
Sample-Adaptive Multiple Kernel Learning

Xinwang Liu
School of Computer
National University

of Defense Technology
Changsha, China, 410073

Lei Wang
School of Computer Science

and Software Engineering
University of Wollongong

NSW, Australia, 2522

Jian Zhang
Faculty of Engineering

and Information Technology
University of Technology Sydney

NSW, Australia, 2007

Jianping Yin
School of Computer
National University

of Defense Technology
Changsha, China, 410073

Abstract

Existing multiple kernel learning (MKL) algorithms indis-
criminately apply a same set of kernel combination weights
to all samples. However, the utility of base kernels could vary
across samples and a base kernel useful for one sample could
become noisy for another. In this case, rigidly applying a
same set of kernel combination weights could adversely af-
fect the learning performance. To improve this situation, we
propose a sample-adaptive MKL algorithm, in which base
kernels are allowed to be adaptively switched on/off with
respect to each sample. We achieve this goal by assigning
a latent binary variable to each base kernel when it is ap-
plied to a sample. The kernel combination weights and the
latent variables are jointly optimized via margin maximiza-
tion principle. As demonstrated on five benchmark data sets,
the proposed algorithm consistently outperforms the compa-
rable ones in the literature.

Introduction
Kernel methods such as support vector machines (SVMs)
have been an active research topic in the past decade
(Schölkopf and Smola 2002; Shawe-Taylor and Cristian-
ini 2004; Cortes, Mohri, and Rostamizadeh 2012). As well
known, effectively learning an optimal kernel is of great im-
portance to the success of kernel methods. Along this line of
research, many pioneering kernel learning algorithms have
been proposed (Chapelle et al. 2002; Lanckriet et al. 2004;
Bach, Lanckriet, and Jordan 2004; Liu et al. 2013a). In par-
ticular, multiple kernel learning (MKL) has attracted much
attention (Sonnenburg et al. 2006; Rakotomamonjy et al.
2008; Xu et al. 2010; Gönen 2012; Gai, Chen, and Zhang
2010; Kloft et al. 2011; Cortes, Mohri, and Rostamizadeh
2012; Yan et al. 2012; Yang et al. 2012; Hinrichs et al. 2012;
Kumar et al. 2012; Cortes, Mohri, and Rostamizadeh 2013;
Liu et al. 2012; 2013b). It not only provides an efficient way
to learn an optimal kernel, but also builds an elegant frame-
work to integrate multiple heterogeneous data sources. The
existing research work on MKL has made significant contri-
butions in two aspects: speeding up computation (Sonnen-
burg et al. 2006; Rakotomamonjy et al. 2008; Xu et al. 2010;
Orabona and Luo 2011; Afkanpour et al. 2013) and improv-
ing classification performance (Gai, Chen, and Zhang 2010;

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Cortes, Mohri, and Rostamizadeh 2012; Kumar et al. 2012;
Gönen 2012; Cortes, Mohri, and Rostamizadeh 2013). The
first contribution makes MKL applicable to large scale learn-
ing tasks, while the second one helps MKL attain superior
classification performance.

By pre-specifying a group of base kernels, existing MKL
algorithms learn the kernel combination weights based on
a given training sample set. Usually, a same set of combina-
tion weights is indiscriminately applied to all samples. Since
the weight can be viewed as an indicator of the utility of a
base kernel for classification, existing algorithms implicitly
assume that this utility remains unchanged in classifying all
the samples. Nevertheless, the utility of a base kernel could
change with samples because i) In MKL, each base kernel
represents an evaluation of the pair-wise sample similarity.
This evaluation is not necessarily equally effective across all
samples; ii) Some input features of a sample could be con-
taminated by noise in practical applications. This can make
a base kernel computed with these input features unreliable
for this specific sample; and iii) In addition, when the ker-
nel value (sample similarity) of a base kernel is collected
from human evaluation or laboratory test, unexpected errors
in this process could significantly corrupt the similarity of a
sample to the others. All these cases can turn a base kernel
useful for one sample out to a noise for another. Neverthe-
less, this issue has not been well addressed in the current
literature of MKL.

A straightforward solution to the above issue may be
to learn an individual set of kernel combination weights
for every sample. However, this will lead to an optimiza-
tion problem with many (number of base kernels × num-
ber of samples) real-valued variables. Also, this will re-
sult in an over-flexible kernel learning model. A sufficiently
strong regularization has to be imposed upon these combina-
tion weights, which could further complicate the optimiza-
tion process (generally leading to a large scale quadratic-
constrained quadratic programming for SVMs-based MKL).
A possible remedy to reduce the number of variables and the
model flexibility is to use a parametric model to predict the
kernel combination weights for a sample, as developed in
the work of localized MKL (LMKL) algorithm in (Gönen
and Alpaydin 2008), where a gating model is used to predict
the kernel combination weights locally. The framework of
LMKL is elegant and it is able to improve the performance

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1975



of MKL. However, how to define an appropriate paramet-
ric model remains an issue. For example, the linear gating
model in (Gönen and Alpaydin 2008) assumes that kernel
combination weights change smoothly in any local region.
Note that the assumption may not be true when base ker-
nels are irregularly corrupted across different samples. In
addition, when the input features of a sample are contam-
inated by noise, the kernel combination weights predicted
via a parametric model will not be accurate any more.

To handle the variation of the utility of base kernels across
samples, we hope that there is a latent mechanism in MKL
that can dynamically choose an appropriate subset of base
kernels for each sample. Following this idea, we define a la-
tent binary vector to each individual sample to adaptively
switch each base kernel on/off. More specifically, by switch-
ing a base kernel off for a sample we mean that this kernel
will not take part in evaluating the similarity of this sample
to any other samples. This equals to filling a whole row and
column of the corresponding base kernel matrix with zeros.
With this latent mechanism, we can maintain to learn a same
set of kernel combination weights for all samples as before.
This avoids an over-flexible learning model and the smooth-
ness assumption required by a parametric model. Also, as
will be seen, allocating a latent variable to switch the base
kernels allows the optimization of the latent variables and
the kernel combination weights to be well separated. This
makes the proposed algorithm still largely follow existing
MKL framework and take advantage of existing efficient op-
timization algorithms. Although the number of latent vari-
ables is still as large as the number of base kernels multiplied
by the number of samples, their optimization can be decom-
posed in a sample-wise way. Each sub-problem in this de-
composition is a 0/1 linear integer programming which can
be solved via off-the-shelf packages. In addition, the pro-
posed algorithm completely works at the kernel level and
thus can effectively handle the corruption and noise at both
the base kernel level and the input sample level (since noise
at the input sample level will be finally reflected at the base
kernel level). Experimental study is conducted on multiple
MKL benchmark data sets. Compared with existing MKL
algorithms, the proposed algorithm can consistently achieve
higher classification performance.

Background and notations
In existing MKL literature, each sample is mapped onto a
multiple-kernel-induced feature space and a linear classifier
is learned in this space. The feature mapping used in MKL
takes the form of φ(·) = [φ>1 (·), φ>2 (·), · · · , φ>m(·)]>, which
are induced by m pre-defined base kernels {κp(·, ·)}mp=1.
MKL learns the classifier by maximizing the margin be-
tween classes via solving the following problem (Bach,
Lanckriet, and Jordan 2004; Sonnenburg et al. 2006)

min
{ωp}mp=1,b,ξ

1

2

(∑m

p=1
‖ωp‖Hp

)2

+ C
∑n

i=1
ξi

s.t. yi
(∑m

p=1
ω>p φp(xi) + b

)
≥ 1− ξi, ξi ≥ 0, ∀i,

(1)
where {(xi, yi)}ni=1 denotes a collection of n training sam-
ples and their labels, ωp and Hp represent the normal and

the feature space corresponding to the p-th base kernel, ξ
and b are the slack variables and bias term, and C is a regu-
larization parameter.

According to (Micchelli and Pontil 2005), the problem in
Eq.(1) is proven to be equivalent to the one in Eq.(2)

min
{ωp}mp=1,b,ξ,γ∈∆

1

2

∑m

p=1

‖ωp‖2Hp
γp

+ C
∑n

i=1
ξi

s.t. yi

(∑m

p=1
ω
>
p φp(xi) + b

)
≥ 1− ξi, ξi ≥ 0, ∀i,

(2)

where γp is the combination weight of the p-th base ker-
nel and ∆ = {γ :

∑m
p=1 γp = 1, γp ≥ 0, ∀p}. Usually,

{ωp}mp=1, b and ξ are obtained by solving the dual problem
of the inner minimization problem. This leads to a min-max
optimization problem in Eq.(3)

min
γ∈∆

max
α
− 1

2
(α ◦ y)>

(
m∑
p=1

γpKp

)
(α ◦ y) +α>e

s.t. α>y = 0, 0 ≤ αi ≤ C, ∀i,

(3)

where α = [α1, α2, · · · , αn]> are the Lagrange multipliers,
y = [y1, y2, · · · , yn]>, (α◦y) denotes the component-wise
multiplication between α and y, Kp is the p-th base kernel
matrix and e is a column vector with all elements being one.
After obtaining the optimal α, b and γ, the decision score
of a test sample x is calculated via

f(x) =
∑n

i=1
αiyi

(∑m

p=1
γpKp(xi,x)

)
+ b. (4)

As can been seen in Eq.(3) and Eq.(4), a same set of kernel
combination weights γ is applied to all samples in exist-
ing MKL algorithms. Following our previous analysis, we
improve this situation by allowing different samples to use
different base kernel subsets.

Sample-adaptive MKL (SAMKL)
Problem formulation
Noting that a base kernel induces a feature mapping,
switching off the base kernel can be conceptually realized
by switching off the mapping. Therefore, we define the
mapping of a sample xi by introducing a latent variable
for each base-kernel-induced feature mapping. Let hi =
[hi1, hi2, · · · , him]> ∈ {1, 0}m be the latent binary vec-
tor with respect to xi. Specifically, hip = 1 (p = 1, · · · ,m)
means that the corresponding mapping is useful for the clas-
sification of xi, while hip = 0 indicates it is not. Let
1 ≤ r1 < r2 < · · · < rl ≤ m be the indexes of the l
non-zero components of hi. The mapping of a sample xi is
defined as

φ(xi;hi) = [φ>r1(xi), φ
>
r2(xi), · · · , φ

>
rl(xi)]

>. (5)

With the above definition, different samples will be
mapped onto different sub-spaces of a common feature
space, denoted by [φ>1 (x), φ>2 (x), · · · , φ>m(x)]>. This is
different from existing MKL where all samples are mapped
onto the common feature space. We use the sample-based
margin proposed in (Chechik et al. 2008) to measure the
margin of each sample in the respective sub-space.

1976



Let ω = [ω>1 , · · · ,ω>m]> denote the normal in a common
feature space, where ωp is the component of ω correspond-
ing to the mapping φp(·) induced by the p-th base kernel.
The sample-based margin of xi in multi-kernel-induced fea-
ture space is defined as

ρ(φ(xi;hi)) ,
yi
(∑m

p=1 hipω
>
p φp(xi)

)
∑m
p=1 hip‖ωp‖Hp

, (6)

where only part of the components of ω, namely those for
which hip = 1, are involved in calculating the margin of
xi. When all base kernel mappings are useful, this definition
reduces to the one used by the existing MKL algorithms.

Following the principle of margin maximization, we max-
imize the minimum of all sample-based margins to seek
the optimal normal ω1, · · · ,ωm and all the latent variables
h1, · · · ,hn. Mathematically, the objective of our proposed
MKL is expressed as in Eq.(7),

max
{{ωp}mp=1,{hi}

n
i=1}

 min
i=1,··· ,n

yi
(∑m

p=1 hipω
>
p φp(xi)

)
∑m
p=1 hip‖ωp‖Hp

. (7)

The optimization problem in Eq.(7) is more difficult than
the traditional margin-maximization problem in SVMs due
to the facts that: (1) Both the numerator and denominator in
the inner minimization vary across samples, while the de-
nominator in the traditional SVMs problem is shared by all
samples; and (2) Compared with the traditional problem, a
group of additional latent binary variables are required to be
optimized in Eq.(7). In the following part, we propose an
efficient alternate optimization algorithm to solve this prob-
lem. It is worth pointing out that Eq.(7) is a prototype used
to show the essential idea of our approach. We will further
refine this model step by step by incorporating the slack vari-
ables, bias term and the prior on latent variables in the fol-
lowing part.

Optimization
We define an auxiliary variable τi =

∑m
p=1 hip‖ωp‖Hp∑m
p=1 ‖ωp‖Hp

(1 ≤
i ≤ n). By substituting τ = [τ1, τ2, · · · , τn]> into Eq.(7),
we obtain

max
{{ωp}mp=1,{hi}

n
i=1}

min
i=1,··· ,n

yi
τi

(∑m
p=1 hipω

>
p φp(xi)

)
∑m
p=1 ‖ωp‖Hp

. (8)

Following the way in deriving the SVMs objective in
(Chechik et al. 2008), Eq.(8) can be further rewritten as a
constrained optimization problem in Eq.(9)

max
{{ωp}mp=1,{hi}

n
i=1
}

1
m∑
p=1
‖ωp‖Hp

; s.t.
yi

τi

 m∑
p=1

hipω
>
p φp(xi)

 ≥ 1.

(9)

Similar to the derivation in SVMs and according to (Mic-
chelli and Pontil 2005), the problem in Eq.(9) is equivalent
to the one in Eq.(10),

min
{{ωp}mp=1,{hi}

n
i=1
}

γ∈∆

1

2

m∑
p=1

‖ωp‖2Hp
γp

; s.t.
yi

τi

 m∑
p=1

hipω
>
p φp(xi)

 ≥ 1.

(10)

After adding the slack variables ξ = [ξ1, ξ2, · · · , ξn]> and
the bias term b, we arrive at the following problem

min
{{ωp}mp=1,{hi}

n
i=1
},ξ,b, γ∈∆

(
1

2

∑m

p=1

‖ωp‖2Hp
γp

+ C
∑n

i=1
ξi

)
,

s.t.
yi

τi

(∑m

p=1
hipω

>
p φp(xi) + b

)
≥ 1− ξi, ξi ≥ 0.

(11)

Besides maximizing the margin and minimizing the train-
ing errors, an `1-norm regularization term should be im-
posed on hi (1 ≤ i ≤ n), making it effectively eliminate
the base kernels that are not helpful for the classification of
xi. Moreover, in order to avoid over-fitting, a prior has to be
imposed on hi. In this work we enforce hi not to be far from
a pre-specified h0. In doing so, we obtain the optimization
problem of the proposed SAMKL as follows,

min
{ωp,hi},ξ,b, γ∈∆

 1

2

m∑
p=1

‖ωp‖2Hp
γp

+ C
n∑
i=1

ξi + C
′
n∑
i=1

‖hi‖1


s.t.

yi

τi

 m∑
p=1

hipω
>
p φp(xi) + b

 ≥ 1− ξi, ξi ≥ 0, ∀i

‖hi − h0‖1 ≤ m0, hi ∈ {0, 1}m, ∀i,

(12)

where h0 is an initial estimate, which is also a binary vector.
h0 can be either empirically set or obtained by solving an
`1-norm MKL (for example, SimpleMKL (Rakotomamonjy
et al. 2008)) and then setting h0 according to the non-zero
kernel weights. m0 is a pre-defined parameter controlling
the deviation of each hi from h0, and it is the number of bits
that they can differ from each other.

As can be seen, jointly optimizing {hi}ni=1 and
{ωp}mp=1, ξ, b, γ via Eq.(12) is difficult since it is a mixed
integer optimization problem. Instead, we propose an alter-
nate optimization procedure to solve it. Specifically, at the
t-th iteration, we first optimize {ωp}mp=1, ξ, b,γ with fixed
{ht−1i }ni=1 and τ t−1 by solving Eq.(11), whose dual prob-
lem is

min
γ∈∆

max
α

− 1

2

m∑
p=1

γp

n∑
i,j=1

αiαjyiyjh
t−1
ip ht−1

jp

τt−1
i τt−1

j

Kp(xi,xj) +
n∑
i=1

αi


s.t.

n∑
i=1

αi

(
yi

τt−1
i

)
= 0, 0 ≤ αi ≤ C, ∀i.

(13)

This optimization problem can be efficiently solved via ex-
isting MKL packages. Let (αt,γt, bt) denote the solution at
the t-th iteration, which is obtained based on the value of
h and τ at the (t − 1)-th iteration. After that, we update h
at the t-th iteration by solving the following integer linear
programming problem,

min
{hi}ni=1

n∑
i=1

‖hi‖1

s.t.
yi

τi
(h
>
i g

t
i + b

t
) ≥ 1− ξi,h>i (e− 2h0) + h

>
0 e ≤ m0,

(14)

where
gti = [γt1

∑n
j=1 α

t
j
yj

τt−1
j

ht−1j1 K1(xj ,xi), · · · , γtm
∑n
j=1

αtj
yj
τt−1
j

ht−1jm Km(xj ,xi)]
>, e is a column vector with all el-

ements being one, and {ht−1i }ni=1 are the latent variables

1977



Algorithm 1 Proposed Sample-adaptive MKL Algorithm
1: Input: {Kp}mp=1, y, C and m0.
2: Output: α, b, γ and {hi}ni=1.
3: Initialize h0 and set t = 1 and τ 0 = e.
4: repeat
5: Update (αt,γt, bt, ξt) by Eq.(13) with (ht−1, τ t−1).
6: for i = 1 to n do
7: Update hti with

(
αt,γt, bt, ξti , τ

t−1
i ,ht−1i

)
by

Eq.(15).
8: end for
9: Update τ t with

(
αt,γt,ht, τ t−1,ht−1

)
by Eq.(16).

10: t = t+ 1.
11: until

(
objt−1 − objt

)
/objt ≤ 1e− 4

obtained at the (t− 1)-th iteration. Note that the second lin-
ear constraint on h is due to the identity that ‖hi − h0‖1 =
h>i (e−2h0)+h>0 e for binary variables. Directly solving the
optimization problem in Eq.(14) appears to be computation-
ally intractable because its complexity isO(2nm). However,
since the constraints are separately defined on each hi and
the objective function is a sum over each hi, the problem in
Eq.(14) can be equivalently solved via solving n indepen-
dent sub-problems, as stated in Eq.(15),

min
hi
‖hi‖1

s.t.
yi

τi
(h
>
i g

t
i + b

t
) ≥ 1− ξi,h>i (e− 2h0) + h

>
0 e ≤ m0.

(15)

This reduces the total computational complexity to O(n ·
2m). The optimization problem in Eq.(15) is a linear integer
programming, which can be solved via off-the-shelf pack-
ages such as MOSEK1. After obtaining αt, γt and ht, the
value of τ t is obtained as

τ
t
i =

∑m
p=1 h

t
ipγ

t
p

√∑n
i,j=1 α

t
iα
t
j

yiyj

τ
t−1
i

τ
t−1
j

ht−1
ip ht−1

jp Kp(xi,xj)

∑m
p=1 γ

t
p

√∑n
i,j=1 α

t
iα
t
j

yiyj

τ
t−1
i

τ
t−1
j

ht−1
ip ht−1

jp Kp(xi,xj)
,

(16)

where τ t−1i (1 ≤ i ≤ n) is optimized in the last iteration.
Our algorithm for solving SAMKL is presented in Algo-
rithm 1, where objt−1 and objt denote the objective values
at the (t− 1)-th and t-th iterations, respectively.

Discussion
Number of switching patterns h

We analyze the number of possible patterns of h on a given
training data set. It appears that this number could reach the
value as high as

∑m0

i=0 C
i
m. However, considering that each

training sample can only contribute one unique pattern, the
number of possible patterns will be actually capped by n,
the number of training samples. Moreover, in practice this
number is usually even less than n because different sam-
ples often share a same pattern h, as can be observed from
Figures 1(a), 1(b) and 1(c) in the experiments.

1http://www.mosek.com/

Inference
The classification procedure with the proposed SAMKL is
slightly different from existing MKL algorithms, since the
subset of base kernels that is useful for classification has to
be inferred for a given test sample. By following the strategy
in structure SVMs with latent variables (Yu and Joachims
2009), we enumerate all possible configurations (label and
switching pattern) and select the pair maximizing the mar-
gin. Specifically, the class label of a sample in a binary clas-
sification case is inferred by

(y?,h?) = arg max
y∈{±1}
hi∈H

y ·
(
ω>φ(x;hi) + b

)

= arg max
y∈{±1}
hi∈H

y

(
m∑
p=1

γp

n∑
j=1

αjyjhiphjp
τj

Kp(xj ,x) + b

)
,

(17)
where H =

⋃n
i=1{hi} is the set of all the unique h patterns

learned from the training stage. In the case of multi-class
classification, a set of normal vectors ω̂1, · · · , ω̂L can be
obtained when the one-versus-rest strategy is used, where L
is the number of classes. We can work out the decision score
for the l-th class as

fl(x) = max
hi∈H

(
ω̂>l φ(x;hi) + b̂l

)
= max

hi∈H

(
m∑
p=1

hipγp

n∑
j=1

αj
yj
τj
hjpKp(xj ,x) + b̂l

)
.

(18)

The class label is predicted as l which corresponds to the
largest fl(x).

Computational efficiency
At each iteration, SAMKL alternately solves an MKL prob-
lem (line 5 in Algorithm 1) and n 0/1 programming prob-
lem (line 6 − 8 in Algorithm 1). The size of each 0/1 pro-
gramming problems is m, the number of base kernels. Note
that m is usually not large in practical applications, for ex-
ample, the largest m is 69 among all MKL benchmark data
sets, which allows each 0/1 programming problem to be ef-
ficiently solved. In our experiments, Algorithm 1 converges
in a small (usually less than ten) number of iterations. Also,
the computation in the test stage is proportional to the size
of H, which is smaller than the number of training samples
as analyzed previously. We will report the training and test
time in the experiments.

Experimental result
Our experiment consists of two parts. The first part com-
pares the proposed SAMKL with localized MKL (LMKL)
in (Gönen and Alpaydin 2008). Both approaches assume
that the base kernel weights vary across samples. Note that
LMKL requires to access the original input data and only
focuses on binary classification tasks. In the second part,
the proposed SAMKL is compared with SimpleMKL (Rako-
tomamonjy et al. 2008), non-sparse MKL algorithm (Xu et
al. 2010) and the unweighted MKL algorithm. All MKL al-
gorithms are compared in terms of both classification per-
formance and computational cost. Also, the adaptivity of the

1978



learned latent variables with respect to each training sample
will be shown.

Results on protein fold prediction data set
We compare the proposed SAMKL with LMKL (Gönen
and Alpaydin 2008) on the protein fold prediction data
set http://mkl.ucsd.edu/dataset/. SimpleMKL
is also included as a reference. This data set has 27 classes
and 12 base kernels, and its original input data are avail-
able. Besides, the training/test partition of this data set has
been pre-specified. The code of LMKL is downloaded from
the authors’ website2, which focuses on binary classifica-
tion. To construct binary classification tasks, we select five
classes from 27 classes with the largest number of training
samples. Specifically, they are the 1st, 7th, 9th, 12th and 16th
classes. Every two classes are selected to construct a binary
classification task. By this way, we generate ten binary clas-
sification tasks in total. For the proposed SAMKL, we em-
pirically set h0 = (1, 1, · · · , 1)> and m0 = 3. To ensure
fair comparison, the regularization parameter C for all the
three MKL algorithms is chosen from [10−1, 100, · · · , 104]
by five-fold cross-validation on training data sets. Each base
kernel matrix is normalized to have a unit trace.

Table 1: Classification accuracy and traing/test time compar-
ison among the proposed SAMKL, LMKL (Gönen and Al-
paydin 2008) and SimpleMKL (Rakotomamonjy et al. 2008)
on the protein fold prediction data sets.

TASK SAMKL LMKL SIMPLEMKL

C7 VS. C16 88.0 80.4 86.9
32.7/0.04 12.1/0.01 2.9/0.01

C7 VS. C9 91.2 89.5 87.7
33.7/0.02 4.4/0.02 5.9/0.00

C7 VS. C1 98.0 96.0 98.0
21.1/0.02 4.3/0.02 2.7/0.00

C7 VS. C12 85.7 77.8 79.4
103.1/0.05 4.9/0.01 9.1/0.00

C16 VS. C9 95.1 83.6 95.1
89.5/0.02 5.3/0.01 13.9/0.00

C16 VS. C1 98.2 96.3 98.2
11.1/0.02 9.7/0.01 1.3/0.00

C16 VS. C12 86.6 80.6 86.6
39.5/0.02 17.5/0.01 3.1/0.00

C9 VS. C1 94.7 89.5 94.7
24.4/0.01 12.9/0.01 2.6/0.00

C9 VS. C12 84.4 68.8 84.4
25.3/0.01 4.2/0.01 5.8/0.00

C1 VS. C12 92.0 72.0 88.0
7.8/0.01 3.9/0.01 1.3/0.00

The classification accuracy on the ten tasks is reported in
Table 1, where the highest values are shown in bold. As can
be seen, the proposed SAMKL obtains better overall clas-
sification performance than LMKL and SimpleMKL, and
its improvement over LMKL is significant. We attribute the
superiority of SAMKL to its latent mechanism designed to

2http://users.ics.aalto.fi/gonen/icml08.php/

adaptively switch off less useful base kernels for each indi-
vidual sample during MKL. At the same time, the less satis-
fying performance of LMKL indicates that more appropriate
parametric models for kernel weight prediction need to be
sought and the appropriateness of the smoothness assump-
tion may need to be reviewed.

The training and test time are reported in the second row
of each cell in Table 1. Compared with SimpleMKL and
LMKL, SAMKL leads to a mildly increased computational
time due to the use of the proposed latent mechanism.

The learned latent variable h is shown in Figure 1(a),
where one binary classification task (Class 7 vs. Class 9)
is selected for demonstration. The h on each classification
task is shown as an n × m matrix, where n and m are the
number of training samples and base kernels, respectively.
The red color indicates “1” while the blue and green colors
indicate “0”. The difference between blue and green color
is clarified as follows. The blue color indicates those latent
variables which switch off the base kernels whose weights
are non-zeros. We call them “active” latent variables. The
green color indicates those latent variables which switch off
the base kernels whose weights are zeros. We call them “in-
active” latent variables. As shown, h switches on/off the
base kernels differently across training samples. Looking
into these matrices shows that each row has exactly three
“0”s. This is due to the constraint ‖hi−h0‖ ≤ m0, ∀i. This
experiment preliminarily demonstrates the effectiveness and
the properties of the proposed SAMKL.

Index of Base Kernel Matrices

In
de

x 
of

 T
ra

in
in

g 
S

am
pl

es

protein flod prediction (Class7 vs. Class9)

2 4 6 8 10 12

5

10

15

20

25

30

35

40

45

Index of Base Kernel Matrices

In
de

x 
of

 T
ra

in
in

g 
S

am
pl

es

psortPos

10 20 30 40 50 60

50

100

150

200

250

Index of Base Kernel Matrices

In
de

x 
of

 T
ra

in
in

g 
S

am
pl

es

Caltech−101

5 10 15 20 25

200

400

600

800

1000

1200

1400

Figure 1: The latent variable h learned for each sample of
a training group (red–“1”, blue–“0 (active latent variables)”,
green–“0 (inactive latent variables)”) on different data sets.
(a): Class7 vs. Class9 (protein fold prediction); (b): psort-
Pos; (c): Caltech-101.

Results on benchmark data sets
Four benchmark data sets are used, includ-
ing psortPos, psortNeg, plant and Caltech-101
data sets. All of them can be downloaded from
http://mkl.ucsd.edu/dataset/. The first three
are for protein subcellular localization and have been widely
used by MKL algorithms (Zien and Ong 2007). Their class
numbers are four, five and four, respectively. The 69 base
kernel matrices have been pre-computed and provided on
the above website. Caltech-101 contains 25 base kernel
matrices based on a set of visual features extracted from
the Caltech-101 object recognition data set. 15 training and
15 test examples are used for each class. The base kernel
matrices of five random splits of training and test sets are
pre-computed and provided. We compare the proposed

1979



Table 2: Experimental comprison of the proposed SAMKL, SimpleMKL (Rakotomamonjy et al. 2008), `p-MKL (Xu et al.
2010) and UMKL on three protein and Caltech-101 data sets. The two rows of each cell represent mean accuracy ± standard
deviation and training/test time (in seconds). Boldface means the best one.

DATASET
SAMKL SIMPLEMKL `p-MKL UMKL

PROPOSED p = 2 p = 4 p = 8

PSORTPOS
90.6± 1.5 87.7± 2.3 86.4± 1.8 84.6± 2.0 83.8± 2.2 84.3± 1.9
343.0/5.8 157.0/0.8 9.2/0.1 5.1/0.1 3.5/0.1 0.6/0.1

PSORTNEG
92.5± 1.0 89.9± 1.1 88.9± 1.1 87.7± 1.3 86.9± 1.2 84.0± 1.5
4666.8/54.1 1184.3/2.0 121.1/0.8 60.7/0.8 43.0/0.7 5.5/0.1

PLANT
89.5± 1.7 88.0± 1.70 86.4± 1.5 85.0± 1.9 84.1± 2.1 83.1± 2.2
864.7/18.4 515.1/0.4 34.7/0.3 17.7/0.3 13.7/0.3 2.0/0.1

CALTECH-101
67.2± 1.0 63.7± 1.3 65.3± 1.5 65.1± 1.5 65.1± 1.5 65.0± 1.8

157480/1591.7 30079/15.1 2906.8/1.5 1505.1/1.5 1007.3/1.5 165.7/0.2

SAMKL with the state-of-the-art MKL algorithms, includ-
ing SimpleMKL (Rakotomamonjy et al. 2008) and `p-norm
MKL (Xu et al. 2010) with p = 2, 4, 8, respectively. The
uniformly weighted MKL (UMKL) is also included as a
baseline. Note that LMKL in (Gönen and Alpaydin 2008)
is not included in comparison because it needs to access
original input data, which are not available for all the above
benchmark data sets. Furthermore, it focuses on binary
classification tasks only.

Following (Zien and Ong 2007), F1-score is used to mea-
sure classification performance on the psortPos and psort-
Neg data sets, while matthew correlation coefficient (MCC)
is used for the plant data set. For Caltech-101, classification
accuracy is used as in the literature. For the psortPos, psort-
Neg and plant data sets, we randomly split the data into 20
groups, with 50% : 50% for training and test. For Caltech-
101, we use the five pre-defined training and test partitions.
To conduct a rigorous comparison, the paired Student’s t-
test is performed. For the three protein data sets, C for each
MKL algorithm is chosen from [10−1, 100, · · · , 104] by
five-fold cross-validation. For the Caltech-101, C is set to
104 experimentally. C ′ is not needed in our alternate opti-
mization method. Each base kernel matrix is normalized to
have a unit trace. For our proposed SAMKL, h0 is again set
as (1, 1, · · · , 1)> and m0 is empirically set as 20 and 10 on
three protein data sets and Caltech-101, respectively.

Results on three protein and Caltech-101 data sets As
seen in Table 2, SAMKL consistently achieves superior per-
formance to SimpleMKL (Rakotomamonjy et al. 2008), `p-
norm MKL (Xu et al. 2010) and UMKL on all the three
protein data sets. In the literature, SimpleMKL (Rakotoma-
monjy et al. 2008) is the one that achieves the best per-
formance on these data sets (Kloft et al. 2011). However,
SAMKL further improves its performance by 3.0%, 2.5%
and 1.5%, respectively and these improvements are tested
to be statistically significant. The above results indicate that
introducing the latent variables allows each sample to effec-
tively focus on more useful base kernels and avoid being
affected by less useful ones, leading to better performance.

The latent variable h learned on the psortPos is plotted
in Figure 1(b). As seen, h dynamically switches off many
base kernels such as the 1st ∼ 5th, 18th and 20th, to name

just a few. Cross-referencing the learned kernel combina-
tion weights, we can find that many base kernels switched
off by h have non-zero combination weights (in blue color).
Switching them allows different samples to effectively uti-
lize an appropriate subset of base kernels. This confirms the
sample-based adaptivity of the SAMKL.

The averaged result on Caltech101 is reported in the last
row of Table 2. Again, we observe that SAMKL achieves the
highest classification accuracy. Specifically, SAMKL gains
1.9% improvement over the second best one, i.e., `2-norm
MKL. Also, the learned latent variables on a training group
are plotted in Figure 1(c). In this figure, it is worth noting
that all latent variables are “active” because we find that the
optimal combination weights of all base kernels are non-
zeros. All base kernels across samples are actively switched
off by the latent variables. Together with the results on the
protein subcellular localization, the result on Caltech-101
data set validates the effectiveness of the proposed SAMKL
algorithm.

Note that the above training/test timing results are based
on a relatively straightforward implementation of the Algo-
rithm 1, where no specific tuning is conducted to speed up
the training/test process. However, the n 0/1 programming
problems at each iteration can be solved in a parallel way.
Also, the test of each sample against different switching pat-
terns can be performed parallelly. These properties will be
exploited in future work to improve the computational effi-
ciency of our algorithm.

Conclusion
This work proposes the SAMKL—a novel MKL algorithm
which jointly performs MKL and infers the base kernel sub-
sets that are useful for the classification of each sample.
By allowing each sample to adaptively switch on/off each
base kernel, SAMKL achieves clear improvement over the
comparable MKL algorithms in the recent literature. Fur-
ther improving the computational efficiency of the proposed
SAMKL is another piece of our future work.

Acknowledgements
This work was supported by the National Natural Sci-
ence Foundation of China (Grant No. 60970034, 61170287,

1980



61232016 and 61125201), the Australian Research Council
Linkage Grant LP0991757 and UOW URC Near Miss Grant
(DP120102145 and DP130100926). We thank Dr. Zenglin
Xu for helpful discussions.

References
Afkanpour, A.; György, A.; Szepesvári, C.; and Bowling, M.
2013. A randomized mirror descent algorithm for large scale
multiple kernel learning. In ICML, 374–382.
Bach, F. R.; Lanckriet, G. R. G.; and Jordan, M. I. 2004.
Multiple kernel learning, conic duality, and the smo algo-
rithm. In ICML.
Chapelle, O.; Vapnik, V.; Bousquet, O.; and Mukherjee, S.
2002. Choosing multiple parameters for support vector ma-
chines. Machine Learning 46(1-3):131–159.
Chechik, G.; Heitz, G.; Elidan, G.; Abbeel, P.; and Koller,
D. 2008. Max-margin classification of data with absent
features. Journal of Machine Learning Research 9:1–21.
Cortes, C.; Mohri, M.; and Rostamizadeh, A. 2012. Al-
gorithms for learning kernels based on centered alignment.
Journal of Machine Learning Research 13:795–828.
Cortes, C.; Mohri, M.; and Rostamizadeh, A. 2013. Multi-
class classification with maximum margin multiple kernel.
In ICML, 46–54.
Gai, K.; Chen, G.; and Zhang, C. 2010. Learning kernels
with radiuses of minimum enclosing balls. In NIPS, 649–
657.
Gönen, M., and Alpaydin, E. 2008. Localized multiple ker-
nel learning. In ICML, 352–359.
Gönen, M. 2012. Bayesian efficient multiple kernel learn-
ing. In ICML.
Hinrichs, C.; Singh, V.; Peng, J.; and Johnson, S. C. 2012. Q-
mkl: Matrix-induced regularization in multi-kernel learning
with applications to neuroimaging. In NIPS, 1430–1438.
Kloft, M.; Brefeld, U.; Sonnenburg, S.; and Zien, A. 2011.
lp-norm multiple kernel learning. Journal of Machine
Learning Research 12:953–997.
Kumar, A.; Niculescu-Mizil, A.; Kavukcuoglu, K.; and III,
H. D. 2012. A binary classification framework for two-stage
multiple kernel learning. In ICML, 1295–1302.
Lanckriet, G. R. G.; Cristianini, N.; Bartlett, P. L.; Ghaoui,
L. E.; and Jordan, M. I. 2004. Learning the kernel matrix
with semidefinite programming. Journal of Machine Learn-
ing Research 5:27–72.
Liu, X.; Wang, L.; Yin, J.; and Liu, L. 2012. Incorporation of
radius-info can be simple with simplemkl. Neurocomputing
89:30–38.
Liu, X.; Yin, J.; Wang, L.; Liu, L.; Liu, J.; Hou, C.; and
Zhang, J. 2013a. An adaptive approach to learning optimal
neighborhood kernels. IEEE Transactions on Cybernetics
43(1):371–384.
Liu, X.; Wang, L.; Yin, J.; Zhu, E.; and Zhang, J. 2013b.
An efficient approach to integrating radius information into
multiple kernel learning. IEEE Transactions on Cybernetics
43(2):557–569.

Micchelli, C. A., and Pontil, M. 2005. Learning the kernel
function via regularization. Journal of Machine Learning
Research 6:1099–1125.
Orabona, F., and Luo, J. 2011. Ultra-fast optimization algo-
rithm for sparse multi kernel learning. In ICML, 249–256.
Rakotomamonjy, A.; Bach, F. R.; Canu, S.; and Grandvalet,
Y. 2008. Simplemkl. Journal of Machine Learning Research
9:2491–2521.
Schölkopf, B., and Smola, A. J. 2002. A short introduc-
tion to learning with kernels. In Machine Learning Summer
School, 41–64.
Shawe-Taylor, J., and Cristianini, N. 2004. Kernel Methods
for Pattern Analysis. Cambridge University Press.
Sonnenburg, S.; Rätsch, G.; Schäfer, C.; and Schölkopf, B.
2006. Large scale multiple kernel learning. Journal of Ma-
chine Learning Research 7:1531–1565.
Xu, Z.; Jin, R.; Yang, H.; King, I.; and Lyu, M. R. 2010.
Simple and efficient multiple kernel learning by group lasso.
In ICML, 1175–1182.
Yan, F.; Kittler, J.; Mikolajczyk, K.; and Tahir, M. A.
2012. Non-sparse multiple kernel fisher discriminant analy-
sis. Journal of Machine Learning Research 13:607–642.
Yang, W.; Wang, Y.; Vahdat, A.; and Mori, G. 2012. Kernel
latent svm for visual recognition. In NIPS, 818–826.
Yu, C.-N. J., and Joachims, T. 2009. Learning structural
svms with latent variables. In ICML, 1169–1176.
Zien, A., and Ong, C. S. 2007. Multiclass multiple kernel
learning. In ICML, 1191–1198.

1981




