-instance multi-label learning (MIML), one ob-
ject is represented by multiple instances and simultane-
ously associated with multiple labels. Existing MIML
approaches have been found useful in many applica-
tions; however, most of them can only handle moderate-
sized data. To efficiently handle large data sets, we pro-
pose the MIMLfast approach, which first constructs a
low-dimensional subspace shared by all labels, and then
trains label specific linear models to optimize approxi-
mated ranking loss via stochastic gradient descent. Al-
though the MIML problem is complicated, MIMLfast
is able to achieve excellent performance by exploit-
ing label relations with shared space and discovering
sub-concepts for complicated labels. Experiments show
that the performance of MIMLfast is highly competitive
to state-of-the-art techniques, whereas its time cost is
much less; particularly, on a data set with 30K bags and
270K instances, where none of existing approaches can
return results in 24 hours, MIMLfast takes only 12 min-
utes. Moreover, our approach is able to identify the most
representative instance for each label, and thus provid-
ing a chance to understand the relation between input
patterns and output semantics.

Introduction
In traditional supervised learning, one object is represented
by a single instance and associated with only one label.
However, in many real world applications, one object can be
naturally decomposed into multiple instances, and has multi-
ple class labels simultaneously. For example, in image clas-
sification problems, an image usually contains multiple ob-
jects, and can be divided into several segments, where each
segment is represented with an instance, and corresponds to
a semantic label (Zhou and Zhang 2007); in text categoriza-
tion tasks, an article may belong to multiple categories, and
can be represented by a bag of instances, one for a para-
graph (Yang, Zha, and Hu 2009). Multi-instance multi-label
learning (MIML) is a recent proposed framework for such
complicated objects (Zhou et al. 2012).
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During the past years, many MIML algorithms were
proposed (Luo and Orabona 2010; Nguyen 2010; Zhou
et al. 2012; Nguyen, Zhan, and Zhou 2013). For exam-
ple, MIMLSVM (Zhou and Zhang 2007) degenerated the
MIML problem into single-instance multi-label tasks to
solve. MIMLBoost (Zhou and Zhang 2007) degenerated
MIML to multi-instance single-label learning. A generative
model for MIML was proposed by Yang et al. (Yang, Zha,
and Hu 2009). Zha et al. proposed a hidden conditional ran-
dom field model for MIML image annotation (Zha et al.
2008). Nearest neighbor approach for MIML was proposed
in (Zhang 2010). Briggs et al. proposed to optimize ranking
loss for MIML instance annotation (Briggs, Fern, and Raich
2012). Existing MIML approaches achieved decent perfor-
mances and validated the superiority of MIML in different
applications. However, along with the enhancing of expres-
sive power, the hypothesis space of MIML expands dramat-
ically, resulting in the high complexity and low efficiency
of existing approaches. These approaches are usually time-
consuming, and cannot handle large scale data, thus strongly
limit the application of MIML.

In this paper, we propose a novel approach MIMLfast to
learn on multi-instance multi-label data fast. Though simple
linear models are employed for efficiency, MIMLfast pro-
vides an effective approximation of the original MIML prob-
lem. Specifically, to utilize the relations among multiple la-
bels, we first learn a shared space for all the labels from the
original features, and then train label specific linear mod-
els from the shared space. To identify the key instance to
represent a bag for a specific label, we train the classifica-
tion model on the instance level, and then select the instance
with maximum prediction. To make the learning efficient,
we employ stochastic gradient descent (SGD) to optimize
an approximated ranking loss. At each iteration, MIMLfast
randomly samples a triplet which consists of a bag, a rele-
vant label of the bag and an irrelevant label, and optimizes
the model to rank the relevant label before the irrelevant one
if such an order is violated. While most MIML methods fo-
cus on improving generalization, another important task of
MIML is to understand the relation between input patterns
and output semantics (Li et al. 2012). MIMLfast can natu-
rally identify the most representative instance for each label.
In addition, we propose to discover sub-concepts for com-
plicated labels, which frequently occur in MIML tasks.
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There are some related work, for example, learning a sub-
space from the feature space was well studied before (Ando
and Zhang 2005; Ji et al. 2008), however, has not been ap-
plied to the MIML setting. In (Weston, Bengio, and Usunier
2011), a similar technique was used to optimize the approx-
imated ranking loss for image annotation; however, it dealt
with single-instance single-label problem, which is quite dif-
ferent from the MIML problem. In (Zhou et al. 2012), an
approach of discovering sub-concepts for complicated con-
cepts was proposed based on clustering. However, it was
focused on single label learning, quite different from our
MIML task. Moreover, MIMLfast discovers sub-concepts
using supervised model rather than heuristic clustering.

The rest of the paper is organized as follows. The MIML-
fast approach is proposed in the next section, followed by
the experimental study. At last we conclude this work with
future issues.

The MIMLfast Approach
We denote by {(X1, Y1), (X2, Y2), · · · , (Xn, Yn)} the train-
ing data that consists of n examples, where each bag Xi has
zi instances {xi,1,xi,2, · · · ,xi,zi} and Yi contains the labels
associated with Xi, which is a subset of all possible labels
{y1, y2 · · · yL}.

We first discuss on how to build the classification model
on the instance level, and then try to get the labels of bags
from instance predictions. To handle problems with multi-
ple labels, the simplest way is to degenerate it into a series
of single label problems by training one model for each label
independently. However, such a degenerating approach may
lose information since it treats the labels independently and
ignores the relations among them. In our approach, we for-
mulate the model as a combination of two components. The
first component learns a linear mapping from the original
feature space to a low dimensional space, which is shared
by all the labels. Then the second component learns label
specific models based on the shared space. The two com-
ponents are optimized interactively to fit training examples
from all labels. In such a way, examples from each label will
contribute the optimization of the shared space, and related
labels are expected to help each other. Formally, given an
instance x, we define the classification model on label l as

fl(x) = w>l W0x,

where W0 is a m×d matrix which maps the original feature
vectors to the shared space, and wl is the m-dimensional
weight vector for label l. d and m are the dimensionalities
of the feature space and the shared space, respectively.

Objects in multi-instance multi-label learning tasks usu-
ally have complicated semantic; and thus examples with di-
verse contents may be assigned the same label. For exam-
ple, the content of an image labeled apple can be a mobile
phone, a laptop or just a real apple. It is difficult to train a
single model to classify images with such diverse contents
into the same category. Instead, we propose to learn multi-
ple models for a complicated label, one for a sub-concept,
and automatically decide which sub-concept one example
belongs to. The model of each sub-concept is much simpler
and may be more easily trained to fit the data. We assume

that there are K sub-concepts for each label. For a given ex-
ample with label l, the sub-concept it belongs to is automat-
ically determined by first examining the prediction values of
the K models, and then selecting the sub-concept with max-
imum prediction value. Now we can redefine the prediction
of instance x on label l as:

fl(x) = max
k=1···K

fl,k(x) = max
k=1···K

w>l,kW0x, (1)

where wl,k corresponds to the k-th sub-concept of label l.
Note that although we assume there are K sub-concepts for
each label, empty sub-concepts are allowed, i.e., examples
of a simple label may be distributed in only a few or even
one sub-concept. We then look at how to get the predictions
of bags from the instance level models. It is usually assumed
that a bag is positive if and only if it contains at least one pos-
itive instance (Dietterich, Lathrop, and Lozano-Pérez 1997;
Briggs, Fern, and Raich 2012). Under this assumption, the
prediction of a bag X on label l can be defined as the maxi-
mum of predictions of all instances in this bag:

fl(X) = maxx∈X fl(x).

We call the instance with maximum prediction the key in-
stance ofX on label l. With the above model, for an example
X and one of its relevant labels l, we define R(X, l) as

R(X, l) =
∑

j∈Ȳ
I[fj(X) > fl(X)], (2)

where Ȳ denotes the set of irrelevant labels of X , and I[·] is
the indicator function which returns 1 if the argument is true
and 0 otherwise. Essentially, R(X, l) counts how many ir-
relevant labels are ranked before label l on the bagX . Based
on R(X, l), we further define the ranking error (Usunier,
Buffoni, and Gallinari 2009; Weston, Bengio, and Usunier
2011) with respect to an example X on label l as

ε(X, l) =
∑R(X,l)

i=1

1

i
. (3)

It is obvious that the ranking error ε would be larger for
lower l being ranked. Finally, we have the ranking error on
the whole data set:

Rank Error =
∑n

i=1

∑
l∈Yi

ε(X, l).

Based on Eq. 2, the ranking error ε(X, l) can be spread into
all irrelevant labels in Ȳ as:

ε(X, l) =
∑

j∈Ȳ
ε(X, l)

I[fj(X) > fl(X)]

R(X, l)
. (4)

Here we use the convention 0/0 = 0 if R(X, l) = 0. Due to
non-convexity and discontinuousness, it is rather difficult to
optimize the above equation directly because such optimiza-
tion often leads to NP-hard problems. We instead explore the
following hinge loss, which has been shown as an optimal
choice among all convex surrogate losses (Ben-David et al.
2012),

Ψ(X, l) =
∑

j∈Ȳ
ε(X, l)

|1 + fj(X)− fl(X)|+
R(X, l)

, (5)

where |q|+ = max{q, 0}. Accordingly, we penalize
R(X, l) with a margin 1, and redefine it as R(X, l) =
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∑
j∈Ȳ I[fj(X) > fl(X)− 1]. Obviously, Eq. 5 is an upper

bound of Eq. 4. We then employ stochastic gradient descent
(SGD) (Robbins and Monro 1951) to minimize the ranking
error. At each iteration of SGD, we randomly sample a bag
X , one of its relevant labels y, and one of its irrelevant labels
ȳ ∈ Ȳ to form a triplet (X, y, ȳ), which will induce a loss:

L(X, y, ȳ) = ε(X, y)|1 + fȳ(X)− fy(X)|+. (6)

We call ȳ a violated label if it induces a nonzero loss, i.e.,
fȳ(X) > fy(X) − 1. In the cases R(X, y) > 0, by ex-
cluding the inviolated irrelevant labels (which do not induce
losses) from Ȳ , the probability of randomly choosing a vio-
lated irrelevant label ȳ is 1/R(X, y), and thus Ψ(X, y) can
be viewed as the expectation of L(X, y, ȳ).

To minimize L(X, y, ȳ), it is required to calculate
R(X, y) in advance, i.e., we have to compare fy(X) with
fȳ(X) for each ȳ ∈ Ȳ , whereas this could be time consum-
ing when the number of possible labels is large. Therefore,
we use an approximation to estimate R(X, y) in our imple-
mentation, inspired by Weston et al. (Weston, Bengio, and
Usunier 2011). Specifically, at each SGD iteration, we ran-
domly sample labels from the irrelevant label set Ȳ one by
one, until a violated label ȳ occurs. Without loss of gener-
ality, we assume that the first violated label is found at the
v-th sampling step, and then, R(X, y) can be approximated
by b|Ȳ |/vc. We assume that the triplet sampled at the t-th
SGD iteration is (X, y, ȳ), on label y, the key instance is
x, and achieves the maximum prediction on the k-th sub-
concept, while on label ȳ, the instance x̄ achieves the maxi-
mum prediction on the k̄-th sub-concept. Then we have the
approximated ranking loss for the triplet:

L(X, y, ȳ) = ε(X, y)|1 + fȳ(X)− fy(X)|+

≈

{
0 if ȳ is not violated;

SȲ ,v(1 + [wt
ȳ,k̄]>W t

0 x̄− [wt
y,k]>W t

0x) otherwise.

Here we introduce SȲ ,v =
∑b |Ȳ |

v c
i=1

1
i for the convenience of

presentation. So, if a violated label ȳ is sampled, we perform
the gradient descent on the three parameters according to:

W t+1
0 = W t

0 − γtSȲ ,v(wt
ȳ,k̄x̄

> −wt
y,kx

>) (7)

wt+1
y,k = wt

y,k + γtSȲ ,vW
t
0x (8)

wt+1
ȳ,k̄

= wt
ȳ,k̄ − γtSȲ ,vW

t
0 x̄ (9)

where γt is the step size of SGD. After the update of the pa-
rameters, wy,k, wȳ,k̄ and each column ofW0 are normalized
to have a L2 norm smaller than a constant C.

The pseudo code of MIMLfast is presented in Algo-
rithm 1. First, each column ofW0 and wk

l for all labels l and
all sub-concepts k are initialized at random with mean 0 and
standard deviation 1/

√
d. Then at each iteration of SGD, a

triplet (X, y, ȳ) is randomly sampled, and their correspond-
ing key instance and sub-concepts are identified. After that,
gradient descent is performed to update the three parame-
ters: W0, wy,k and wȳ,k̄ according to Eqs. 7 to 9. At last,
the updated parameters are normalized such that their norms
will be upper bounded by C. This procedure is repeated un-
til the stop criterion reached. In our experiments, we sample
a small validation set from the training data, and stop the

Algorithm 1 The MIMLfast algorithm
1: INPUT:
2: training data, parameters m, C, K and γt
3: TRAIN:
4: initialize W0 and wl,k (l = 1 · · ·L, k = 1 · · ·K)
5: repeat:
6: randomly sample a bag X and one of its relevant

label y
7: select key instance and sub-concept by

(x, k) = arg maxx∈X,k∈{1···K} fy,k(x)

8: for i = 1 : |Ȳ |
9: sample an irrelevant label ȳ from Ȳ

10: select key instance and sub-concept by
(x̄, k̄) = arg maxx∈X,k̄∈{1···K} fȳ,k̄(x)

11: if fȳ(X) > fy(X)− 1
12: v = i
13: update W0, wy,k and wȳ,k̄ as Eqs. 7 to 9,

and perform normalization
14: break
15: until stop criterion reached
16: TEST:
17: Relevant labels set for the test bag Xtest is:

{l|1 + fl(Xtest) > fŷ(Xtest)}

training once the ranking loss does not decrease on the vali-
dation set. We have presented some theoretical results on the
convergence of the algorithm in a technical report (Huang
and Zhou 2013b). Also, we have employed this technique in
(Huang and Zhou 2013a) for multi-label active learning.

In the test phase of the algorithm, for a bag Xtest, we can
get the prediction value on each label, and consequently the
rank of all labels. For single label classification problem, one
can get the label of Xtest by selecting the one with largest
prediction value. However, in multi-label learning, the bag
Xtest may have more than one label; and thus one does not
know how many labels should be selected as relevant ones
from the ranked label list (Fürnkranz et al. 2008). To solve
this problem, we assign each bag a dummy label, denoted
by ŷ, and train the model to rank the dummy label before all
irrelevant labels while after the relevant ones. To implement
this idea, we pay a special consideration to constructing the
irrelevant labels set Ȳ . Specifically, when X and its label y
are sampled (in Line 6 of Algorithm 1), the algorithm will
first examine whether y is the dummy label (i.e., whether
y = ŷ). If y = ŷ, then Ȳ consists of all the irrelevant la-
bels, which implies that y (the dummy label) will be ranked
before all irrelevant labels; otherwise, Ȳ contains both the
dummy label and all the irrelevant labels, which implies that
the relevant label y will be ranked before both dummy la-
bel and irrelevant labels. In such a way, the model will be
trained to rank the dummy label between relevant labels and
irrelevant ones. For a test bag, the labels ranked before the
dummy label are selected as relevant labels.

Experiments
Experiments are performed on 6 moderate-sized data sets,
including LetterFrost (Briggs, Fern, and Raich 2012), Let-
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Table 1: Data sets (6 moderate size and 2 large size)

Data # ins. # bag # label # label/bag
Letter Frost 565 144 26 3.6
Letter Carroll 717 166 26 3.9
MSRC v2 1758 591 23 2.5
Reuters 7119 2000 7 1.2
Bird Song 10232 548 13 2.1
Scene 18000 2000 5 1.2
Corel5K 47,065 5,000 260 3.4
MSRA 270,000 30,000 99 2.7

terCarroll (Briggs, Fern, and Raich 2012), MSRC v2 (Winn,
Criminisi, and Minka 2005), Reuters (Sebastiani 2002) Bird
Song (Briggs, Fern, and Raich 2012) and Scene (Zhou and
Zhang 2007), and 2 large data sets, including Corel5K
(Duygulu et al. 2002) and MSRA (Li, Wang, and Hua
2009). The detailed characteristics of these data sets are
summarized in Table 1. Note that MIML is a new learn-
ing framework different from multi-instance learning (MI)
or multi-label learning (ML); MI and ML algorithms can-
not be applied to these MIML data sets directly. We com-
pare MIMLfast with six state-of-the-art MIML methods:
DBA (Yang, Zha, and Hu 2009), KISAR (Li et al. 2012),
MIMLBoost (Zhou and Zhang 2007), MIMLkNN (Zhang
2010), MIMLSVM (Zhou and Zhang 2007) and RankLoss-
SIM (Briggs, Fern, and Raich 2012).

For each data set, 2/3 of the data are randomly sampled
for training, and the remaining examples are taken as test set.
We repeat the random data partition for thirty times, and re-
port the average results over the thirty repetitions. Although
MIMLfast is designed to optimize ranking loss, we evalu-
ate the performances of the compared approaches on five
commonly used MIML criteria: hamming loss, one error,
coverage, ranking loss and average precision. Note that
coverage is normalized by the number of labels such that
all criteria are in the interval [0, 1]. The definition of these
criteria can be found in (Schapire and Singer 2000; Zhou et
al. 2012). For MIMLfast, the step size is in the form γt =
γ0/(1 + ηγ0t) according to (Bottou 2010). The parameters
are selected by 3-fold cross validation on the training data
with regard to ranking loss. The candidate values for the pa-
rameters are as below: m ∈ {50, 100, 200}, C ∈ {1, 5, 10},
K ∈ {1, 5, 10, 15}, γ0 ∈ {0.0001, 0.0005, 0.001, 0.005}
and η ∈ {10−5, 10−6}. For the compared approaches, pa-
rameters are determined in the same way if no value sug-
gested in their literatures.

Performance Comparison
We first report the comparison results on the six moderate-
sized data sets in Table 2. As shown in the table, our ap-
proach MIMLfast achieves the best performance in most
cases. DBA tends to favor text data, and is outperformed by
MIMLfast on all the data sets. KISAR achieves comparable
results with MIMLfast on Scene while is less effective on the
other data sets. MIMLBoost can handle only the two small-
est data sets, and does not yield good performance. MIM-
LkNN and MIMLSVM work steady on all the data sets, but

are not competitive when compared with MIMLfast. At last,
RankLossSIM is comparable to MIMLfast on 4 of 6 data
sets, and even achieves better coverage and ranking loss
on the Bird Song data set. However, on the other two data
sets with relative more bags, i.e., Reuters and Scene, it is
significantly worse than our approach on all the five criteria.

MSRA and Corel5K contain 30000 and 5000 bags re-
spectively, which are too large for most existing MIML ap-
proaches. We thus perform the comparison on subsets of
them with different data sizes. We vary the number of bags
from 1000 to 5000 for Corel5K, and 5000 to 30000 for
MSRA, and plot the performance curves in Figures 1 and 2,
respectively. MIMLBoost did not return results in 24 hours
even for the smallest data size, and thus it is not included
in the comparison. RankLossSIM is not presented on MSRA
for the same reason. We also exclude DBA on MSRA be-
cause its performance is too bad. As observable in Figures 1
and 2, MIMLfast is apparently better than the others on these
two large data sets. Particularly, when data size reaches 25K,
other methods cannot work, but MIMLfast still works well.

To have an overall evaluation of the performances of the
methods over all datasets, we performed the Bonferroni-
Dunn test (Demšar 2006) at 90% significance level. Results
show that on both coverage and ranking loss, MIMLfast
is significantly better than all the other approaches. And on
the other three measures, MIMLfast achieves the best per-
formance along with KISAR and MIMLkNN.

Efficiency Comparison

It is crucial to study the efficiency of the compared MIML
approaches, because our basic motivation is to develop a
method that can work on large scale MIML data. All the ex-
periments are performed on a machine with 16× 2.60 GHz
CPUs and 32GB main memory.

Again, we first show the time cost of each algorithm on
the six moderate-sized data sets in Figure 3. Since the results
on the two smallest data sets Letter Carroll and Letter Frost
are similar, we take one of them as representative to save
space. Obviously, our approach is the most efficient one on
all the data sets. MIMLBoost is the most time-consuming
one, followed by RankLossSIM and MIMLkNN. Based on
paired t-tests at 95% significance level, the superiority of
MIMLfast to all the other methods is significant. The superi-
ority of MIMLfast is more distinguished on larger data sets.
As shown in Figure 4, on Corel5K, MIMLBoost failed to get
result in 24 hours even with the smallest subset, while Ran-
kLossSIM can handle only 1000 examples. The time costs
of existing methods increase dramatically as the data size in-
creases. In contrast, MIMLfast takes only 1 minute even for
the largest size in Figure 4(b). In Figure 4(c), on the largest
MSRA data, none of existing approaches can deal with more
than 20K examples. In contrast, on data of 20,000 bags and
180,000 instances, MIMLfast is more than 100 times faster
than the most efficient existing approach; when the data size
becomes larger, none of existing approaches can return re-
sult in 24 hours, and MIMLfast takes only 12 minutes.

1871



Table 2: Comparison results (mean±std.) on moderate-sized data sets. ↑(↓) indicates that the larger (smaller) the value, the
better the performance; •(◦) indicates that MIMLfast is significantly better(worse) than the corresponding method based on
paired t-tests at 95% significance level; N/A indicates that no result was obtained in 24 hours.

MIMLfast DBA KISAR MIMLBoost MIMLkNN MIMLSVM RankL.SIM
Letter Carroll
h.l. ↓ .134±.012 .180±.010• .150±.008• .153±.008• .170±.017• .154±.007• .132±.006
o.e. ↓ .119±.050 .248±.036• .058±.096◦ .645±.062• .312±.043• .554±.043• .167±.050•
co. ↓ .380±.029 .909±.023• .870±.018• .730±.039• .460±.030• .905±.020• .389±.037
r.l. ↓ .130±.013 .622±.033• .873±.043• .477±.035• .194±.019• .710±.029• .134±.017
a.p. ↑ .715±.032 .324±.029• .181±.027• .263±.020• .611±.023• .350±.022• .708±.026
Letter Frost
h.l. ↓ .136±.014 .166±.010• .200±.013• .139±.007 .139±.010 .154±.013• .136±.010
o.e. ↓ .151±.041 .228±.056• .380±.064• .257±.101• .288±.077• .581±.045• .203±.055•
co. ↓ .375±.042 .857±.032• .906±.019• .728±.038• .463±.035• .884±.028• .372±.038
r.l. ↓ .134±.019 .580±.033• .705±.036• .478±.030• .199±.018• .810±.101• .138±.019
a.p. ↑ .704±.034 .358±.030• .264±.028• .235±.014• .612±.027• .226±.060• .686±.035•
MSRC v2
h.l. ↓ .100±.007 .140±.006• .086±.004◦ N/A .131±.007• .084±.003◦ .110±.004•
o.e. ↓ .295±.025 .415±.026• .341±.031• N/A .440±.031• .320±.029• .302±.028
co. ↓ .238±.014 .837±.018• .254±.015• N/A .312±.020• .256±.018• .239±.013
r.l. ↓ .108±.009 .675±.017• .131±.010• N/A .165±.013• .125±.011• .107±.007
a.p. ↑ .688±.017 .326±.016• .666±.018• N/A .591±.018• .685±.018 .687±.013
Reuters
h.l. ↓ .028±.004 .043±.004• .032±.003• N/A .034±.004• .042±.004• .037±.003•
o.e. ↓ .044±.008 .077±.011• .057±.010• N/A .065±.011• .100±.015• .055±.007•
co. ↓ .035±.004 .089±.010• .036±.004• N/A .043±.004• .050±.006• .036±.004•
r.l. ↓ .014±.004 .062±.008• .016±.003• N/A .023±.004• .031±.005• .016±.003•
a.p. ↑ .972±.005 .922±.008• .966±.006• N/A .958±.006• .939±.009• .967±.005•
Bird Song
h.l. ↓ .073±.009 .116±.005• .098±.011• N/A .081±.007• .073±.005 .087±.008•
o.e. ↓ .055±.017 .101±.020• .159±.039• N/A .122±.029• .111±.025• .064±.046
co. ↓ .150±.013 .292±.015• .186±.018• N/A .175±.015• .173±.013• .133±.011◦
r.l. ↓ .036±.007 .132±.010• .067±.012• N/A .059±.010• .054±.006• .027±.008◦
a.p. ↑ .921±.014 .786±.013• .847±.026• N/A .878±.017• .888±.011• .930±.025
Scene
h.l. ↓ .188±.009 .269±.009• .194±.005• N/A .196±.007• .200±.008• .204±.007•
o.e. ↓ .351±.023 .386±.025• .351±.020 N/A .370±.018• .380±.021• .392±.019•
co. ↓ .207±.012 .334±.011• .204±.008◦ N/A .222±.009• .225±.010• .237±.010•
r.l. ↓ .189±.014 .348±.012• .185±.010 N/A .207±.011• .212±.011• .222±.010•
a.p. ↑ .770±.015 .600±.013• .772±.012 N/A .757±.011• .750±.012• .738±.011•
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Figure 1: Comparison results on Corel5K with varying data size; ↑(↓) indicates that the larger (smaller) the value, the better the
performance.

Key Instance Detection
In MIML, a set of labels are assigned to a group of in-
stances, and thus it is interesting to understand the rela-

tion between input patterns and output semantics. By as-
suming that each label is triggered by its most positive in-
stance, our MIMLfast approach is able to identify the key
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Figure 2: Comparison results on MSRA with varying data size; only MIMLfast can work when data size reaches 25,000.
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Figure 3: Comparison of time cost on six moderate-sized data sets; N/A indicates that no result was obtained in 24 hours; the
y-axis in (a) and (b) are log-scaled.
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Figure 4: Comparison of time cost on Corel5K and MSRA.

instance for each label. On 4 data sets, i.e., Letter Carroll,
Letter Frost, MSRC v2 and Bird Song, the instance labels are
available, and thus providing a test bed for key instance de-
tection. Among the existing MIML methods, RankLossSIM
and KISAR are able to detect key instance, and will be com-
pared with our approach. For MIMLfast and RankLossSIM,
the key instance for a specific label is identified by select-
ing the instance with maximum prediction value, while for
KISAR, key instance is the one closest to the prototype as
in (Li et al. 2012). We examine the ground truth of the de-
tected key instances and present the accuracies in Table 3.
We can observe that KISAR is less accurate than the other
two methods, probably because it does not build the model
on the instance level, and detects key instance based on un-
supervised prototypes. When compared with RankLossSIM,
which is specially designed for instance annotation, MIML-
fast is more accurate on the two larger data sets, while com-
parable on Letter Carroll, and slightly worse on Letter Frost.

Table 3: Key instance detection accuracy (mean±std.). The
best results are bolded.

MIMLfast KISAR RankLossSIM
LetterCarroll 0.67±0.03 0.41±0.03 0.67±0.03
LetterFrost 0.67±0.03 0.47±0.04 0.70±0.03
MSRC v2 0.66±0.03 0.62±0.03 0.64±0.02
Bird Song 0.58±0.04 0.31±0.03 0.42±0.02

Conclusion
MIML is a framework for learning with complicated objects,
and has been proved to be effective in many applications.
However, existing MIML approaches are usually too time-
consuming to deal with large scale problems. In this paper,
we propose the MIMLfast approach to learn with MIML ex-
amples fast. On one hand, efficiency is highly improved by
optimizing the approximated ranking loss with SGD based
on a two level linear model; on the other hand, effectiveness
is achieved by exploiting label relations in a shared space
and discovering sub-concepts for complicated labels. More-
over, MIMLfast can detect key instance for each label, pro-
viding a chance to discover the relation between input pat-
terns and output label semantics. In the future, we will try to
optimize other loss functions rather than ranking loss. Also,
larger scale problems and non-linear models will be studied.
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