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Abstract

Generalized fused lasso (GFL) penalizes variables with
L1 norms based both on the variables and their pairwise
differences. GFL is useful when applied to data where
prior information is expressed using a graph over the
variables. However, the existing GFL algorithms incur
high computational costs and they do not scale to high-
dimensional problems. In this study, we propose a fast
and scalable algorithm for GFL. Based on the fact that
fusion penalty is the Lovász extension of a cut func-
tion, we show that the key building block of the opti-
mization is equivalent to recursively solving parametric
graph-cut problems. Thus, we use a parametric flow al-
gorithm to solve GFL in an efficient manner. Runtime
comparisons demonstrated a significant speed-up com-
pared with the existing GFL algorithms. By exploiting
the scalability of the proposed algorithm, we formulated
the diagnosis of Alzheimer’s disease as GFL. Our ex-
perimental evaluations demonstrated that the diagnosis
performance was promising and that the selected criti-
cal voxels were well structured i.e., connected, consis-
tent according to cross-validation and in agreement with
prior clinical knowledge.

Introduction
Learning with sparsity-inducing norms has been one of the
main focuses of machine learning and it has been applied
successfully to a variety of applications. It is well known that
learning with the L1 penalty, such as lasso, results in sparse
variables (Tibshirani 1996). Recently, this approach was ex-
tended to explore structures of variables, which is called
structured sparse learning. A variety of norms for different
structures and efficient algorithms solving the corresponding
optimizations have been proposed, such as (Huang, Zhang,
and Metaxas 2011; Bach et al. 2012). Fused lasso is one of
these variants, where pairwise differences between variables
are penalized using the L1 norm, which results in successive
variables being similar (Tibshirani et al. 2005).

Generalized Fused Lasso
Let {(xi, yi)}Ni=1 be a set of samples, where xi ∈ Rd and
yi ∈ R. X ∈ Rd×N and y ∈ RN denote the concatenations
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of xi and yi, respectively. Then, we start from the definition
of (1D) fused lasso, which was first proposed by (Tibshirani
et al. 2005) and is formulated as

min
β∈Rd

1

2
‖y −XTβ‖22 + λ1

d∑
i=1

|βi|+ λ2

d∑
i=2

|βi − βi−1|,

(1)
where β ∈ Rd and λ1, λ2 ≥ 0. Furthermore, the variables
(i.e., β) are assumed to have a meaningful ordering (e.g.,
forming a chain structure). Due to the L1 penalties on both
single variables and consecutive pairs, solutions tend to be
sparse and smooth, i.e., consecutive variables tend to be sim-
ilar. The third term is usually called the “fusion penalty”.

The classical fused lasso method (Eq.(1)) was proposed
to pursue sparse segments on a chain of variables. Thus, a
natural generalization of 1D fused lasso aims to promote
smoothness over neighboring variables on a general graph.

Assume that we have a graph G = (V,E) with nodes V
and edges E, where each variable corresponds to a node on
the graph. Then, such a generalization is given as

min
β∈Rd

1

2
‖y −XTβ‖22 + λ1

d∑
i=1

|βi|+ λ2
∑

(i,j)∈E

|βi − βj |.

(2)
In general, Eq. (2) is usually referred to as generalized fused
lasso (GFL).

In the present study, we propose to solve a further gen-
eralization of the problem above with an arbitrary smooth
convex loss l : Rd → R:

min
β∈Rd

l(β) + λ1

d∑
i=1

|βi|+ λ2
∑

(i,j)∈E

|βi − βj |, (3)

which we also refer to as GFL in this paper. The benefit of
this generalization will soon be clear in the application.

Existing Algorithms
The first algorithm for solving fused lasso, i.e., Eq. (1),
which was proposed by (Tibshirani et al. 2005), is based on
the two-phase active set algorithm SQOPT (Gill, Murray,
and Saunders 1999). This algorithm can be extended to GFL
and implemented using an off-the-shelf convex optimiza-
tion solver. In general, however, it does not scale to high-
dimensional problems. Proximal gradient methods such as
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the fast iterative shrinkage-thresholding algorithm (FISTA)
(Beck and Teboulle 2009) solve convex problems where the
objective comprises both smooth and non-smooth parts. Us-
ing FISTA, Liu et al. proposed to solve Eq. (1) by designing
specific proximal operators, (i.e., generalized projections)
(Liu, Yuan, and Ye 2010). Although their algorithm is ef-
ficient and scalable for the 1D case, it cannot be extended to
GFL in principle. Friedman et al. proposed a pathwise coor-
dinate descent algorithm for a special case of Eq. (2) (Fried-
man et al. 2007), where the design matrix X is the identity
matrix. The reported efficiency of the algorithm is impres-
sive; however as suggested in (Friedman et al. 2007), this
algorithm is not guaranteed to find exact solutions to gen-
eral problems. In (Tibshirani and Taylor 2011), a solution
path algorithm is proposed for Eq. (2). This algorithm solves
for all possible parameters (λs) by finding critical changing
points in a dual problem, although they tend to be very dense
in large problems.

In the present study, we propose an efficient and scal-
able algorithm for solving GFL. Using proximal methods
(FISTA), the key building block of our algorithm is the
fused lasso signal approximation (FLSA). Based on the fact
that fusion penalty is the Lovász extension of a cut func-
tion, we apply a parametric flow algorithm and then the
soft-thresholding method to solve the FLSA in an efficient
manner. The proposed algorithm can find an exact solution
to GFL and it can also be implemented with a stable and
efficient parametric flow solver. Our runtime experiments
demonstrate that the speed of the proposed algorithm is com-
petitive with the state-of-the-art 1D fused lasso algorithms
and it significantly outperforms existing GFL algorithms, es-
pecially with high-dimensional data.

Motivation: the Diagnosis of Alzheimer’s Disease
The motivation of our research includes the diagnosis of
Alzheimer’s disease (AD), which is a challenging real-world
application. This is usually formulated as a classification
task, where structural magnetic resonance images (sMRI) of
human brains are used as the inputs. Because of its practi-
cal benefit, this problem is increasingly attracting many re-
searchers from various fields, such as medical image analy-
sis and machine learning. The dimensionality of a brain im-
age can be as high as millions whereas the number of avail-
able samples is usually limited, e.g., hundreds, thus appro-
priate regularization is required.

Critical brain voxels should be sparse and spatially as-
sembled into several anatomical regions with early damage.
Existing methods either assume independence between vox-
els (e.g., univariate selection (Dai et al. 2012)), or they use
the volume of interest (VOI) (Zhou et al. 2011) as a process-
ing unit, which loses much of the pathological information
and might not be sufficiently sensitive for early diagnosis.

By considering the structure of a brain sMRI as a 3D
grid graph, we propose to formulate the diagnosis of AD
as GFL. However, the existing algorithms do not scale suf-
ficiently well to solve this problem in feasible time. Thus,
we demonstrate the effectiveness of the proposed algorithm,
which solves the problem within limited memory and time,
as well as yielding promising classification accuracy, which

is similar to the state-of-the-art methods. The selected vox-
els are also well structured i.e., being connected, consistent
according to cross-validation and in agreement with clinical
prior knowledge.

Efficient Optimization for GFL
In this section, we propose an efficient and scalable op-
timization algorithm for GFL. First, we introduce FISTA,
which is applied to solve GFL by iteratively calculating
proximal operators. For GFL, we show that the computa-
tion of the proximal operator can be formulated as one of
the FLSAs. We then propose a parametric optimization for-
mulation to solve FLSA in an efficient manner, where we in-
troduce a soft-threshold strategy to disgard the sparse term,
transform the FLSA to a minimum-norm-point (MNP) prob-
lem under submodular constraints, prove its equivalence
to recursively solving parametric graph-cut problems, and
solve this problem using a parametric flow method.

Proximal Methods and FLSA
For smooth convex problems, it was shown (Nesterov 2004)
that there exists a gradient method with O(1/k2) complex-
ity, which is an “optimal” first order method as per. (Ne-
mirovsky and Yudin 1983). By extending Nesterov’s method
to the general case with non-smooth terms, FISTA achieves
the same complexity (Beck and Teboulle 2009). FISTA has
been applied to various sparse learning problems, e.g., (Beck
and Teboulle 2009; Bach 2010), and to 1D fused lasso, e.g.,
(Liu, Yuan, and Ye 2010). We also use FISTA to solve GFL
in the present study.

It is known that the optimization of any smooth objec-
tive function l(β) can be achieved using a gradient method,
where the updating rule of β can be viewed as a proximal
regularization to the linearization of l() at the previous βk
(k is the iteration index), (Polëiı̀ak 1987) i.e.,

βk+1 = argmin
β

{
l(βk)

+ 〈β − βk,∇l(βk)〉+
L

2
‖β − βk‖22

}
,

(4)

where L > 0 is the Lipschitz constant of l().
Let us denote the regularization terms in Eq. (3) as

Ω(β) = λ1

d∑
i=1

|βi|+ λ2
∑

(i,j)∈E

|βi − βj |.

When there is a non-smooth part Ω(β) in the objective
function of GFL (Eq.(3)), using FISTA changes the updating
rule to

βk+1 = argmin
β

{
l(βk) + 〈β − βk,∇l(βk)〉

+
L

2
‖β − βk‖22 + Ω(β)

}
,

(5)

where the minimization admits a unique solution. After
some simple manipulations of Eq.(5) (ignoring some con-
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stant terms of βk), we have

βk+1 = argmin
β

{
Ω(β) +

L

2

∥∥∥β − (βk −
1

L
∇l(βk))

∥∥∥2
2

}
.

(6)
Thus, the key to solving Eq. (3) is how efficiently we can

solve Eq. (6). The optimization in Eq. (6) can be rewritten
as

min
β∈Rd

1

2
‖β − z‖22 + λ1

d∑
i=1

|βi|+ λ2
∑

(i,j)∈E

|βi − βj |, (7)

where z = βk − 1
L∇l(βk), and λ1 and λ2 are scaled from

Eq. (3) by L. Problem (7) is equivalent to the FLSA defined
in (Friedman et al. 2007; Tibshirani and Taylor 2011).

An Efficient Solution to FLSA by Parametric Flow
To the best of our knowledge, there are no previous re-
ports of an efficient method for solving the FLSA for high-
dimensional problems. In the present study, therefore, we
propose an efficient solution to the minimization problem
Eq.(7) by using a parametric flow method.

L1 Soft-Thresholding First, let us denote the objective in
Eq. (7) by f(β;λ1, λ2) and βλ1

λ2
= arg minβ f(β, λ1, λ2).

Then, we introduce the following lemma (Friedman et al.
2007; Liu, Yuan, and Ye 2010) :
Lemma 1. For any λ1, λ2 ≥ 0, we have

βλ1

λ2
= sign(β0

λ2
)�max(|β0

λ2
| − λ1, 0), (8)

where � is an element-wise product operator.
From Eq. (8), a solution to Eq. (7) can be obtained using

a soft-thresholding process (Donoho and Johnstone 1995),
which is applied often for solving lasso problems.

First, based on this lemma, we solve the following prob-
lem:

β0
λ2

= argmin
β

1

2
‖β − z‖22 + λ2

∑
(i,j)∈E

|βi − βj |. (9)

Then, using Eq.(8), a soft-threshold process to β0
λ2

w.r.t λ1,
we obtain a solution to Eq. (7).

Minimum-Norm-Point Problem under Submodular
Constraints According to Lemma 1, we can neglect the
L1 term and focus on the fusion term (i.e., Problem (9)) to
calculate the proximal operator. However, since the second
term of Eq.(9) is non-smooth and non-separable w.r.t. β, its
optimization is still nontrivial.1 To develop an efficient al-
gorithm for Problem (9), we consider a transformation of
Problem (9) into an MNP problem under submodular con-
straints.

First, we prove the following lemma, which describes the
relation between the fusion penalty and a cut function.

1(Goldfarb and Yin 2009) used a parametric flow algorithm to
solve (9), but it is nontrivial to be extended this to exact GFL,
mainly because of both the theoretic gap that needs to be bridged
and their discretized formulation and optimization, where β, z ∈
Zd

+.

Let V := {1, . . . , d} denote a finite set. Given a set of
non-negative weights w : V × V→ R+, a cut function of a
set S ⊆ V is defined by

fc(S) =
∑

i∈S,j∈V\S

wij , (S ⊆ V).

Lemma 2. The fusion term
∑

(i,j)∈E |βi − βj | is equivalent
to the Lovász extension of a cut function.

Proof. We define the weights of the cut function wij = 1 if
(i, j) ∈ E and 0 otherwise, which results in a cut function

fc(S) =
∑

(i,j)∈E,i∈S,j∈V\S

1.

We denote (j1, ..., jd) as a decreasing ordering index such
that βj1 ≥ · · · ≥ βjd and Uk := {j1, ...jk} is a subset. By
applying the definition of the Lovász extension (Fujishige
2005), we have

f̂c(β) =
d∑
k=1

βjk(fc(Uk)− fc(Uk−1))

=

d∑
k=1

(−
∑

(i,jk)∈E,i∈Uk

βjk +
∑

(i,jk)∈E,i∈V\Uk

βjk)

=
∑

(i,j)∈E,βi≥βj

(βi − βjk) +
∑

(i,j)∈E,βi<βj

(βj − βi)

=
∑

(i,j)∈E

|βi − βj |.

Similarly, for arbitrary non-negative weightswij , the Lovász
extension of the cut function can be shown to equal∑

(i,j)∈E wij |βi − βj |.

With this lemma, we can rewrite Eq. (9) as

min
β∈Rd

1

2
‖β − z‖22 + λ2 · f̂c(β), (10)

Since a cut function is submodular, this optimization prob-
lem can be transformed into an MNP problem under sub-
modular constraints.
Proposition 3. Problem (10) is equivalent to the following
problem:

min
t∈Rd,t∈B(fc−λ−1

2 z)
‖t‖22, (11)

whereB(•) is the base polyhedron of a submodular function
•. A minimizer β∗ of Problem (10) is obtained by β∗ =
−λ2t∗, where t∗ is a minimizer of Problem (11).

Proof. From the definition of the Lovász extension, we have
f̂c(β) = maxs∈B(fc) β

T s (Fujishige 2005). Hence, we have

min
β

1

2
‖β − z‖22 + λ2 · f̂c(β)

= min
β

max
s∈B(fc)

1

2
‖β − z‖22 + λ2 · βT s

= max
s∈B(fc)

−1

2
‖λ2s− z‖22 +

1

2
‖z‖22 (since β∗ = z− λ2s)

⇔ min
s∈B(fc)

‖s− λ−12 z‖22
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Let t = s − λ−12 z and with the basic property of the base
polyhedron of a submodular function, we have

min
s∈B(fc)

‖s− λ−12 z‖22 ⇔ min
t∈B(fc−λ−1

2 z)
‖t‖22

From the derivation, it follows that β∗ = −λ2t∗.

For general submodular functions, Problem (11) is solv-
able using submodular minimization algorithms, such as
the MNP algorithm (Fujishige, Hayashi, and Isotani 2006).
However, the known fastest time complexity of submodu-
lar minimization is O(d5EO+ d6) (Orlin 2009), where EO
is the cost for a function evaluation, thus this approach to
high-dimensional problems is infeasible in practice.

Parametric Graph Cut To solve Problem (11), we utilize
a parametric property of the MNP problem and apply a para-
metric flow algorithm, which can run much more efficiently

A set function g(S) = fc(S) − λ−12 z(S) in Eq. (11) is
the sum of a cut function and a modular function, which is
still submodular (but not necessarily non-decreasing). Thus,
Problem (11) is a special case of a separable convex min-
imization problem under submodular constraints (Nagano
and Aihara 2012), which can be solved by parametric op-
timization (if the submodular function is non-decreasing).
We describe how to satisfy the non-decreasing requirement
in Lemmas 4 & 5.

For a parameter α ≥ 0, we define a set function gα(S) =
g(S)− α · 1(S). If g is a non-decreasing submodular func-
tion, there exists l + 1 (≤ d) subsets

S∗ = {(∅ =)S0 ⊂ S1 ⊂ . . . ⊂ Sl (= V)} ,

and l + 1 subintervals of

R0 = [0, α1), R1 = [α1, α2), . . . , Rl = [αl,∞),

such that, for each j ∈ {0, . . . , l}, Sj is the unique maxi-
mal minimizer of gα(S) for all α ∈ Rj (Nagano and Ai-
hara 2012). Then, the unique optimal solution t∗ ∈ Rd
to Problem (11) is determined by, for each i ∈ V with
i ∈ Sj+1 \ Sj (j ∈ {1, . . . , l − 1}),

t∗i =
fc(Sj+1)− fc(Sj)

1(Sj+1 \ Sj)
. (12)

Thus, by computing the unique maximal minimizer of gα for
some appropriately selected αs, we can find all Sj and there-
fore t∗. A possible option for finding all “appropriate” αs
would be to apply the decomposition algorithm (Fujishige
2005; Nagano and Aihara 2012).

As stated above, g has to be a non-decreasing function
in order to apply the above procedure. First, we introduce
two lemmas from (Nagano and Kawahara 2013) to apply
the above to g:

Lemma 4. For any γ ∈ R and a submodular function f ,
t∗ is an optimal solution to mint∈B(f) ‖t‖22 if and only if
t∗ + γ1 is an optimal solution to mint∈B(f+γ1) ‖t‖22.

Lemma 5. Set γ = maxi=1,...,d{0, f(V \{i})−f(V )}, then
f + γ1 is a nondecreasing submodular function.

s

vj

source sinkt

vi

...

..
.

..
.

w
ij

G

Figure 1: Construction of an s-t graph for Problem (13).
Given a graph G = (V,E) for GFL, the capacities on
edges are defined as follows: c(vi, vj) = wij (i, j ∈ V ),
cs,vi = λ−12 zi − (γ −α) if λ−12 zi < γ −α or cs,vi = 0 oth-
erwise (i ∈ V ), and cvi,t = (γ−α)−λ−12 zi if λ−12 zi > γ−α
or cvi,t = 0 otherwise (i ∈ V ), where cs,vi and cvi,t denote
the capacities of the source-to-node and node-to-sink edges.

Applying Lemma 5 to our case with f := g, we solve

min
S⊂V

fc(S)−λ−12 z(S) + (γ−α) · 1(S) (:= g′α(S)). (13)

Then we apply Lemma 4 to obtain a solution of the original
problem. Owing to the specific form of Problem (13), we
can solve it as an easier problem, as follows.
Proposition 6. For any cut function fc, Problem (13) is
equivalent to an s-t cut problem with the s-t graph defined
in Figure 1.

Proof. Problem (13) comprises modular terms and a sub-
modular pairwise term. This is a typical F2 type energy
function (Kolmogorov and Zabin 2004), which is known to
be “graph-representable” and it can be minimized via graph-
cut algorithms. Hence, by following the construction of an
s-t graph according to (Kolmogorov and Zabin 2004), we
can solve Problem (13) by solving an s-t cut on this graph.
Note that a detailed proof of a similar problem can be found
in (Azencott et al. 2013).

As a consequence, we can obtain a solution to Eq. (11) by
solving s-t cut problems for some different α’s:

Find minimum s-t cuts w.r.t. Eq. (13) for α ≥ 0. (14)

However, since the parameter α only affects the edges from
the source node or to the sink node, we do not need to search
αs that yield different solutions. Thus, as can be seen from
the construction of the s-t graph, the capacities on source-to-
node or node-to-sink edges have the following properties: (i)
the capacities on source-to-node edges are non-decreasing
functions of α; (ii) the capacities on node-to-sink edges are
non-increasing functions of α; (iii) the capacities on node-
to-node edges are constant with respect to α. For such cases,
it is known that the parametric flow algorithm reported by
(Gallo, Grigoriadis, and Tarja 1989) (GGT algorithm) can
be applied to find all solutions for all α ∈ R. Thus, we can
obtain the sequence of solutions to Problem (13) for differ-
ent αs by simply applying the GGT algorithm, which runs
in O(d|E| log(d2/|E|) as the worst case.
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Runtime Comparison
We investigated the efficiency of the proposed algorithm,
i.e., fast generalized fused lasso (fGFL). All of the experi-
ments were performed using an Intel(R) Xeon(R) E5-2687
CPU at 3.10GHz with 64G memory. Our implementation of
FLSA was written in C++ and that of FISTA in Matlab.2

As mentioned above, several algorithms have been pro-
posed for FLSA and GFL. Here we compare the proposed
fGFL with the following state-of-the-art algorithms:

• SLEP package (Liu, Ji, and Ye 2009; Liu, Yuan, and Ye
2010): Implemented with Matlab and C for 1D fused lasso
and 1D FLSA.

• SPAMS (Mairal et al. 2011): Implemented with C for 1D
fused lasso and 1D FLSA.

• “flsa” R package: Implemented with R for general FLSA,
which includes accelerated implementations for 1D and
2D (grid) FLSA.

• “genlasso” R package (Tibshirani and Taylor 2011): Im-
plemented with R for generalized fused lasso, which in-
cludes accelerated implementations for 1D and 2D (grid)
fused lasso. (Note that it is limited to the cases N ≥ d.)

• CVX (Grant, Boyd, and Ye 2008): This is a general con-
vex optimization toolbox. We employed its general-use
optimizer for GFL and FLSA.

We compared the application of the algorithms to 1D and
2D cases of FLSA defined in Eq. (7) and GFL defined in Eq.
(2). Note that the proposed fGFL can be applied to a more
general case Eq. (3), for which most existing algorithms are
not applicable. We demonstrate the advantage of Eq. (3) and
our solution based on their application to the AD problem.

We generated data for the runtime comparison in the fol-
lowing manner. First, for 1D fused lasso i.e. Eq. (1), we set
parameter β as: βi = 0.5 for i ∈ {d/2 − d/20, . . . , d/2 +
d/20} and 0 otherwise. For 2D fused lasso, we set βi,j = 0.5
for i, j ∈ {d/2 − d/20, . . . , d/2 + d/20} and 0 otherwise.
For FLSA defined in Eq. (7), we set z = β + 0.05e, where
e is a noise vector drawn from the standard normal distribu-
tion. For GFL as in Eq. (2), we generated N = d samples
(because ”genlasso” cannot solve Eq. (2) when N < d):
xi ∈ Rd and yi = βTxi+0.05ei, xi and ei for i = 1, . . . , N
are drawn from the standard normal distribution. We fixed
λ1, λ2 = 0.1 and applied the algorithm to different dimen-
sion d to compare the runtime. The graphs in Figure 2 and 3
show the runtimes obtained using the algorithms.

Algorithm that use the standard optimizer (e.g., CVX)
need to handle the huge difference matrix D ∈ Rd×|E|
for high-dimensional problems, which results in a memory
shortage. The number of critical points found by “genlasso”
significantly increases in high-dimensional problems, so we
used the setting of “maxsteps=10,000” (i.e., “genlasso” will
find a maximum of 10, 000 critical points). These explana-
tions account for some of the missing comparisons in Figure
2 and 3. Nevertheless, as illustrated, in the 1D cases, our al-
gorithm was not the fastest but it was competitive with the

2The codes can be found on the co-author’s homepage.
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Figure 2: FLSA Runtime comparison (in seconds) using dif-
ferent algorithms with variable dimensionality d.
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Figure 3: GFL Runtime comparison (in seconds) using dif-
ferent algorithms with variable dimensionality d.

faster algorithms. In general cases of GFL (e.g. 2D), our al-
gorithm was the fastest, with a speedup of tens to hundreds
of times.

Application to the AD Diagnosis Problem
The AD data used in this experiment were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database3. We used 1.5T MRI of 62 AD patients, 71 NCs
(healthy controls) and 141 patients with mild cognitive im-
pairment (MCI), among whom 54 converted to AD (MCIC)
whereas 87 did not (MCIS). Preprocessing was performed
using the DARTEL VBM pipeline (Ashburner 2007). We
used 2,873 8×8×8 mm3 voxels with values larger than 0.2
in the mean grey matter population template as features.

During the diagnosis of AD, the two fundamental issues
are AD/NC classification and MCI conversion prediction
(i.e., MCIC /MCIS classification). Let xi ∈ Rd be a sub-
ject’s sMRI features and yi = {−1, 1} be the subjects’ dis-
ease status (AD/NC or MCIC /MCIS). Since our algorithm
is applicable to any smooth convex loss, we used logistic re-
gression loss for the classification task and formulated the
problem as GFL in the following manner

min
β∈Rd,c∈R

N∑
i=1

log (1 + exp (−yi(βTxi + c))) + λΩ(β).

(15)
Note that other existing algorithms are not feasible in prac-
tice, even if we adopt the least square loss as in Eq. (2).

3http://adni.loni.ucla.edu

2167



(a) fold 1 (b) fold 3 (c) fold 5 (d) fold 7 (e) fold 9 (f) overlap

Figure 4: Consistency of selected voxels in different trials of cross-validations. The results of 5 different folds of cross-validations are shown
in (a)-(e) and the overlapping voxels in all 10 folds are shown in (f). The top row shows the results for GFL and the bottom row shows the
results for L1. The percentages of the overlapping voxels were: GFL(66%) vs. L1(22%).

Table 1: Comparison of the accuracy of AD classification.

Task LR SVM LR+L1 LR+GFL
AD/NC 80.45% 82.71% 81.20% 84.21%

MCI 63.83% 67.38% 68.79% 70.92%

We compared GFL to logistic regression (LR), support
vector machine (SVM), and logistic regression with an
L1 regularizer. The classification accuracies obtained based
on a 10-fold cross validation (CV) are shown in Table 1,
which shows that GFL yields the highest accuracy in both
tasks. Furthermore, compared with other reported results,
our performance are comparable with the state-of-the-art.
In (Cheng, Zhang, and Shen 2012), the best performance
with MCI tasks is 69.4% but our method reached 70.92%.
In (Chu et al. 2012), a similar sample size is used as in our
experiments, the performance of our method with ADNC
tasks is comparable to or better than their reported results
(84.21% vs. 81-84%) whereas our performance with MCI
tasks is much better (70.92% vs. 65%).

We applied GFL to all the samples where the optimal pa-
rameter settings were determined by cross-validation. Figure
5 compares the selected voxels with non-structured sparsity
(i.e. L1), which shows that the voxels selected by GFL clus-
tered into several spatially connected regions, whereas the
voxels selected by L1 were more scattered. We considered
the voxels that corresponded to the top 50 negative βi’s as
the most atrophied voxels and projected them onto a slice.
The results show that the voxels selected by GFL were con-
centrated in hippocampus, parahippocampal gyrus, which
are believed to be the regions with early damage that are
associated with AD. By contrast, L1 selected either less crit-
ical voxels or noisy voxels, which were not in the regions
with early damage (see Figure 5(b) and 5(c) for details).
The voxels selected by GFL were also much more consistent
than those selected by L1, where the percentages of overlap-
ping voxels according to the 10-fold cross-validation were:

(a) (b) (c)

Figure 5: Comparison of GFL and L1. The top row shows the
selected voxels in a 3D brain model, the middle row shows the
top 50 atrophied voxels, and the bottom row shows the projec-
tion onto a brain slice. (a) GFL (accuracy=84.21%); (b) L1 (ac-
curacy=81.20%); (c) L1 (similar number of voxels as in GFL).

GFL=66% vs. L1=22%, as shown in Figure 4.

Conclusions
In this study, we proposed an efficient and scalable algo-
rithm for GFL. We demonstrated that the proposed algo-
rithm performs significantly better than existing algorithms.
By exploiting the efficiency and scalability of the proposed
algorithm, we formulated the diagnosis of AD as GFL. Our
evaluations showed that GFL delivered state-of-the-art clas-
sification accuracy and the selected critical voxels were well
structured.
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