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Abstract
Inverse reinforcement learning (IRL) aims to recover the re-
ward function underlying a Markov Decision Process from
behaviors of experts in support of decision-making. Most re-
cent work on IRL assumes the same level of trustworthiness
of all expert behaviors, and frames IRL as a process of seek-
ing reward function that makes those behaviors appear (near)-
optimal. However, it is common in reality that noisy expert
behaviors disobeying the optimal policy exist, which may de-
grade the IRL performance significantly. To address this is-
sue, in this paper, we develop a robust IRL framework that
can accurately estimate the reward function in the presence
of behavior noise. In particular, we focus on a special type of
behavior noise referred to as sparse noise due to its wide pop-
ularity in real-world behavior data. To model such noise, we
introduce a novel latent variable characterizing the reliability
of each expert action and use Laplace distribution as its prior.
We then devise an EM algorithm with a novel variational
inference procedure in the E-step, which can automatically
identify and remove behavior noise in reward learning. Ex-
periments on both synthetic data and real vehicle routing data
with noticeable behavior noise show significant improvement
of our method over previous approaches in learning accuracy,
and also show its power in de-noising behavior data.

Introduction
In problems of reinforcement learning (RL), given the re-
ward function in a state space (as a mapping from states
to rewards) and the environment dynamics modeled as a
Markov Decision Process (MDP), an agent learns to make
decisions in such a way that maximizes the accumulated re-
ward it will receive in the long term. Yet in practice, the re-
ward function that an agent is using is usually unknown, and
the goal is to recover that reward function based on sample
observations of expert agents’ sequential decision-making
behaviors. This is referred to as inverse reinforcement learn-
ing (IRL). A basic assumption is that expert agents act in ac-
cordance with the optimal policy (as a mapping from states
to actions) induced by the reward function, and hence the
key intuitive notion in IRL is to search a reward function that
makes their demonstrated behaviors appear (near)-optimal.

IRL can be used to achieve two objectives: reward learn-
ing and apprenticeship learning. In reward learning, the re-
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ward function in the task is itself of interest from knowledge
discovery’s perspective, for example, learning the latent cost
of each road segment from vehicle routing data can facilitate
various smart-city applications such as road type inference.
In apprenticeship learning, the aim is to imitate the optimal
policy in support of future decision-making, such as pro-
vide route recommendation to new drivers. Although expert
agents’ behaviors can directly be used to represent the opti-
mal policy, they may only cover partial state space, contain
noise, or be too sensitive to environment dynamics. A more
promising way is to apply IRL to estimate the reward func-
tion, which completely determines the optimal policy and
allows for generalization in face of environment change.

Most existing work on IRL assumes that all expert
demonstrations are reliable or trustworthy. This is in the
sense that i) they are all optimizing the same reward func-
tion as what we aim to learn in determining their policies,
and ii) their sequential action-taking behaviors consistently
obey the optimal policy. In practice, however, such assump-
tions do not always hold, and noisy or misleading demon-
strations do exist: i) an agent may act to optimize a different
reward function due to its unfamiliarity with the task, and
ii) even if an agent has the correct knowledge of the reward
function, it may behave in a fraudulent way, i.e., deliberately
deviate from the optimal policy in choosing its actions to
achieve certain purposes. Take the modeling of routing pref-
erences of taxi drivers as an example. In this example, each
road segment (i.e., state) is associated with a latent cost (i.e.,
a negative reward) which is jointly determined by a variety
of latent factors such as speed limit and safety. Normally, a
taxi driver is attempting to reach the destination as efficiently
as possible by optimizing such latent costs, but there do exist
exceptions: i) new taxi drivers, who are inexperienced, may
bear a partially incorrect knowledge of road costs in mind
and thus are not acting optimally in routing; ii) certain fraud-
ulent drivers, albeit experienced, may deliberately detour or
traverse inefficient roads in order to make more profits. In a
word, noisy behaviors refer to those agent actions that appar-
ently disobey the optimal policy in the task. It is clear that
such anomalous actions can mislead traditional IRL methods
to estimate an incorrect reward function and thus generate an
inferior policy, which may result in poor decision-making
performance. Motivated by this challenge, in this paper we
study how to improve the robustness of IRL, i.e., how to
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estimate the reward function accurately from expert demon-
stration data even in the presence of behavior noise.

We are particularly interested in one special type of be-
havior noise referred to as sparse noise due to its popularity
in real-world applications (Zhang et al. 2011). A key trait of
sparse noise is that most demonstrations are highly trustwor-
thy, i.e., they are (near)-optimal w.r.t. the underlying reward
function, while certain demonstrations may be significantly
anomalous. This type of noise is commonly encountered in
real-world applications in which expert agents are not man-
ually filtered. For example, in taxi data, most taxi drivers are
experienced and faithful in routing the passengers, while a
few drivers may be less experienced or behave fraudulently.

Modeling sparse behavior noise in IRL can bring several
crucial benefits. First, by doing so, we are able to recover
the reward function more accurately from many imperfect
demonstration data sets, and hence improve the performance
of apprenticeship learning. Second, robust IRL essentially
performs a de-noising process, which may help us achieve
data cleaning, or automatically identify anomalous agents
such as detecting fraudulent taxi drivers.

In this paper, we propose a probabilistic IRL framework
that can recover the reward function in a way robust against
a few significant outliers in the demonstration data. In par-
ticular, to automatically identify and separate noisy demon-
strations from reliable ones, we extend the Bayesian IRL
framework in (Ramachandran and Amir 2007) to explicitly
model the trustworthiness of each demonstrated action as a
latent variable. We then devise an expectation-maximization
(EM) framework in which we alternate between estimating
the rewards and inferring the reliability of each action un-
til convergence. Those actions with small inferred reliabil-
ity will be deemed as outliers and thus ignored in reward
learning. To model sparse behavior noise, we change the re-
liability variable in a novel way and impose a Laplace prior
on the new variable. This yet brings challenges to the infer-
ence step, which we tackle by exploiting the infinite mixture
representation of Laplace distribution and designing an ef-
ficient variational inference procedure. Experimental results
show that our robust model outperforms other methods in
both reward learning and demonstration data de-noising.

Preliminaries
In the Bayesian IRL (BIRL) framework proposed by (Ra-
machandran and Amir 2007), consider a standard MDP with
R being its reward function. Let O = {(sj , aj)}j=1...N de-
note a sequence of observations of an expert agent’s behav-
ior, where aj is the action that the agent took when it was at
state sj . W.l.o.g., we use (s, a) to denote a particular state-
action pair in the behavior sequence. The likelihood of (s, a)
given R is defined in the form of a softmax function as:

P ((s, a)|α;R) =
eαQ

π?(R)(s,a)∑
a′ e

αQπ?(R)(s,a′)
(1)

where π?(R) is the optimal policy w.r.t. to R estimated
via RL, and Qπ

?(R)(s, a) is the expected accumulated re-
ward after taking action a at state s under π?. (See (Sut-
ton and Barto 1998) for details). α ∈ [0, 1] is the tem-

perature parameter currently assumed to be 1. Since in
RL, the optimal policy always chooses the action with the
largest Q value at each state, Eq. (1) essentially quantifies
the extent to which (s, a) obeys the optimal policy. The
task of IRL is then to estimate R such that most state-
action pairs have high likelihoods, i.e., appear to be (near)-
optimal. Let D = {Oi}i=1...M denote the data set contain-
ing M behavior sequences demonstrated by multiple ex-
pert agents. The likelihood of D is then naturally defined
as P (D|R) =

∏M
i=1

∏Ni
j=1 P ((s

i
j , a

i
j)|R). BIRL adopts a

Bayesian perspective to estimate the most likely R, i.e., it
infers P (R|D) ∝ P (D|R)P (R) using sampling method,
where P (R) is a prior distribution imposed on R (usually
assumed to be Gaussian or uniform distribution).

Robust Bayesian IRL (RBIRL)
In this section, we first discuss our extension of BIRL to
model sparse behavior noise in the demonstration data, and
then elaborate on the learning and inference algorithms.

The Model
Recall the temperature parameter α in Eq. (1). α in fact
quantifies the reliability or trustworthiness of the particu-
lar demonstration (s, a); the larger α is, the more sensitive
that Eq. (1) will be to R, and hence the learning of R will
take (s, a) more into account. Ideally, a noisy demonstration
should be associated with a small α so that the IRL algo-
rithm will ignore it when learning R. In this sense, α plays
the role of weight for the observed demonstration (s, a).

(Ramachandran and Amir 2007) treats α as a single
known parameter, which implicitly assumes the same reli-
ability level for all demonstrations. This lacks robustness in
the case where untrustworthy demonstrations are present in
the data. In contrast, we assume that no knowledge is avail-
able about how reliable each demonstration (s, a) is, and in-
stead aim to automatically infer such information from the
data. To this end, we treat α as a demonstration-specific la-
tent variable (i.e., each (s, a) is associated with a distinct α)
whose value needs to be inferred. This is in spirit similar to
weighted regression where the sample weights are unknown
before learning. Given the reward function R, the marginal
likelihood of a demonstration (s, a) is then written as:

P ((s, a)|R) =

∫ 1

0

P ((s, a)|α;R)P (α)dα

where P (α) is the prior distribution on α which we shall de-
fine later. Recall that for sparse noise, most demonstrations
are highly reliable while a few may be significantly anoma-
lous. Considering the physical meaning of α, this is equiva-
lent to expect that most α’s are 1 or very close to 1, while a
few α’s are allowed to be significantly small near 0. There-
fore, a key step to model sparse behavior noise is to impose
a prior distribution on α which has the property that highly
encourages α to be 1 when α is relatively large, while at the
same time does not penalize too much for a relatively small
α. With such a prior distribution, the IRL framework can
learn reward function in a way that makes most demonstra-
tions appear (near)-optimal while at the same time prevents a
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Figure 1: Graphical illustration of the Laplace prior
(dashed), likelihood (dash-dotted), and posterior (solid), of
γ for a noisy demonstration (s, a) w.r.t. the given R

few anomalous demonstrations from “distorting” the reward
function, which is what we desire.

However, it is difficult to find a well-known distribution
defined over [0, 1] (i.e., the domain of α) which has the de-
sired property mentioned above. To address this issue, we
change variable by defining α = e−γ

2

, where γ is the new
variable. Our goal now is to define a prior distribution on γ
(i.e., P (γ)) which indirectly makes α have the desired prop-
erty. Note that since limγ→±∞ α = 0 and limγ→0 α = 1,
a desirable P (γ) then should highly encourage γ to be 0
when |γ| is small, while does not penalize too much when
|γ| is relatively large. In statistics, a well-known distribu-
tion which has such a property is Laplace distribution, due
to its long tail in regions far away from 0 and its sharp
peak in the neighborhood of 0 (see the dashed curve in Fig-
ure 1). We thus define P (γ) as Laplace distribution, namely
P (γ) = L(γ) = β2

2 e
−β2|γ|, where β is the hyperparame-

ter which measures the precision of γ. With the new latent
variable γ, the conditional likelihood of a particular (s, a) is
then written as:

P ((s, a)|γ;R) =
ee
−γ2Qπ

?(R)(s,a)∑
a′ e

e−γ2Qπ?(R)(s,a′)

and the marginal likelihood of (s, a) becomes:

P ((s, a)|R) =

∫ +∞

−∞
P ((s, a)|γ;R)L(γ)dγ

The posterior of γ, P (γ|(s, a);R) ∝ P ((s, a)|γ;R)L(γ),
informs how reliable the demonstration (s, a) is w.r.t. the re-
ward function R. As an illustration, Figure 1 plots the like-
lihood function (dash-dotted) and the posterior distribution
(solid) of γ for an artificial demonstration which notably de-
viates from the optimal policy induced by R. As a result of
such deviation, the likelihood function disfavors the region
near 0 and hence the posterior concentrates its mass on γ of
large absolute value (i.e., small α). Note that the long tail
of Laplace prior (dashed) allows the posterior to place ade-
quate probability mass on γ of large absolute value to make
the expectation of α sufficiently small, so that the algorithm
can treat this demonstration as a significant noise and thus
ignore it in updating R. In contrast, if instead a non-robust
prior without a long tail such as Gaussian is used, the in-
ferred expectation of α will not be small enough due to in-
sufficient posterior mass placed on γ of large absolute value,

and hence this particular noisy demonstration may mislead
the learning of the reward function R.

Learning and Inference
By treating R as model parameters and {γk}k=1...K (K
is the total number of state-action pairs in the data) as
latent variables, we adopt the expectation-maximization
(EM) algorithm to solve the robust IRL problem. The
complete data log likelihood given parameters, namely
logP (D, {γk}K |R), is written as:

K∑
k=1

[
logP ((sk, ak)|γk;R) + logL(γk)

]
The so-called Q-function of R given the currently learned
R (denoted as Rold), namelyQ(R|Rold), computes the ex-
pectation of the complete data log likelihood, which is:

K∑
k=1

Eγk∼P (γk|(sk,ak);Rold)

[
logP ((sk, ak)|γk;R)

]
(2)

where we omit the term logL(γk) which is unrelated to R.
In the E-step, we need to infer the posterior distribu-

tion of γ: P (γ|(s, a);R) ∝ P ((s, a)|γ;R)L(γ) 1 (we omit
the subscript k to avoid clutter). However, due to the non-
conjugacy between P ((s, a)|γ;R) and L(γ), the inference
of P (γ|(s, a);R) is intractable analytically. Therefore, we
resort to sampling method to make approximate inference.
But due to the non-smooth nature and some other char-
acteristics of Laplace distribution, the sampling procedure
may be difficult and inefficient (the detailed reasons shall
be elaborated later in this subsection). To address this issue,
we rewrite the Laplace distribution as an infinite mixture of
Gaussian distributions according to (Lange and Sinsheimer
1993) as follows:

L(γ) =

∫ +∞

0

N (γ|0, τ)Expon(τ |β2)dτ

where N (γ|0, τ) = 1√
2πτ

e−
γ2

2τ is the Guassian distribu-

tion, and Expon(τ |β2) = β2

2 e
− β

2τ
2 is the exponential dis-

tribution. Then, the marginal likelihood of (s, a), namely
P ((s, a)|R), is written as:∫ +∞

−∞

∫ +∞

0

P ((s, a)|γ;R)N (γ|0, τ)Expon(τ |β2)dτdγ

In this new formulation, each observation (s, a) is asso-
ciated with two latent variables: γ and τ . Then, in order to
infer P (γ|(s, a);Rold), we need to infer the joint posterior
distribution on (γ, τ), namely P (γ, τ |(s, a);Rold), which is
proportional to:

P ((s, a)|γ;Rold)N (γ|0, τ)Expon(τ |β2) (3)

1This is a legal density function of γ, which can be proved from
the facts that

∫
L(γ)dγ = 1 and that P ((s, a)|γ;R) as a function

of γ is lower and upper bounded.
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Due to the intractability of this inference problem, we re-
sort to variational method for approximate inference. But
before doing that, we first change variable τ by defining
λ = τ−1 for computational convenience which shall be-
come clear later, and instead infer P (γ, λ|(s, a);Rold). With
the relation λ = τ−1, the posterior distribution on (γ, λ) is:

P (γ, λ|(s, a);Rold) = P (γ, τ |(s, a);Rold)|∂τ
∂λ
|

∝ P ((s, a)|γ;Rold)N (γ|0, λ−1)e−
β2

2λ
1

λ2

= P ((s, a)|γ;Rold)

√
λ

2π
e−

λγ2

2 e−
β2

2λ
1

λ2
(4)

where we make use of Eq. (3). Denote the un-normalized
version of P (γ, λ|(s, a);Rold) (the right-hand side of ∝
in Eq. (4)) as P̃ (γ, λ; (s, a),Rold). By variational method
(Bishop and Nasrabadi 2006), we make the full factoriza-
tion assumption and find two variational distributions q1(γ),
q2(λ) to minimize the KL-divergence from q1(γ)q2(λ) to
P (γ, λ|(s, a);Rold). This is equivalent to alternately updat-
ing the following two equations until convergence:

logq2(λ) = Eγ∼q1(γ)[logP̃ (γ, λ; (s, a),R
old)] + C1 (5)

logq1(γ) = Eλ∼q2(λ)[logP̃ (γ, λ; (s, a),R
old)] + C2 (6)

where C1, C2 account for the logarithm of normalizing con-
stants. From Eq. (5) and Eq. (4), we have:

logq2(λ) = Eq1(γ)[log
√
λe−

λγ2

2 e−
β2

2λ
1

λ2
] + C

= log
√
λ− λ

2
Eq1(γ)[γ

2]− β2

2λ
+ log(

1

λ2
) + C

where C accounts for terms irrelevant to λ. By straightfor-
ward mathematical manipulation, we have:

q2(λ) ∝
√

1

λ3
exp
(
−
β2(λ− β√

Eq1(γ)[γ2]
)2

2 β2

Eq1(γ)[γ2]λ

)
(7)

Eq. (7) states that q2(λ) is an inverse Gaussian distribution
(Shuster 1968). Its expectation has a closed form 2 as:

Eq2(λ)[λ] =
β√

Eq1(γ)[γ
2]

(8)

On the other hand, by manipulating Eq. (6), we have:

q1(γ) ∝ P ((s, a)|γ;Rold)N (γ|0, Eq2(λ)[λ]
−1) (9)

from which we know that q1(γ) is an even function, and
hence its variance V arq1(γ)[γ] = Eq1(γ)[γ

2]. 3

We then use Eq. (9) and Eq. (8) to alternate between up-
dating q1(γ) and q2(λ) until convergence. However, from
Eq. (9), there is no closed form for Eq1(γ)[γ

2], which needs

2This shows the advantage of changing variable as λ = τ−1.
3V arq1(γ)[γ] provides an intuitive estimation of the expected

value of α, i.e., the larger the posterior variance of γ is, the smaller
the posterior expectation of α will be.

to be used in Eq. (8). To solve this problem, we now propose
an efficient importance sampling-based method to estimate
Eq1(γ)[γ

2]. In particular, we aim to get samples from q1(γ)
using importance sampling method. To do this, for efficiency
concern, it is desirable to have a proposal distribution which
is easy to sample and at the same time roughly approximates
q1(γ) in shape. Nevertheless, such a proposal distribution is
difficult to find since q1(γ) may be multi-modal 4. To tackle
this, we note that q1(γ) is symmetric, and over [0,+∞) or
(−∞, 0], q1(γ) is a puedoconcave function and hence is uni-
modal. Specifically, denote the right-hand side of Eq. (9) as
q̃1(γ), then q1(γ) = 1

Z1
q̃1(γ) where Z1 is the normalizing

constant. We then have:

Eq1(γ)[γ
2] =

1

Z1

∫ +∞

−∞
q̃1(γ)γ

2dγ =
2

Z1

∫ +∞

0

q̃1(γ)γ
2dγ

where we have used the fact that q̃1(γ)γ2 is an even function
due to the evenness of q̃1(γ), and that it is equal to 0 at the
point γ = 0. We now define:

q̃
′
1(γ) =

{
q̃1(γ) if γ ≥ 0
0 otherwise

(10)

then we have:

Eq1(γ)[γ
2] =

∫ +∞

−∞
q
′

1(γ)γ
2dγ = Eq′1(γ)

[γ2]

where q
′

1(γ) = 1
Z
′
1

q̃
′
1(γ) is a legal density function over

(−∞,+∞), and Z
′

1 = Z1
2 is the normalizing constant. By

Eq. (10) and the one-side puedo-concativity of q1(γ), q
′

1(γ)
is uni-modal over (−∞,+∞). This fact, together with the
presence of the Gaussian in Eq. (9), determines that q′1(γ)
can be well approximated by a Gaussian distribution, which
is easy to sample. We then apply Laplace approximation
(Bishop and Nasrabadi 2006) to approximate the density
function q

′

1(γ) as a Gaussian, and treat it as the proposal
distribution. In particular,

q̃
′
1(γ) ' q̃

′
1(γ

?)e−
A(γ−γ?)2

2 (11)

where γ? is the mode of the function q̃
′
1(γ), and A =

−55logq̃
′
1(γ

?) . γ? can be found easily by gradient descent
as q̃′1(γ) is uni-modal 5. The Gaussian approximation is thus
N (γ|γ?, A−1). Then, by the standard derivation of impor-
tance sampling (Bishop and Nasrabadi 2006), we have:

Eq1(γ)[γ
2] =

EN (γ|γ?,A−1)

[ ˜
q
′
1(γ)

˜
q
′
1(γ

?)e−
A(γ−γ?)2

2

γ2
]

EN (γ|γ?,A−1)

[ ˜
q
′
1(γ)

˜
q
′
1(γ

?)e−
A(γ−γ?)2

2

] (12)

4It can be deduced from the expression of q1(γ) that, when the
observed action a is not the optimal action at state s w.r.t. the cur-
rent reward function, q1(γ) must be multi-modal.

5The derivations of the gradient and the second derivative of
q̃
′
1(γ) are straightforward, and are omitted here to save space.
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So to estimate Eq1(γ)[γ
2], we firstly obtain samples

{γi}i=1..n from N (γ|γ?, A−1), and then estimate

Eq1(γ)[γ
2] '

∑n
i=1 wiγ

2
i∑n

i=1 wi
(13)

where the weight wi = q̃
′
1(γi)/q̃

′
1(γ

?)e−
A(γi−γ

?)2

2 . Eq. (11)
implies that most weights will be close to 1, which makes
the sampling quite efficient. At this point, the motivation for
rewriting L(γ) as an infinite mixture of Gaussian is becom-
ing clearer: i) P ((s, a)|γ;Rold)L(γ) over [0,+∞) is not
puedo-concave and may have both local maximum and local
minimum, making it hard to apply Laplace approximation,
ii) the shape of P ((s, a)|γ;Rold)L(γ) over [0,+∞) is sig-
nificantly different from Gaussian due to the Laplace prior,
which can make the sampling procedure based on Gaussian
proposal distribution inefficient, and iii) the Laplace approx-
imation requires the evaluation of the gradient and the sec-
ond derivative of the posterior of γ, which may be hard if
the prior is non-smooth like Laplace distribution.

In summary, the variational inference procedure alternates
between updatingEq2(λ)[λ] andEq1(γ)[γ

2] using Eq. (8) and
Eq. (13) until convergence. From the Q-function in Eq. (2),
the E-step needs to estimate Eq1(γ)[e

−γ2

] 6. We adopt the
similar importance sampling method discussed before to es-
timate Eq1(γ)[e

−γ2

]. The only difference is that the function
is now changed from γ2 to e−γ

2

. Note that the estimation
of Eq1(γ)[e

−γ2

] only needs to be done after the variational
procedure converges. So we reserve all the samples {γi} and
weights {wi} obtained in the final iteration of the variational
procedure, and use them to estimate Eq1(γ)[e

−γ2

].
In practice, we can add a penalty factor η to control

the regularization strength of the Laplace prior, i.e., the
complete likelihood of a single observation (s, a) is writ-
ten as logP ((s, a)|γ;R) + ηlogL(γ). Equivalently, Eq. (9)
becomes q1(γ) ∝ P ((s, a)|γ;Rold)

1
ηN (γ|0, Eq2(λ)[λ]−1),

and other derivations remain unchanged.
Recall the Q-function in Eq. (2), for a particular observa-

tion (s, a), the Q-function in terms of α is

Eq(α)[α]Aa − Eq(α)[log
∑
a′

eαAa′ ]

where Aa = Qπ
?(R)(s, a), Aa′ = Qπ

?(R)(s, a′). We have
already discussed the estimation of Eq(α)[α]. Although it is
intractable to computeEq(α)[log

∑
a′ e

αAa′ ], there is quite a
few work on finding an efficient upper bound of the expecta-
tion of log-sum-exponentials. Here we use the bound derived
in (Bouchard 2007) to get the following upper bound:∑

a′

(1
2
Eq(α)[α]Aa′ + λ(ξa′)A

2
a′Eq(α)[α

2]
)
+ C (14)

where λ(ξ) = 1
2ξ (

1
1+e−ξ

− 1
2 ), and C is an irrelevant con-

stant in terms of optimizing R. This holds for any ξa′ ∈
6By α = e−γ

2

, Eq1(γ)[e
−γ2 ] is an approximation of Eq(α)[α],

where q(α) is the posterior distribution of α given (s, a) and Rold.

(0,+∞). Eq(α)[α2] can be estimated in a straightforwardly
similar way as we estimate Eq(α)[α], which is omitted here.

Now we have completed the E-step. In the M-step, we re-
estimate R to maximize the lower bound of the Q-function
as derived in Eq. (14), using the Policy Walk sampling al-
gorithm proposed by (Ramachandran and Amir 2007). Its
basic idea is to sample R by random walk using Metropolis-
Hastings algorithm until the Markov chain mixes to the pos-
terior of R and then return the sample mean. We alternate
between the E-step and the M-step until convergence. Then
we obtain the reward function R, and the reliability of each
demonstration, namely {Eq(α)[α]}. Algorithm 1 summa-
rizes the main steps of our RBIRL model. The complexity of
one EM iteration (Line 3-14) is O(KM + N), where M is
the number of iterations that the variational inference proce-
dure for one demonstration takes in the E-step, which is the
major computational overhead. But due to our carefully de-
signed importance sampling procedure, the E-step converges
very quickly, as shall be shown in the experiments. N is the
number of sampling iterations in the M-step.

Algorithm 1: Robust Bayesian IRL (RBIRL)
Input : MDP = {S,A, T}, {(sk, ak)}k=1...K , β
Output: R, {Eq(αk)[αk]}k=1...K

1 Initialize R to R0 ;
2 while R not converge do
3 for k=1 to K do
4 // a is Eq2(λ)[λ], b is Eq1(γ)[γ

2];
5 Initialize a = a0, b = b0;
6 while a, b not converge do
7 Approximate

q1(γ) ∝ P ((sk, ak)|γ;R)N (γ|0, a−1) as a
GaussianN (γ|γ?, A−1) by Eq. (11);

8 Collect samples {γ} fromN (γ|γ?, A−1), and
compute associated weights {w} according to
Eq. (12);

9 Update b using Eq. (13);
10 Update a = β/

√
b. (Eq. (8));

11 end
12 Use {γ} and {w} obtained in the final round of the

iteration (Line 6-11) to estimate Eq(αk)[αk] and
Eq(αk)[α

2
k];

13 end
14 Infer P (R|D) ∝ P (D|R)P (R) using Policy Walk

algorithm and set R as the sample mean. (P (D|R) is
replaced as the exponential of the lower bound of the
Q-function using {Eq(αk)[αk], Eq(αk)[α

2
k]}k=1...K );

15 end

Experiments

We carry out comparative experiments on both synthetic
grid world-based data and real-world vehicle routing data
to show the accuracy of our method in reward and policy
learning from noisy demonstration data, as well as its ability
of de-noising behavior data.
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Figure 2: Comparison of IRL performance on 4 metrics

Figure 3: Comparison of RBIRL and GBIRL on the conver-
gence of the performance of noisy trajectory detection

Experiments on Synthetic Data
We assess the performance of several IRL methods quantita-
tively on grid worlds 7 of various state numbers. Grid world
is a board with each grid (i.e., state) in it associated with
a negative reward (i.e., cost), and the agent aims to learn
to escape to one of the terminal states in a way that incurs
the smallest accumulated cost. For a particular grid world
setting, we generate negative rewards drawn randomly from
i.i.d. Gaussian priorsN (0, 100). Then we simulate many ex-
pert agents on it and use their trajectories as the input to the
IRL algorithm. Each action in the trajectory is drawn from
the multinomial distribution over actions determined by Eq.
(1) w.r.t. the generated reward function, until the trajectory
reaches the terminal state. To introduce behavior anomalies,
we randomly choose 10% of the trajectories and draw their
α’s randomly from the Beta distribution Beta(10, 90) in
generating them. To mimic realistic setting, we further add
small random noise to all other reliable trajectories by draw-
ing their α’s randomly from Beta(90, 10). In implementing
our model, to facilitate the task of noisy trajectory detection,
we assign a single α to all actions in one trajectory. This
only requires a slight change to our model, i.e., the likeli-
hood term in the posterior of γ is replaced by the product of
the likelihoods of all actions in one trajectory. For parameter
setting, we set β2 to 1.5 and η to 0.5 after careful tuning.

We compare our RBIRL with two other methods: GBIRL
and BIRL. GBIRL is the same as our model except that the
prior on γ is changed to Guassian distribution, which makes
the computation easier. This model is still noise-aware, but
is less robust than RBIRL, which we shall show in the re-
sults. For fairness of comparison, we set the variance of
Gaussian prior in a way to make it achieve the same den-

7Grid world is an MDP widely used in reinforcement learning
research. Please refer to (Sutton and Barto 1998) for more details.

sity as Laplace prior at 0. BRIL is the method proposed in
(Ramachandran and Amir 2007), which assumes all demon-
strations as trustworthy without any mechanism to deal with
the potential noise. We use four metrics for comparison: (a)
the mean square error between the learned and the true re-
ward functions, (b) a ranking-based measure, i.e., the dis-
counted cumulative gain (DCG) (Järvelin 2002) of the opti-
mal decision (the sequence in which actions at one state are
ranked according to their Q values under the true rewards)
w.r.t. the action probabilities computed using Eq. (1) based
on the learned rewards, averaged over all states, (c) the ra-
tio of the average of Eq(α)[α] over all reliable trajectories to
that over all anomalous ones, and (d) the area under curve
(AUC) (Fawcett 2004) of the task of classifying trajectories
to be reliable or anomalous, using the learned Eq(α)[α] as
the probability of one trajectory being reliable. These met-
rics cover various aspects in the evaluation of a robust IRL
model, namely reward learning accuracy (metric (a)), policy
imitation performance (metric (b), a higher value suggests
the model imitates the optimal policy better), and anomaly
detection accuracy (metrics (c) and (d), a higher ratio or
AUC suggests the model can better differentiate noisy be-
haviors from normal ones). Note that BIRL is noise-unaware
in its design. To compare with it on metrics (c) and (d), we
calculate the average action likelihood for each trajectory 8

and deem it as the reliability for that trajectory.
Figure 2 shows the comparison results. As can be seen,

our robust model consistently outperforms other methods,
both in terms of IRL and noisy behavior detection. Due
to its unawareness of the anomalous behaviors in the data,
BIRL performs poorly on all metrics. Although GBIRL can
also distinguish noisy behaviors from reliable ones in reward
learning, its Gaussian prior does not faithfully model the
properties of sparse behavior noise, and hence it gives poorer
performance compared with RBIRL. Particularly, Figure 3
compares RBIRL and GBIRL in how their noise detection
performance change as EM proceeds for a specific state con-
figuration. The results show that RBIRL is significantly bet-
ter. This is because the Laplace prior used strongly penalizes
small noises while tolerates big noises, which fits the sparse
noise assumption better than the Gaussian prior.

For the efficiency of RBIRL, we find in the experi-
ments that the importance sampling procedure takes less
than 80 samples on average to reach a stable estimation of
Eq1(γ)[γ

2], and that the variational inference converges in
less than 10 iterations most of the time. Hence, the E-step
does not render itself as a severe bottleneck of RBIRL.

Experiments on Real Data
We apply our framework to a real-world taxi trajectory data
set collected from Shenzhen, China, to model routing prefer-
ences of taxi drivers. The aim is to recover the latent cost on
each road segment reflective of various unseen factors that
determine drivers’ routing policies, which can facilitate var-
ious smart-city applications such as route recommendation.
We assume that taxi drivers who are carrying passengers are

8The likelihood of each action is calculated by Eq. (1) with α
set to 1 using the learned reward function.
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Figure 4: Comparison and sensitivity results on real data

attempting to reach their destinations as efficiently as possi-
ble by optimizing such costs. To test the robustness of our
method, we create a training data set in which most trajecto-
ries are passenger-taking while a few (10%) are unoccupied
(with no passengers) or are apparently detouring labeled by
humans. Since taxi drivers normally adopt a drastically dif-
ferent routing policy when carrying no passengers (i.e., to
pick passengers in a short time rather than to reach a cer-
tain destination efficiently), such “vacant” trajectories can
be deemed as anomalous for our purpose.

For illustration, we restrict the state space in a region con-
taining about 500 road segments and select over 3000 trajec-
tories, with 15% containing no unoccupied trajectories with-
held as the testing set. We apply each method to the training
data 9, which contains a few anomalous trajectories. The pa-
rameter settings are the same as used in the synthetic experi-
ment. Since no ground-truth of road latent costs is available,
we compare each model’s confidence in predicting the occu-
pied (reliable) trajectories observed in the testing set. Such
confidence is quantified by the predictive likelihood of each
testing trajectory, which is defined as the average of the like-
lihood of each action in it (see Footnote 8). A higher predic-
tive likelihood suggests that a model is more robust against
anomalous trajectories in the training set. Figure 4(a) plots
the distributions of negative log likelihood (NLL) of test-
ing trajectories for each model. The strongly concentrated
mass of RBIRL around 0.04 suggests our method outper-
forms the other two significantly (smaller NLL is better).
This shows that sparse behavior noise is quite common in
real-world vehicle routing data, and by explicitly modeling
such noise, the performance of IRL can be greatly improved.
Additionally, in Figure 4(c), we create four different training
sets picked from 4 days and compare the performance of un-
occupied trajectory detection (AUC) among three methods.
The results show that our model is superior in de-noising be-

9Trajectories ending at different destinations correspond to dif-
ferent MDPs as their terminal states differ. Yet multiple MDPs
share the same rewards except for the terminal state, so for each
destination we treat it as the terminal state of an MDP and perform
RL using the shared rewards, the results of which are used to cal-
culate the likelihood of all trajectories ending at that destination.

havior data compared with other methods, due to its robust
nature. To study the sensitivity of our method to the hyper-
parameter β in the Laplace prior, we vary β2 from 0.5 to 4.0
and plot the change of AUC in Figure 4(b), using the same
training data as in Figure 4(a). It can be seen that although
our method is not so sensitive to β, its performance may de-
grade when β gets relatively large. This is because a larger
β makes the Laplace prior less tolerant to noises, and hence
renders the algorithm more vulnerable to noisy behaviors.

Related Work
IRL was initially proposed by (Ng and Russell 2000) and
their solution exploits the explicit specification of optimal
policy. Later (Ramachandran and Amir 2007) and (Neu and
Szepesvári 2007) tackle the more practical case where the
optimal policy is presented implicitly as expert demonstra-
tions, via sampling and gradient methods, respectively. In-
stead of learning the reward function over the entire state
space, (Abbeel and Ng 2004), (Ziebart et al. 2008), (Kalakr-
ishnan, Theodorou, and Schaal 2010) and (Ratliff, Bag-
nell, and Zinkevich 2006) represent rewards as linear com-
binations of state features and learn those feature weights
via maximum margin or maximum entropy principle. What
combines these two lines of work is (Levine, Popovic, and
Koltun 2011), which learns the reward of each state while
exploiting the similarity in state features by imposing a
Gaussian process prior on the reward function. There are
also other variants of IRL models such as active learning-
based IRL (Lopes, Melo, and Montesano 2009) and multi-
task IRL (Dimitrakakis and Rothkopf 2012). However, all
such work ignores the potential presence of anomalous
demonstrations, and hence lacks robustness. Only a few
work deals with imperfect demonstrations, such as (Silva,
Costa, and Lima 2006) and (Grollman and Billard 2011). Yet
they assume the “goodness” of each demonstration can be
obtained by the access to some external routines, and learn
how to avoid such behaviors. In contrast, our method is su-
perior in that it automatically distinguishes noisy behaviors
from reliable ones in reward learning. For work on rout-
ing preference modeling from trajectory data, (Zheng and
Ni 2013) restricts the latent cost of road segment as speed
limit while ignoring other latent factors. (Liu et al. 2013) and
(Ziebart et al. 2008) consider various latent factors by fram-
ing the problem as IRL, yet they ignore the anomalous tra-
jectories in real-world vehicle data, which makes their meth-
ods not robust. (Zhang, Yeung, and Xing 2012) proposed a
method to model sparse noise in images, while we transfer
the technique to IRL scenario, which is more challenging
due to its more complex learning structure.

Conclusion and Future Work
We propose a robust IRL framework which can estimate the
reward function and optimal policy accurately from expert
behavior data with anomalous demonstrations. Our frame-
work is particularly suitable for data with sparse behavior
noise, which is commonly encountered in practice. The spar-
sity of behavior noise is modeled by using Laplace prior, and
the learning is based on an effective variational EM algo-
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rithm. Experiments on synthetic and real data demonstrate
the superiority of our framework in policy learning accuracy
and de-noising performance in face of imperfect data. Future
work shall investigate how to extend our model to incorpo-
rate state features usually observed in real applications.
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