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Abstract

A combination of the sparse coding and transfer learn-
ing techniques was shown to be accurate and robust in
classification tasks where training and testing objects
have a shared feature space but are sampled from differ-
ent underlying distributions, i.e., belong to different do-
mains. The key assumption in such case is that in spite
of the domain disparity, samples from different domains
share some common hidden factors. Previous methods
often assumed that all the objects in the target domain
are unlabeled, and thus the training set solely comprised
objects from the source domain. However, in real world
applications, the target domain often has some labeled
objects, or one can always manually label a small num-
ber of them. In this paper, we explore such possibil-
ity and show how a small number of labeled data in
the target domain can significantly leverage classifica-
tion accuracy of the state-of-the-art transfer sparse cod-
ing methods. We further propose a unified framework
named supervised transfer sparse coding (STSC) which
simultaneously optimizes sparse representation, domain
transfer and classification. Experimental results on three
applications demonstrate that a little manual labeling
and then learning the model in a supervised fashion can
significantly improve classification accuracy.

1 Introduction
The classification theory assumes that the training objects
and the testing objects are sampled from a single shared
distribution. Moreover, it assumes that both marginal and
conditional distributions should be identical for training and
testing sets. These assumptions are necessary in order to en-
sure the generalization of a statistically derived classifica-
tion model. On the contrary, for the real-world data these
assumptions may not hold: Training and testing data might
come from entirely different domains, usually called the
source and the target, respectively. This results in a lack of
generalization power of the model trained on the source do-
main objects only or on a set derived from both domains.
According to the classification theory, for every new distri-
bution new data should be acquired and labeled and a new
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model should be learned. In most of the applications, this
process tends to be expensive and time consuming.

In order to address this problem, a variety of methods
were proposed (Pan and Yang 2010), where are referred to as
transfer learning or domain knowledge adaptation. The main
assumption behind these methods is that data have some
common latent factors shared across the domains. Given this
assumption, one can use these factors to transfer information
from the source domain and to leverage the model accuracy
on the target domain. In recent years, transfer learning was
shown to be effective and efficient in image (Zhu et al. 2011;
Wang et al. 2011; Long et al. 2013a) and text (Zhuang et al.
2012) classification tasks, object recognition (Gopalan, Li,
and Chellappa 2011), sentiment analysis (Pan et al. 2010a),
and collaborative filtering (Pan et al. 2010b).

An intuitively appealing general approach for transfer
learning was proposed by Pan, Kwok, and Yang (2008). The
idea is to find a latent space where the marginal distribu-
tions of the data between different domains are close to each
other. A classification model trained on the source domain
mapped to such a space can be general enough to be able
to make predictions for the target domain data mapped to
the same space. Subsequently, different methods based on
this idea were proposed, such as transfer component analysis
(Pan et al. 2011), domain adaptation for pattern recognition
(Gopalan, Li, and Chellappa 2011), metric learning (Geng,
Tao, and Xu 2011), and more recent joint distribution adap-
tation (Long et al. 2013b).

One of the effective techniques to find easily interpretable
representations that can capture high-level features from
data is sparse coding (Huang and Aviyente 2006; Yang et
al. 2009). Instead of using linear or non-linear paramet-
ric mapping functions, sparse coding seeks to find a dic-
tionary built of objects from the original space, the sparse
combinations of which approximate the data. To improve
the quality of the representations found via sparse coding,
different modifications to the sparsity constraint were pro-
posed (Liu et al. 2010; Gao et al. 2010; Wang et al. 2010;
2013; Wang, Bensmail, and Gao 2014). Moreover, sparse
coding has also been adopted for transfer learning scenar-
ios where labeled and unlabeled images are sampled from
different distributions. In order to be able to learn a uni-
fied dictionary and a coherent representation for data sam-
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Figure 1: The training and testing set layouts studied in
this paper: The training set has samples from both domains,
where the source objects are labeled and the target objects
are almost unlabeled; the testing set has a mix of source and
target objects with unknown labels and domains.

ples from both domains, Long et al. (2013a) proposed to
enhance the sparse coding optimization function with an
additional regularization constraint called minimum mean
discrepancy (MMD) (Gretton et al. 2006). They named
their method transfer sparse coding (TSC) and showed that
this enhancement along with Graph-Laplacian smoothing
(Zheng et al. 2011) produced the state-of-the-art results for
semi-supervised transfer learning in image classification.

Transfer sparse coding as well as the other aforemen-
tioned transfer learning methods assumed that none of the
target domain objects is labeled. Moreover, their training set
consisted of samples from the source domain only, and the
testing set comprised samples only from the target. This re-
produces a real life situation where it is often very expen-
sive to obtain a sufficient amount of labeled data. However,
in real world it seems more plausible to have a small num-
ber of labeled objects in the target domain or even manually
label some if it leads to a significantly more accurate and ro-
bust model. Then, the gain in the performance improvement
pays back the labeling expenses.

In this paper, we relax all the constraints and study the
case where both training and testing sets can have objects
from both domains. We assume that, in the training set, ob-
jects from the source domain are entirely labeled and those
from the target are almost unlabeled. The testing objects are
not labeled and also belong to an unknown domain, i.e., ei-
ther to the source or to the target (Figure 1). We pose the
problem as a supervised cross-domain learning task with a
soft constraint that only a small number of target domain
samples in the training set is labeled.

The proposed setting is natural in various applications
that inherently deal with multi-domain mixed datasets. One
of the examples is classification of images in social net-
works and media. In this case, one might aim to classify
photographs of people on different backgrounds. Moreover,
backgrounds are known for the training data, but unknown
for the testing. Another example is bilingual speech and text
recognition tasks, important for bilingual countries or inter-
national congresses, which again requires the algorithm per-
form well on mixed-domain data.

It was shown that a sparse coding done in a super-
vised fashion usually learns highly discriminative dictionar-
ies which facilitates subsequent classification and recogni-
tion tasks (Mairal et al. 2009; Jiang, Lin, and Davis 2011).
In this paper, we first show that a small number of labeled
objects from the target domain can significantly leverage the
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Figure 2: (a) Illustration of TSC. Both the source and target
domains have the same four classes. Dashed arrows show the
direction of domain merging by TSC. The merged domain
is difficult to classify. (b) Illustration of STSC. Arrows with
the same colors as SVM decision boundaries regularize the
way the domains are merged. The resulting merged domain
is much easier to be classified.

classification accuracy of the state-of-the-art sparse coding
methods. We further introduce a unified framework, super-
vised transfer sparse coding (STSC), that utilizes label in-
formation in the target domain in order to build a better
discriminative representation of objects from both domains.
Our method combines transfer learning and sparse coding
with a supervised support vector machine (SVM) term and
benefits from simultaneous learning of all the components
of the model. As shown in Figure 2, the supervised learning
component assists the domains to be transferred in a better
manner. Experiments on classification of handwritten digits
(MNIST, USPS, and MADBase), and objects (Caltech-256
and Office) demonstrate that our method yields better per-
formance than the state-of-the-art transfer sparse coding ap-
proach under the introduced supervised cross-domain learn-
ing setting.

2 Related Work
Sparse coding became an attractive method for learning
cross-domain transfer models since Raina et al. (2007)
demonstrated its ultimate effectiveness in leveraging large
amounts of unlabeled data from various domains to improve
the final classification model in the target domain. Lee et al.
(2007) designed efficient optimization methods for sparse
coding which significantly accelerated the learning process.
Some of the subsequent works concentrated on applying
sparse coding to the problem of cross-domain transfer semi-
supervised learning with rigid constraint on target domain
objects labeling. It was demonstrated how one can modify
the sparsity constraint to improve the model further by pre-
serving the geometrical relationships between the samples
(Zheng et al. 2011), or also by minimizing the empirical dis-
tance measure between marginal distributions in the source
and target domains (Long et al. 2013a).

Although these models worked in an unsupervised man-
ner, it was known that sparse coding can utilize label infor-
mation to learn better discriminative representations (Mairal
et al. 2009). It was also demonstrated how a kernel-based
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model can be adopted in order to perform domain transfer
(Duan et al. 2009; Duan, Tsang, and Xu 2012).

To the best of our knowledge, this paper is the first work
that attempts to deviate from the classical transfer learning
constraints on the source and target domains in order to learn
discriminative sparse representations for both domains in a
supervised fashion. In the rest of this paper, we will define
a cross-domain learning problem, propose a unified super-
vised transfer sparse coding framework, and demonstrate
how a small number of labeled objects in the target domain
can significantly improve the classification accuracy.

3 Supervised Transfer Sparse Coding
In this section, we first define a cross-domain supervised
learning problem. Then, we introduce a unified framework
to solve the problem, which we called supervised transfer
sparse coding (STSC). We split it into separate components
and discuss them one after another: sparse coding, domain
transfer, and SVM-based transfer correction. By introducing
each of the components, we step-by-step refine the original
sparsity constraint in the sparse coding objective function,
and finally present the overall STSC framework.

3.1 Problem Definition
We denote the training set asD = {xi}Ni=1, D ⊂ RD, where
N is the number of data samples, xi is the vector of features
of the i-th sample, andD is the dimensionality of the feature
vector for each data sample. Further, the data is represented
as matrix X = [x1, · · · , xN ] ∈ RD×N , where the i-th col-
umn is the feature vector of the i-th sample.

The training set is composed of the source domain subset
Ds and the target domain subset Dt, i.e. D = Ds t Dt. We
also denote Ns and N t as the number of objects in source
and target domains, respectively. All the samples from the
source domain Ds are labeled, while only a few from the
target domain Dt are. Both source and target domains share
the same class space. The set of labeled samples is denoted
as Dl, and the set of unlabeled samples as Du, and their
cardinalities are denoted as Nl and Nu, respectively. Data
labels are represented by a vector Y = [y1, · · · , yNl

] ∈ RNl .
The number of classes is denoted by m.

We define the testing set in the same way and denote it D̃.
All the objects in D̃ are considered as unlabeled, and they
are also from both domains, i.e., D̃ = D̃s t D̃t. However,
we suppose that the original domain of each object in D̃ is
unknown (Figure 1). In the following sections, we introduce
additional notations, which are summarized in Table 1.

Given the data, the classification problem is to learn a
model from the training set and apply it to the testing set
with the maximum possible prediction accuracy for objects
in both domains. In order to design such a robust model
while using simple classifiers, we should be able to learn
a new data representation.

3.2 Sparse Coding
Given a D-dimensional feature vector of a data sample x ∈
RD and a dictionary matrix U = [u1, · · · ,uK ] ∈ RD×K ,
where the k-th column is the k-th codeword and K is the

Table 1: Summary of the notations used in this paper.

Notations Descriptions
D, X, Y training dataset, its matrix, its vector of labels
D̃, X̃, Ỹ testing dataset, its matrix, its vector of labels

Ds,Dt, D̃s, D̃t training source, training target, test source, test target
Du,Dl, D̃u, D̃l unlabeled train, labeled train, unlabeled test, labeled test
Nu,Nl, Ñu, Ñl # unlabeled/labeled samples in the training/testing set
Ns,Nt, Ñs, Ñt # source/target samples in the training/testing set

m,K # classes, # codewords in the dictionary
U, V dictionary matrix, sparse codes matrix

M, L, M̃ MMD, graph reg., unified reg. matrices
W, B SVM hyperplane normal vectors, SVM intercept terms
Ξ, Y SVM margins, one-hot encoding matrix of labels
λ, α, µ sparsity penalty, MMD, and Graph-Laplacian weights
κ, c SVM term weight, SVM coefficient

number of codewords in the dictionary, sparse coding tries
to reconstruct x by a sparse linear combination of the dictio-
nary codewords

x ≈
K∑
k=1

vkuk = Uv, (1)

where v = [v1, · · · , vK ]> ∈ RK is the reconstruction coeffi-
cient vector – the sparse code – for the sample x. In the above
introduced notation, if we denote the matrix of sparse codes
that corresponds to the objects X as V = [v1, · · · , vN ] ∈
RK×N , the sparse coding optimization problem can be writ-
ten as following

min
U,V
‖X− UV‖2F

s.t. ‖vj‖0 ≤ T, j = 1, · · · , N,
(2)

where T is a positive constant, by ‖ · ‖0 we denote l0-
norm, which is the number of non-zero elements in a vec-
tor, and by ‖ · ‖2F we denote squared Frobenius norm, which
is a sum of squares of matrix elements. It was shown that
the exact determination of the sparsest possible codes is an
NP-hard problem (Davis, Mallat, and Avellaneda 1997). Al-
though, there were some effective greedy algorithms pro-
posed (Chen, Billings, and Luo 1989; Tropp 2004), Donoho
(2006) showed that the minimal l1 solution is also the spars-
est solution for the most of the large, underdetermined sys-
tems. This allows us to switch to a different problem

min
U,V

{
‖X− UV‖2F + λ

N∑
i=1

‖vi‖1

}
s.t. ‖uk‖22 ≤ 1, k = 1, · · · ,K,

(3)

where λ is a regularization parameter. Due to the switch to
l1-norm, the problem happens to be convex in either U or
V. Hence, it can be solved by an iterative algorithm that
alternates between l1- and l2-regularized least square prob-
lems that could be efficiently solved (Lee et al. 2007). The
constraint ‖uk‖22 ≤ 1 is necessary due to the fact that re-
construction errors ‖x− Uv‖22 are invariant to simultaneous
scaling of U by a scalar and v by its inverse. This constraint
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prevents U from an unbounded growth which defeats the
purpose of the sparsity regularization.

3.3 Domain Transfer
To enforce seeking unified sparse codes for both domains,
we regularize the model (3) with additional terms.

Maximum Mean Discrepancy (MMD) Regularization
for sparse coding was recently introduced by Long et al.
(2013a) and is based on the following additional term

MMD =

∥∥∥∥∥∥ 1

Ns

∑
i:xi∈Ds

vi −
1

N t

∑
j:xj∈Dt

vj

∥∥∥∥∥∥
2

2

, (4)

which is the l2-norm of the difference between mean sam-
ples of each of the domains in the sparse coding space. Gret-
ton et al. (2006) showed that MMD will approach zero if the
distributions of the domains are the same.

MMD can be also rewritten in the following matrix form
MMD = Tr

(
VMV>

)
, (5)

where the M -matrix is determined as following

Mij =


1/(Ns)2, vi, vj ∈ Ds,
1/(N t)2, vi, vj ∈ Dt,
−1/(NsN t), otherwise.

(6)

Graph-Laplacian Regularization is another technique
introduced by Zheng et al. (2011) which preserves the in-
trinsic geometrical properties of the data distributions. It is
also used as an additional term for the sparse coding opti-
mization function (3). Let Q be the k-nearest neighbor graph
matrix of the data

Qij =

{
1, vi is among k-nearest to vj or vice versa,
0, otherwise.

(7)
The Graph-Laplacian matrix is then defined as L = Q− D,
where D = diag(d1, · · · , dN ) and di =

∑N
j=1 Qij . Accord-

ing to Zheng et al., the Graph-Laplacian regularization term
will have the following form

GL = Tr
(
VLV>

)
. (8)

Comparing the matrix form of the MMD term (5) with the
Graph-Laplacian term, one can generalize these two in the
following way

Tr
(
VM̃V>

)
= Tr

(
V (αM + µL) V>

)
, (9)

where α and µ are the tuning parameters for MMD and
Graph-Laplacian terms, respectively. The final modified
sparse coding optimization problem has the following form

min
U,V

{
‖X− UV‖2F + λ

N∑
i=1

‖vi‖1 + Tr
(
VM̃V>

)}
s.t. ‖uk‖22 ≤ 1, k = 1, · · · ,K.

(10)

Long et al. (2013a) introduced this model, named transfer
sparse coding (TSC), and showed that the representations
learned by TSC can be used for building a robust and accu-
rate image classifier.

Supervised Transfer Correction is an SVM-based term
which further enhances the model (10) by using label infor-
mation. It exploits the relaxation of the cross-domain trans-
fer learning problem that allows having some labeled objects
from the target domain in the training set.

For every class, we introduce a binary linear SVM classi-
fier, the objective function of which we integrate into (10).
SVM hyperplane normal vectors for every class are coupled
together as columns of matrix W ∈ RD×m, and intercept
parameters are stacked into vector b ∈ Rm which is copied
for every labeled object in the training set and grouped into
matrix B = [b, · · · ,b] ∈ Rm×Nl . We also group together all
the margins for the labeled training objects with respect to
all the classes into matrix Ξ ∈ Rm×Nl . This notation allows
us to write the final model, we named supervised transfer
sparse coding (STSC), as following

min
U,V,W



sparse coding︷ ︸︸ ︷
‖X− UV‖2F + λ

N∑
i=1

‖vi‖1 +

transfer & geometry︷ ︸︸ ︷
Tr
(
VM̃V>

)
+

κ

(
1

2
‖W‖2F + c1TΞ1

)
︸ ︷︷ ︸

multi-class SVM


s.t. ‖uk‖22 ≤ 1, k = 1, · · · ,K,

1−Ξ � Y ◦ (W>V + B), Ξ � 0,
(11)

where κ is a tuning parameter, c is SVM coefficient, 1 is a
matrix of ones, 1 is a vector of ones, ◦ denotes Hadamard
product, and �,� stand for element-wise inequalities.

It is important to notice that for different sparse represen-
tations different classes will become better or worse sepa-
rable. This model can sacrifice separability of some classes
in order to better classify the others. For simplicity, we have
introduced single κ parameter. However, one can choose to
assign each class a parameter κc in order to capture relative
importance of classes. One can also notice that due to the
multi-class SVM term, STSC model (11) does not reduce
to TSC model (10) even when all the target objects in the
training set are unlabeled, i.e. it remains different even in
the classical transfer learning setting.

4 Three-Step Optimization
We propose a three-step iterative algorithm for efficiently
solving the STSC optimization problem. The Lagrangian
function for (11) is the following

L(W,B,Ξ,U,V,Γ,Θ,ν) = ‖X− UV‖2F +
κ

2
‖W‖2F +

Tr
(
VM̃V>

)
+ λ

N∑
i=1

‖vi‖1 +
K∑
k=1

νk
(
‖uk‖22 − 1

)
+

1T
[
(κc1 + Θ) Ξ + Γ ◦

(
1−Ξ− Y ◦ (W>V + B)

)]
1,

(12)
where Γ,Θ ∈ Rm×Nl ,ν ∈ RK are the dual variables asso-
ciated with corresponding inequality constraints. According
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to the duality theory, we can solve the following problem

max
Γ,Θ,ν

min
W,B,Ξ,U,V

L(W,B,Ξ,U,V,Γ,Θ,ν)

s.t. Γ � 0,Θ � 0, ν � 0.
(13)

The first order optimality conditions over W,B,Ξ, will have
the following form

W = (Γ ◦ Y)VT ,
0 = (Γ ◦ Y)1,
Γ � κc,

(14)

Plugging (14) and (12) into (13), we end up with the follow-
ing optimization problem

max
Γ,ν

min
U,V
LD(U,V,Γ,ν)

s.t. (Γ ◦ Y) 1 = 0,

0 � Γ � κc, ν � 0,

(15)

where LD(U,V,Γ,ν) has the following form

LD(U,V,Γ,ν) =

‖X− UV‖2F + λ
N∑
i=1

‖vi‖1 + 1TΓ1+

K∑
k=1

νk
(
‖uk‖22 − 1

)
+ Tr

(
V
(

M̃− 1

2
Ψ

)
V>
)
,

(16)

where Ψ = (Γ ◦ Y)
>

(Γ ◦ Y). Problem (15) can be effi-
ciently solved via the following three-step iterative algo-
rithm (summarized in Algorithm 1).

1. Sparse Codes Learning is done by optimizing

min
V


‖X− UV‖2F + λ

N∑
i=1

‖vi‖1+

Tr

(
V
(

M̃− 1

2
Ψ

)
V>
)

 . (17)

This problem can be efficiently solved by a modified
feature-sign algorithm (Zheng et al. 2011).

2. Dictionary Learning is performed by solving

max
ν

min
U

{
‖X− UV‖2F +

K∑
k=1

νk
(
‖uk‖22 − 1

)}
s.t. ν � 0,

(18)

using the algorithm proposed by Lee et al. (2007).
3. Learning SVM. Finally, we search for the optimal clas-

sifier parameters

min
Γ

{
1

2
Tr
(
VΨV>

)
− 1TΓ1

}
s.t. (Γ ◦ Y) 1 = 0,

0 � Γ � κ c,

(19)

which is a convex quadratic programming (QP) problem
that can be efficiently solved by an interior-point method.

Algorithm 1 STSC: Supervised Transfer Sparse Coding
Input: X – training data, Y – labels.
Input: α, µ, κ, λ, c – parameters, iter num – number of iterations.
1: Build the MMD matrix M, Graph-Laplacian matrix L, and

one-hot encoding matrix Y of labels for the labeled objects.
2: U← uniform random matrix with zero mean for each column.
3: Γ← 0, Ψ← 0.
4: for t = 1, · · · , iter num do
5: Find V by solving Sparse Codes Learning subproblem.
6: Find U by solving Dictionary Learning subproblem.
7: Find Γ and compute Ψ by solving SVM subproblem.

Output: U – dictionary, V – sparse codes.

It is important to notice that Ψ matrix learned on the third
step of the algorithm is actually subtracted from the trans-
fer and geometry matrix M̃. We call this process supervised
transfer correction, since a supervised model directly influ-
ences the transfer matrix and eventually allows us to learn a
more discriminative dictionary U. This dictionary is further
used to construct sparse representations for the testing data.

5 Experiments
In this section, we present experimental results that verify
both of our hypothesis: (1) a small number of labeled data
can significantly improve TSC’s accuracy; (2) the proposed
STSC is able to further improve the performance on the sub-
sequent classification tasks.

5.1 Data Description
In order to be consistent with Long et al. (2013a), the fol-
lowing well known benchmark datasets were selected: hand-
written digits (USPS, MNIST, and MADBase), Amazon and
Caltech-256 dataset of object images.

USPS1 comprises 9,298 images of hand-written Arabic
digits of size 16× 16 pixels.

MNIST2 contains 70,000 images of hand-written Arabic
digits. Each image has size of 28× 28 pixels.

MADBase3 is a less known dataset of 70,000 images of
hand-written Hindi digits. It was designed to have similar
parameters as MNIST, so the images from MADBase have
size of 28 × 28. We decided to work with this dataset since
learning a unified model to accurately classify both Arabic
and Hindi digits is a vivid example of the power of transfer
learning (Figure 3).

All the digit datasets were rescaled to size of 16 × 16,
grayscaled and then normalized. In order to accurately eval-
uate the methods, we randomly sampled training and testing
subsets from USPS, MNIST, and MADBase several times
with different random seeds. We used USPS database as the
source domain, and MNIST or MADBase as the target. For
the training set, we sampled 100 objects per class from the
source, and 100 objects per class from the target; for the test-
ing set, we used 100 objects per class from the source as well
as from the target (Table 2).

1http://www-i6.informatik.rwth-aachen.de/∼keysers/usps.html
2http://yann.lecun.com/exdb/mnist
3http://datacenter.aucegypt.edu/shazeem/
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USPS MNIST MADBase

Amazon Caltech-256

Figure 3: Samples from digits (MNIST, USPS, MADBase)
and objects (Amazon and Caltech-256) datasets.

Table 2: Statistics of the benchmark datasets.

Dataset #Obj. p/class (src / tgt) #Features #Classes
USPS 100 / 100 256 10

MNIST 100 / 100 256 10
MADBase 100 / 100 256 10

Caltech 20 / 20 800 10
Amazon 20 / 20 800 10

Amazon is the part of the Office (Gong et al. 2012)
dataset that has images downloaded from online merchants.

Caltech-256 is a standard database of object images of
256 categories (Griffin, Holub, and Perona 2007).

In our experiments, we used a preprocessed version of
Amazon and Caltech-256 taken from Office+Caltech con-
structed by Gong et al. (2012). Since the number of objects
per class in this dataset was about 200 in total, we sampled
20 objects per class for each the source and the target domain
for each the training and the testing sets (Table 2).

5.2 Baseline Methods
For the baseline methods we selected the following
• Logistic Regression (LR)
• Support Vector Machine (SVM)
• Transfer Sparse Coding (TSC) + LR
• Transfer Sparse Coding (TSC) + SVM
Performances of all the methods were evaluated for different
ratios of labeled objects in the target subset of the training
set. Baseline methods performances were compared against
our proposed Supervised Transfer Sparse Coding (STSC)
followed by SVM and by LR.

5.3 Experimental and Evaluation Details
According to the relaxed cross-domain transfer learning, we
trained each of the baseline methods on a sampled training
set and then tested on the corresponding testing set. Train-
ing and testing sets were re-sampled several times, and the
average performance is reported here.

Following Long et al. (2013a), we applied PCA and kept
98% of information in the largest eigenvectors to reduce the
data dimensionality. We performed all algorithms in the re-
duced PCA space.

We fixed the number of basis vectors k = 128 and the
number of nearest neighbors used for Laplacian graph coun-
struction p = 5. We also performed a grid search for optimal
parameters on a grid used in Long et al. (2013a) for TSC
method. Once we found a set of optimal parameters for our
supervised classification case: λ = 0.1, α = 104, µ = 1,
we fixed them also for STSC. Then, we tuned the SVM term
weight κ and got an optimal value for it κ = 0.35. SVM
coefficient was set c = 1. The number of iterations for TSC
and STSC was T = 100. Tuning was performed with respect
to USPS as the source domain and MNIST as the target.

It is important to notice the difference between semi-
supervised setting used by Long et al. (2013a) and purely
supervised used in this paper. On the learning step, we only
can obtain the dictionary and the sparse codes for the train-
ing objects. Hence, on the testing step, for TSC and STSC
we have to first learn sparse representations for the testing
data by solving (17), and only then we can apply a super-
vised model (LR or SVM). We also should notice that we
are solving (17) for the testing objects with Ψ = 0 and
M̃ = GL, since no information is available regarding their
labels or their domains. Once we obtained sparse codes for
the testing objects, we trained generic SVM and LR models
on the sparse representations of the training data and applied
them to the testing sparse codes.

Finally, we used classification accuracy on the source and
the target domain of the testing data to measure performance

Accuracys =
|x : x ∈ D̃s ∧ ŷ(x) = y(x)|

|x : x ∈ D̃s|
,

Accuracyt =
|x : x ∈ D̃t ∧ ŷ(x) = y(x)|

|x : x ∈ D̃t|
,

where D̃s and D̃t are the target and the source domains of
the testing set, y(x) and ŷ(x) are the true and the predicted
label of x, respectively.

5.4 Experimental Results Discussion
Experimental results for digit datasets are presented in Fig-
ure 4. Along the X-axis the ratio of training labeled objects
from the target domain is changed. One can see that even if
a small number of the training target domain objects is la-
beled, classification accuracy significantly increases for all
the methods on the target domain. On the other hand, the
accuracy on the source domain does not improve. This jus-
tifies the relaxation of the cross-domain learning that allows
to label a fraction of the target domain objects in order to sig-
nificantly gain classification accuracy even when using un-
supervised methods such as TSC. Moreover, representations
learned by STSC eventually yield superior performance over
the baseline methods. This indicates that such representa-
tions work better for classification, and that the supervised
transfer correction works as expected.

For all the datasets with 5% labeled target domain training
objects, experimental results are summarized in Table 3. One
can see that STSC performance remains superior for all the
considered datasets.
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(d) USPS & MADBase.

Figure 4: Classification accuracy of STSC+LR, STSC+SVM, and the baseline methods for different ratios of labeled target
domain objects in the training set. (a) Accuracy on the source domain of the testing set for USPS & MNIST; (b) accuracy on
the target domain of the testing set for USPS & MNIST; (c) accuracy on the source domain of the testing set for USPS &
MADBase; (d) accuracy on the target domain of the testing set for USPS & MADBase. Methods with LR classifiers are drawn
as solid lines; methods with SVM classifiers are depicted as dashed lines.

Table 3: Classification accuracy on the target domain of the
test set (5% labeled target domain objects in the training set).
Accuracy is averaged over five resamplings of the training
and testing sets. Standard deviations are also presented.

Dataset USPS – MNIST USPS – MADBase Caltech – Amazon

LR 35.5± 0.8 24.1± 3.0 39.7± 1.9

SVM 33.2± 1.5 19.3± 4.2 34.6± 3.7

TSC+LR 45.8± 1.8 24.1± 3.8 38.3± 2.1

TSC+SVM 44.9± 2.4 22.9± 4.3 32.5± 1.6

STSC+SVM 52.6± 3.8 24.0± 4.8 41.5± 2.5

STSC+LR 53.1± 2.2 31.0± 3.5 43.0± 2.1

One might doubt that the achieved performance is the
merit of knowledge transfer, arguing that 10% of target sub-
set of the training data labeled is almost enough to be able to
generalize. This is indeed true: The higher the target labeled
ratio, the less transfer plays role. However, our experiments
explicitly suggest that for labeled ratios below 5%, transfer
from the source domain is crucial: TSC+LR trained only on
the labeled 2% of the training target data yields only 28% of
accuracy on the testing target objects. If we train the same
method with the training source domain assisting in an un-
supervised fashion, the accuracy jumps up to 41%. If use
STSC+LR and enable supervised correction of the transfer,
we get 46% of the accuracy on the testing target domain.

5.5 Limitations
Although STSC outperforms other methods in the given set-
ting of a relaxed supervised cross-domain transfer classifica-
tion, it is important to mention that STSC’s additional tuning
parameter (SVM term weight κ) is sensitive in some cases.
One should keep it relatively small, to make the method
finally converge. Otherwise, supervised transfer correction
would possibly be too large, and the three-step optimization
procedure will remain oscillating without convergence. In
such case, STSC will perform relatively poor in comparison
with classical TSC method.

6 Conclusion and Future Work
In this paper, we demonstrate that a small number of labeled
objects from the target domain can significantly improve
performance of the state-of-the-art transfer sparse coding
methods. We propose a supervised transfer sparse coding
(STSC) framework for learning discriminative representa-
tions in a relaxed cross-domain transfer learning setting.
Using STSC, we show that by simultaneously optimizing
sparse representations, domain transfer, and supervised clas-
sification, learned representations can further improve the
subsequent classification accuracy.

In the future, we plan to extend STSC framework with
different supervised transfer correction terms based on other
classifiers, e.g., logistic regression and linear discriminant
analysis (LDA).
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