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Abstract 
Multi-view feature learning is an attractive research topic 
with great practical success. Canonical correlation analysis 
(CCA) has become an important technique in multi-view 
learning, since it can fully utilize the inter-view correlation. 
In this paper, we mainly study the CCA based multi-view 
supervised feature learning technique where the labels of 
training samples are known. Several supervised CCA based 
multi-view methods have been presented, which focus on 
investigating the supervised correlation across different 
views. However, they take no account of the intra-view 
correlation between samples. Researchers have also 
introduced the discriminant analysis technique into multi-
view feature learning, such as multi-view discriminant 
analysis (MvDA). But they ignore the canonical correlation 
within each view and between all views. In this paper, we 
propose a novel multi-view feature learning approach based 
on intra-view and inter-view supervised correlation analysis 
(I2SCA), which can explore the useful correlation 
information of samples within each view and between all 
views. The objective function of I2SCA is designed to 
simultaneously extract the discriminatingly correlated 
features from both inter-view and intra-view. It can obtain 
an analytical solution without iterative calculation. And we 
provide a kernelized extension of I2SCA to tackle the 
linearly inseparable problem in the original feature space. 
Four widely-used datasets are employed as test data. 
Experimental results demonstrate that our proposed 
approaches outperform several representative multi-view 
supervised feature learning methods. 

 Introduction   
In real world applications, datasets are usually described 
with different views or representations. Multi-view feature 
learning refers to learning with multiple feature sets that 
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reflect different characteristics or views of data, which is 
an vital research direction (Guo, 2013; Xu, Tao and Xu 
2013; Wang, Nie and Huang 2013; Memisevic 2012; Wang, 
Li, and Ogihara 2012). Co-training and canonical 
correlation analysis are two representative and effective 
techniques in multi-view learning (Sun and Chao 2013). 
Co-training based methods (Kumar and Daume 2011a; 
Kumar and Daume 2011) are usually used for semi-
supervised classification that combines both labeled and 
unlabeled data under multi-view setting. Canonical 
correlation analysis (CCA, Hardoon, Szedmak, and Shawe-
Taylor 2004) has become an important technique in multi-
view learning, since it can fully utilize the inter-view 
correlation. Multi-view CCA (MCCA, Rupnik and Shawe-
Taylor 2010) is an unsupervised method. In this paper, we 
mainly study the CCA based multi-view supervised feature 
learning technique where the labels of training samples are 
known. 

Recently, several supervised CCA based multi-view 
feature learning methods have been presented, such as 
multiple discriminant CCA (MDCCA, Gao et al. 2012), 
multiple principal angles (MPA, Su et al. 2012). These 
methods focus on investigating supervised correlation 
across different views. To deal with the linearly 
inseparable problem, researchers extend CCA to be kernel 
CCA (Sun et al. 2007; Leurgans, Moyeed,  and Silverman 
1993; Lai and Fyfe 2000; Bach and Jordan 2002). All 
methods mentioned above only reveal the linear or 
nonlinear correlation relationship between features of 
multiple views.  However, they take no account of the 
intra-view correlation between samples, which is also an 
important part when exploiting supervised correlation 
among the samples. Therefore, in this paper, we need to 
simultaneously extract the discriminatingly correlated 
features from both inter-view and intra-view. The 

 Intra-View and Inter-View Supervised  
Correlation Analysis for Multi-View Feature Learning 

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1882



effectiveness of the intra-view correlation samples can be 
further visualized in Fig. 1. As suggested in Figure 1, intra-
view correlation "glues" intra-class samples better than 
inter-view correlation. Hence, their combination is able to 
further uncovered more discriminative information. 

Researchers have also presented some discriminant 
analysis based multi-view feature learning methods, such 
as generalized multi-view analysis (GMA, Sharma et al. 
2012), kernelized GMA (KGMA) and the multi-view 
fisher discriminant analysis (MFDA) (Diethe, Hardoon, 
and Shawe-Taylor 2008). MFDA also has a sparse version, 
that is, the SMFDA (Diethe, Hardoon, and Shawe-Taylor 
2010). Moreover, Kan et al. (2012) presented a Multi-view 
discriminant analysis (MvDA) method, which can 
maximize the between-class variations and minimize the 
within-class variations of the learning common space from 
both intra-view and inter-view. Nevertheless, these 
methods ignore canonical correlation information from 
both intra-view and inter-view, which depicts the 
relationship among multiple views. Hence, we may 
improve the multi-view feature learning results if the 
discriminant correlation information among multiple views 
can be exploited. 

For current multi-view supervised feature learning 
methods, there is still room for further improvements. We 
summarize the contributions of this paper as following 
points: 

(1) We propose a novel multi-view feature learning 
approach based on intra-view and inter-view supervised 
correlation analysis (I2SCA). It can explore the useful 
correlation information of samples within each view and 
between all views. The idea of the proposed approach is 
illustrated in Fig. 1. 

(2) The objective function of I2SCA is designed to make 
the within-class correlation from both inter-view and intra-
view maximized, while make the between-class correlation 
from both inter-view and intra-view minimized. Moreover, 
our approach can obtain an analytical solution without 
iterative calculation. 

(3) We provide a kernelized extension of I2SCA, that is, 
KI2SCA, to tackle the linearly inseparable problem in the 
original feature space. 

The rest of this paper is organized as follows. In Section 
2, we introduce the related works. In Section 3, we 
describe the proposed I2SCA approach and its kernelized 
extension. Experimental results and analysis are provided 
in Section 4, and conclusion is drawn in Section 5. 

Related work 

CCA based Multi-view Feature Learning Methods 
CCA finds linear combinations corresponding to two views, 
such that all transformed variables own maximum 
correlation. It cannot be directly applied to multi-view data, 
which leads to the formulation of multi-view CCA (MCCA, 
Rupnik and Shawe-Taylor 2010). It tends to obtain high 
correlations between all new variables simultaneously by 
optimizing the characteristics of the dispersion matrix of 
new variables. Multiset integrated CCA (MICCA, Yuan et 
al. 2010) describes an integrated correlation among multi-
view variables based on generalized correlation coefficient. 
However, these methods are all unsupervised. 

In order to utilize the supervised correlation across 
different views, supervised CCA methods were developed. 
Discriminant analysis of canonical correlations (DCC, Kim, 
Kittler, and Cipolla 2007) maximizes the within-class 
correlation and minimizes the between-class correlation for 
two sets of variables. Multiple discriminant CCA 
(MDCCA, Gao et al. 2012) was designed for multiple 
views, which demonstrates that CCA, MCCA and DCC are 
special cases of the DMCCA method. Multiple principal 
angles (MPA, Su et al. 2012) iteratively learns the view-
specific projection transformations by following the 
traditional Fisher discriminant manner, and learns a global 
discriminative subspace on which the principal angles 
among multiple subspaces of same classes are minimized 
while those of different classes are maximized. The 
nonlinear extension of DCC, namely kernelized 
discriminative canonical correlation analysis (KDCCA, 

Fig. 1. Conceptual illustration of the proposed I2SCA, where different shapes  (     and     ) stand for samples from different 
classes, and different colors (i.e. red and gray) stand for samples from different views. 

Minimize between-class correlation  Maximize within-class correlation  

1883



Sun et al. 2007), was presented to deal with linearly 
inseparable problem.  

Discriminant Analysis based Multi-view Feature 
Learning Methods 
Linear discriminant analysis (LDA, Belhumeur, Hespanha, 
and Kriegman 1997) technique is widely used in feature 
learning, which employs the famous Fisher criterion to 
minimize the within-class scatter while maximize the 
between-class scatter.  To obtain multi-view counterparts 
of LDA and other feature learning methods, a generalized 
multi-view analysis (GMA, Sharma et al. 2012) framework 
was developed, and kernelized GMA (KGMA) was also 
given. Multi-view Fisher Discriminant Analysis (MFDA) 
(Diethe, Hardoon, and Shawe-Taylor 2008) learns the 
classifiers by making the predicted labels of these 
classifiers consistent with their real label. However, MFDA 
can only be applied for binary class problems. To address 
this problem, Chen and Sun (2009) extended MFDA to a 
multi-class form by using a hierarchical clustering 
technique. By incorporating multiple views of data in a 
perceptive transfer learning framework, Yang and Gao 
(2013) presented the multi-view discriminant transfer 
learning method. Moreover, Kan et al. (2012) presented a 
Multi-view discriminant analysis (MvDA) method, which 
can maximize the between-class variations and minimize 
the within-class variations of the learning common space 
from both intra-view and inter-view. MvDA is able to 
jointly acquire projection transforms by solving a 
generalized Rayleigh quotient. 

Approach Description 
Suppose that there are N views. Notation usage is provided 
in a summary as follows: 

iX : Sample set of the thi  view; 
n : Number of samples from each view; 
c : Number of classes in each view; 

jn : Number of samples from the thj  class in each 
view; 

N : Number of views; 
i
jkx : The thk  sample from the thj  class in iX ; 
ix : Mean of all samples from iX ; 

ˆ
iX : Mean-normalized iX , where i

jkx  is normalized 

by using ˆ i i i
jk jkx x x= − ; 

i
bS : Between-class scatter matrix of iX ; 
i
tS : Total scatter matrix of iX ; 
ij
bC : Between-class correlation between features of 

iX  and jX ; 

ij
wC : Within-class correlation between features of iX  

and jX ; 
ijC : Supervised correlation between the samples of 

the thi  and thj views; 

iw : Projective vector of iX ; 

iW : Projective transformation of iX , where iW  
consists of d  projective vectors; 

iZ : Projected features of samples set of the thi  view 

iX . 

Intra-view Supervised Correlation Analysis 
Let [ ]1, ,1 T

nE =  , and ( )1 2
, , ,

cn n nA diag E E E=   denote a 
n n×  symmetric, positive semi-definite, blocked diagonal 
matrix, where 

knE is a k kn n×  matrix with all its elements 

equal to 1. Assume that i
wC  and i

bC  denote the within-class 
correlation and between-class correlation of samples of the 

thi view, respectively. Their definitions are given as 
follows: 
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The supervised correlation between samples of the 
thi view is thus defined as: 
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where 0α >  is a tunable parameter that indicates the 
relative significance of the within-class correlation of intra-
view i

wC versus the between-class correlation of intra-view 
i
bC . For intra-view supervised correlation analysis, we 

design the following objective function: 

, 1,2, , 1
max

i

N
i

w i N i
C

 = =

  ∑


.                               (4) 

The goal of Formula (4) is to preserve the useful within-
class correlation from each view and eliminate the adverse 
between-class correlation from each view, which is 
favorable for classification. 

Inter-view Supervised Correlation Analysis 
Similarly, we define the within-class correlation ij

wC  and 
between-class correlation ij

bC  between the samples of the 
thi  and thj views as follows: 
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The supervised correlation between the samples of the 
thi  and thj views is defined as: 

2 2 2
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where 0β >  is a tunable parameter that indicates the 
relative significance of the within-class correlation of inter-
view ij

wC  versus the between-class correlation of inter-view 
ij
bC . Note that ij jiC C= . 
For inter-view supervised correlation analysis, we design 

the following objective function: 

, 1,2, , 1 1
max

i

N N
ij

w i N i j
j i

C
 = = =

≠

  ∑∑
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.                               (8) 

The goal of Formula (8) is to preserve the useful 
correlation of inter-view samples from the same class and 
eliminate the adverse correlation of inter-view samples 
from different classes.  

I2SCA Scheme 
In order to effectively make full use of correlation 
information within each view and between different views, 
we combine intra-view and inter-view supervised 
correlation analysis, and design the following I2SCA 
scheme: 
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analytical solution, we simplify Formula (10) by  
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which can be rewritten as   
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Formula (12) can be formulated as a generalized eigen-
value problem:  

Gw Fwλ= .                                (13) 
Once the eigenvectors ( )1,2, ,kw k d=   associated with 

the first d  largest eigenvalues of 1F G−  are obtained, we 
can get 1 2, , ,k k k

Nw w w
 from kw . Let 1 2, , , d

j j j jW w w w =   , 
where 1, 2, ,j N=  . Then we can obtain the projected 
features iZ  by T

i i iZ W X= , where 1, 2, ,i N=  , and fuse 
these features as follows:  

1 2, , ,
TT T T

NZ Z Z Z =  

.                       (14) 
Finally, we use the nearest neighbor classifier with the 

cosine distance to classify Z . 

Kernel I2SCA 
To tackle the linearly inseparable problem, I2SCA can be 
extended by using kernel method to work in a nonlinear 
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feature space instead of the original input space. Kernel 
trick has shown its effectiveness in many methods, 
including some kernel CCA methods (Sun et al. 2007; 
Leurgans, Moyeed,  and Silverman 1993; Lai and Fyfe 
2000; Bach and Jordan 2002). We first perform the kernel 
mapping for samples and then realize the I2SCA in the 
mapped space to obtain projection transformation. Suppose 
there are N implicit mappings , 1,2,...,i i Nφ = , the samples 
mapped to the corresponding spaces are denoted by 

1( ) ( ), , ( )i i
i i i i nX x xφ φ φ =   . Thus, the mapped multi-view 

data is { }1 1( ),..., ( )N NX Xφ φ . According to the kernelized 
method in (Sun et al. 2007), the basis vector pair can be 
represented as ( )i i iw Xφ α= , where , nRα β ∈  denote 
corresponding combination coefficient vectors. Note that 
the kernel trick ( ) ( ) ( , )

i

T i i
x i i i i x p qK X X k x xφ φ= = , 

1,..., , 1,...,p n q n= = . Substituting ( )i i iw Xφ α=  into 
Formula (9), we employ the kernel trick and kernel I2SCA 
can be reformulated as 
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corresponding Mercer kernels. We simplify Formula (15) 
by 
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Similar to I2SCA, Formula (16) can also be written as a 
generalized eigenvalue problem. Its solution can be solved 
by reference to Section 3.3. 

It is noticed that in the experiments, the tunable  
parameters α  and β are selected with 5-fold cross 
validation on the training set. 

Experiments 
In this section, we evaluate the proposed approaches with 
several related multi-view supervised feature learning 
methods including MDCCA (Gao et al. 2012), MPA (Su et 
al. 2012), MvDA (Kan et al. 2012) and KGMA (Sharma et 
al. 2012) on four public datasets. Note that KGMA refers 
to the kernel GMA, which outperforms GMA.  

Recognition Performance Evaluation 
Experiment on Multiple Feature Dataset 
The multiple feature dataset (MFD) (Yuan et al. 2010) 
contains 10 classes of handwritten numerals, i.e. 10 
numbers from 0 to 9. These digit characters are represented 
in terms of the next six feature sets, as shown in Table 1. 
There are 200 samples per class (for a total of 2000 
samples) in each feature sets. 

Table 1.  Six sets of features of handwritten numerals in MFD 
Pix: 240-dimension pixelaveragesfeaturein2_3 windows 
Fac: 216-dimension profile correlations feature 
Fou: 76-dimension Fourier coefficients of the character shapes 
feature 
Kar: 64-dimension Karhunen–Loeve coefficients feature 
Zer: 47-dimension Zernike moments feature 
Mor: 6-dimension morphological feature 

In this experiment, 100 samples per class (numeral) are 
randomly chosen as the training set, while the remaining 
samples are regarded as the testing set. Table 2 shows the 
average recognition rates of 20 random runs for all 
compared methods on MFD datasets.  

Table 2.  Average recognition rates (%) on MFD database 
Method MDCCA MPA MvDA KGMA I2SCA KI2SCA 
Result   95.52 94.87 95.53 95.64 96.67 97.57 

From Table 2, we observe that I2SCA improves the 
average recognition rate at least by 1.03% (=96.67-95.64), 
and KI2SCA improves the average rate at least by 1.93% 
(=97.57-95.64) as compared with other methods. Here, to 
elaborate more about the improvements of our approach, 
we use the second digit precision. This made particular 
sense when data size grows big so that even a small portion 
of its improvement could gain significant economical 
concern. We also conduct the second digit precision in the 
following experiments. 
Experiment on Coil-20 Dataset 
The COIL-20 database (Murase and Nayar 1995) contains 
7200 grayscale images of 100 objects (72 images per 
object) under various poses. Objects are rotated through 
360 degrees and taken at the intervals of 5º. The size of 
each object image is 64 64×  pixels. 

 In this experiment, 36 images per class are randomly 
chosen to form the training set, while the remaining images 
are regarded as the testing set. We extract Gabor 
transformation features (Grigorescu, Petkov and Kruizinga 
2002), Karhunen-Loeve transformation features (Fukunaga 
and Koontz 1970) and Local Binary Patterns features 
(Ahonen, Hadid, and Pietikainen 2006) to form three sets 
of features. We perform the principal component analysis 
(PCA, Belhumeur, Hespanha, and Kriegman 1997) 
transformation to reduce their dimensions to 150, 
respectively.  
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Table 3.  Average recognition rates (%)  on Coil database 
Method MDCCA MPA MvDA KGMA I2SCA KI2SCA 
Result 95.53 95.05 96.07 96.71 98.28 98.87 

Table 3 shows that I2SCA improves the average 
recognition rate at least by 1.57% (=98.28-96.71), and 
KI2SCA improves the average rate at least by 2.16% 
(=98.87-96.71) as compared with other methods. 
Experiments on Multi-PIE Dataset 
Multi-PIE dataset (Cai et al. 2006) contains more than 
750,000 images of 337 people under various views, 
illumination and expressions (PIE). Here, a subset about 
1632 samples from 68 classes in 5 poses (C05, C07, C09, 
C27, C29) is selected as test data. All images from Multi-
PIE are 64 64×  pixels. We perform PCA transformation to 
reduce their dimensions to 150, respectively. 

Regular Face Recognition Experiment. We randomly 
choose 8 samples per class as the training samples, while 
the remaining samples are regarded as the testing set. Thus, 
the total number of training samples and testing samples is 
544 and 1088, respectively. Table 4 shows the average rec-
ognition rates of all compared methods across of 20 ran-
dom runs for all compared methods on Multi-PIE dataset. 
Table 4 shows that I2SCA and KI2SCA perform better in 
contrast with other related methods, which improve the av-
erage recognition rate at least by 1.09% (=97.54-96.45) and 
1.78% (=98.03-96.45) , respectively. 

Table 4.  Average recognition rates (%) on Multi-PIE database 
Method MDCCA MPA MvDA KGMA I2SCA KI2SCA 
Result 95.21 94.77 95.84 96.45 97.54 98.23 

Face Recognition across Pose. In this sub-section, we 
perform the classification experiment where the gallery and 
query set belongs to different views. We still randomly 
choose 8 samples per class as the training samples, while 
remaining ones from one view are used as gallery set and 
others from another view are probe set. Tables 5, 6 and 7 
shows all the average recognition rates of 20 random runs 
for I2SCA, KI2SCA and KGMA.  

Table 5. Average recognition rates (%) of KGMA on Multi-PIE  
 C05 C07 C09 C27 C29 

C05 94.13 90.01 89.30 91.11 89.53 
C07 87.53 93.97 84.33 88.63 88.16 
C09 87.66 85.89 94.45 89.48 87.17 
C27 88.97 88.90 88.66 93.01 88.61 
C29 81.50 81.22 80.19 84.15 92.47 

Table 6. Average recognition rates (%) of I2SCA on Multi-PIE 
 C05 C07 C09 C27 C29 

C05 94.66 90.28 89.28 91.11 90.13 
C07 90.45 94.45 85.18 90.92 90.17 
C09 85.73 88.18 94.76 90.46 88.68 
C27 87.91 90.59 90.27 93.64 90.09 
C29 86.05 86.22 85.71 87.90 93.13 

Table 7. Average recognition rates (%) of KI2SCA on Multi-PIE 
 C05 C07 C09 C27 C29 

C05 95.82 91.93 91.17 91.53 92.22 
C07 92.45 95.60 89.29 91.56 90.37 
C09 88.73 90.34 95.59 89.27 88.61 
C27 88.44 90.68 91.71 95.63 89.53 
C29 87.63 88.06 87.10 88.32 94.16 

Tables 5-7 show that most of recognition rates of I2SCA 
and KI2SCA are higher than those of KGMA.   
Experiments on LFW Dataset 
The LFW database (Huang et al. 2012) is a dataset for 
studying face recognition in unconstrained environments. 
This dataset contains a total of 13233 images and 5749 
people. There are 1680 of the people pictured have two or 
more distinct photos. We crop each facial image to 60 60×  
pixels and all images will be transformed into grey-level 
images at first. 

In this experiment, we choose the individuals who hold 
more than 14 photos in the dataset and 14 images per class 
are used to form the total sample set. Then we have 106 
classes of samples. We randomly choose the 8 images per 
class to form the training set, while the remaining images 
are regarded as the testing set. We extract Gabor transfor-
mation features, Karhunen-Loeve transformation features 
and Local Binary Patterns features to form three sets of 
features. We perform the principal component analysis 
transformation to reduce their dimensions to 150, respec-
tively. 

Table 8 shows the average recognition rates of 20 ran-
dom runs for all compared methods on LFW dataset. 

Table 8.  Average recognition rates (%) on LFW dataset 
Method MDCCA MPA MvDA KGMA I2SCA KI2SCA 
Result 85.57 84.97 87.74 88.39 89.57 90.32 

From table 8 we can find that both I2SCA and KI2SCA 
can perform better in the comparison with the other me-
thods. I2SCA improves the average recognition rate at least 
by 1.18%(=89.57-88.39) and KI2SCA improves the aver-
age recognition rate at least by 1.93%(=90.32-88.39). 

Further Experimental Analysis 
Distribution of Samples 
In order to analyze the separabilities of all methods, we 
provide the distribution of samples with two principal 
features extracted from 5 different views by using all 
related methods on Multi-PIE dataset. Here, we employ the 
PCA transform to obtain two principal features.  

Fig. 2 shows the distribution of two principal features of 
20 samples (from 5 different persons and 4 samples per 
person) extracted from the compared methods on the 
Multi-PIE dataset, where the markers (﹡, ☆, ○, □, and ▽) 
with different colors stand for 5 different persons. In Fig. 2, 
the red oval ring indicates the bad separability, which 
might lead to misclassification. Fig. 2 shows that the 
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proposed approaches achieve preferable separabilities in 
comparison with other methods.  

   
(a) MDCCA                                 (b) MPA          

    
(c) MvDA                                  (d) KGMA 

   
               (e) I2SCA                               (f) KI2SCA 

Fig. 2.  Sample distributions of PIE dataset of 20 samples (5 
different palms and 4 samples per palm) in the feature space. 
Here, the markers (﹡, ☆, ○, □, and ▽) with different colors 

stand for 5 different classes. 

Statistical Significance 
To statistically analyze the recognition results given in 
Table 2-4, we conduct a statistical test, i.e., Mcnemar’s test 
(Draper, Yambor, and Beveridge 2006). This test can 
provide statistical significance between our proposed 
apporaches and other methods. Here, the Mcnemar’s test 
uses a significance level of 0.05, that is, if the p-value is 
below 0.05, the performance difference between two 
compared methods is considered to be statistically 
significant. Table 9 shows the p-values between I2SCA and 
other compared methods on Multiple Feature Dataset, 
Coil-20 Dataset and Multi-PIE dataset. And Table 10 
shown the p-values between KI2SCA and other compared 
methods on four datasets we utilized.  

Table 9.  P-values between I2SCA and other compared methods 
on four datasets we utilized 

Datasets 
I2SCA 

MDCCA MPA MvDA KGMA 
MFD 1.32×10-8 2.52×10-10 3.29×10-10 6.12×10-12 

Coil-20 Dataset 2.46×10-7 2.47×10-6 5.33×10-16 7.58×10-24 
Multi-PIE Dataset 5.17×10-8 1.59×10-8 4.52×10-9 2.42×10-10 

LFW Dataset 4.59×10-8 1.38×10-8 4.46×10-9 2.91×10-10 

Table 10.  P-values between KI2SCA and other compared     me-
thods on four datasets we utilized 

Datasets 
KI2SCA 

MDCCA MPA MvDA KGMA 
MFD 3.41×10-9 1.94×10-10 5.47×10-10 2.16×10-12 

Coil-20 Dataset 4.25×10-8 8.47×10-6 5.98×10-16 5.78×10-24 
Multi-PIE Dataset 3.94×10-8 2.95×10-8 5.42×10-9 4.84×10-10 

LFW Dataset 5.85×10-8 8.32×10-8 4.79×10-9 9.03×10-10 

The two above tables show that the p-values of both 
I2SCA and KI2SCA are much less than 0.05, which 
demonstrated the statistical significance of our approaches.  

Conclusion 
In this paper, we propose a novel multi-view feature 
learning approach called intra-view and inter-view 
supervised correlation analysis (I2SCA). It can fully 
explore the useful correlation information from both intra-
view and inter-view. The objective function of I2SCA can 
maximize the within-class correlation from both inter-view 
and intra-view, and simultaneously minimize the between-
class correlation from both inter-view and intra-view. We 
provide a kernelized extension of I2SCA, that is, kernel 
I2SCA (KI2SCA). The proposed approaches can obtain the 
analytical solutions without iterative calculation.  

We employ the widely-used multiple feature dataset 
(MFD), COIL-20 dataset, Multi-PIE dataset and LFW 
dataset as the test data. As compared with several state-of-
the-art multi-view supervised feature learning methods, our 
approaches achieve better recognition results. Besides, the 
demos of sample distributions in the feature space illustrate 
that the features learned by our approaches have better 
separability than that learned by other methods. 

Acknowledgements 
The work described in this paper was supported by the 
National Nature Science Foundation of China under 
Project Nos. 61231015, 61172173, 61272273 and 
61233011, the Major Science and Technology Innovation 
Plan of Hubei Province (No. 2013AAA020), the 
Guangdong-Hongkong Key Domain Breakthrough Project 
of China (No. 2012A090200007), 333 Engineering of 
Jiangsu Province under Project No. BRA2011175. 

References  
Ahonen, T.; Hadid, A.; and Pietikainen, M. 2006. Face descrip-
tion with local binary patterns: application to face recognition. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 
28(12): 2037-2041. 
Bach, F. R.; Jordan, M. I. 2002. Kernel independent component 
analysis.  Journal of Machine Learning Research, 3: 1-48. 
Belhumeur, P. N.; Hespanha, J. P.; and Kriegman, D. 1997.  
Eigenfaces vs. fisherfaces: Recognition using class specific linear 

1888



projection. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 19(7): 711-720. 
Cai, D.; He. X.; Han, J.; and Zhang, H. J. 2006. Orthogonal lapla-
cianfaces for face recognition. IEEE Transactions on Image 
Processing, 15(11): 3608-3614. 
Chen, Q. N.; and Sun, S. L. 2009. Hierarchical multi-view fisher 
discriminant analysis.  Neural Information Processing, 289-298. 
Diethe, T; Hardoon, D. R.; and Shawe-Taylor, J. 2010. 
Constructing nonlinear discriminants from multiple data view. 
Machine Learning and Knowledge Discovery in Databases, 328-
343. 
Diethe, T.; Hardoon, D. R.; and Shawe-Taylor, J. 2008. 
Multiview fisher discriminant analysis.   NIPS workshop on 
learning from multiple sources. 
Draper, B. A.; Yambor, W. S.; and Beveridge, J. R. 2002. 
Analyzing PCA-based face recognition algorithms: eigenvector 
selection and distance measures. Empirical Evaluation Methods 
in Computer Vision, 1-15. 
Fukunaga, K.; and Koontz, W. L. G. 1970. Application of the 
Karhunen-Loeve expansion to feature selection and ordering.  
IEEE Transactions on Computers, 19(4): 311-318. 
Gao, L.; Qi, L.; Chen, E. Q.; and Guan, L. 2012. Discriminative 
multiple canonical correlation analysis for multi-feature 
information fusion. IEEE International Symposium on 
Multimedia, 36-43.  
Grigorescu, S. E.; Petkov, N.; and Kruizinga, P. 2002. Compari-
son of texture features based on Gabor filters. IEEE Transactions 
on Image Processing, 11(10): 1160-1167. 
Guo, Y. H. 2013. Convex subspace representation learning from 
multi-view data. AAAI Conference on Artificial Intelligence, 387-
393.  
Hardoon, D. R.; Szedmak. S.; and Shawe-Taylor, J. 2004. Canon-
ical correlation analysis: An overview with application to learning 
methods. Neural Computation, 16(12): 2639-2664. 
Huang, G. B.; Mattar, M. A.; Lee, H.; and Learned-Miller, E. 
2012. Learning to align from scratch, Neural Information 
Processing Systems, 773-781. 
Kan, M.; Shan, S. G.; Zhang, H. H.; Lao, S. H.; and Chen, X. L. 
2012. Multi-view discriminant analysis. European Conference on 
Computer Vision: 808-821. 
Kim, T. K.; Kittler, J.; and Cipolla, R. 2007. Discriminative 
learning and recognition of image set classes using canonical 
correlations. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 29(6): 1005-1018. 
Kumar, A.; and Daume III, H. 2011a. A co-training approach for 
multi-view spectral clustering. International Conference on 
Machine Learning, 393-400. 
Kumar, A.; Rai, P.; and Daume III, H. 2011. Co-regularized 
multi-view spectral clustering. Advances in Neural Information 
Processing System, 1413-1421. 
Lai, P. L.; and Fyfe, C. 2000. Kernel and nonlinear canonical 
correlation analysis. International Journal on Neural System, 
10(5): 365-377. 
Leurgans, S. E.; Moyeed, R. A.; and Silverman, B. W. 1993. 
Canonical correlation analysis when the data are curves. Journal 
of the Royal Statistical Society, Series B (Methodological), 55(3): 
725-740. 
Memisevic, R. 2012. On multi-view feature learning. 
International Conference on Machine Learning, 161-168. 

Murase, H.; and Nayar, S. K. 1995. Visual learning and 
recognition of 3-D objects from appearance. International 
Journal of Computer Vision 14(1): 5-24. 
Nielsen, A. A. 2002. Multiset canonical correlations analysis and 
multispectral, truly multitemporal remote sensing data. IEEE 
Transactions on Image Processing, 11(3): 293-305. 
Rupnik, J.; and Shawe-Taylor, J. 2010. Multi-View Canonical 
correlation analysis. International Conference on Data Mining 
and Data Warehouses, 1-4. 
Sharma, A.; Kumar, A.; Daume, H.; and Jacobs, D. W. 2012. 
Generalized multiview analysis: A discriminative latent space. 
IEEE Conference on Computer Vision and Pattern Recognition, 
2160-2167. 
Su, Y.; Fu, Y.; Gao, X.; and Tian Q. 2012. Discriminant learning 
through multiple principal angles for visual recognition. IEEE 
Transactions on Image Processing, 21(3): 1381-1390. 
Sun, S. 2013. A survey of multi-view machine learning. Neural 
Computing and Applications, 23(7-8): 2031-2038.  
Sun, S. L.; and Chao, G. Q. 2013. Multi-view maximum entropy 
discrimination.  International Joint Conference Artificial Intelli-
gence, 1706-1712.  
Sun, T. K.; Chen, S. C.; Jin, Z.; and Yang J. Y. 2007. Kernelized 
discriminative canonical correlation analysis. International 
Conference on Wavelet Analysis and Pattern Recognition, 3: 
1283-1287. 
Wang, D.; Li, T.; and Ogihara, M. 2012. Generating pictorial 
storylines via minimum-weight connected dominating set 
approximation in multi-view graphs. AAAI Conference on 
Artificial Intelligence, 683-689.  
Wang, H.; Nie, F.; and Huang, H. 2013. Multi-view clustering 
and feature learning via structured sparsity. International 
Conference on Machine Learning, 28: 352-360. 
Xu, C.; Tao, D. C.; and Xu, C. 2013. A survey on multi-view 
learning. CoRR abs/1304.5634. 
Yuan, Y. H.; Sun, Q. S.; Zhou, Q.; and Xia. D. S. 2010. A novel 
multiset integrated canonical correlation analysis framework and 
its application in feature fusion. Pattern Recognition, 44(5): 
1031-1040. 
Yang, P.; and Gao, W. 2013. Multi-view discriminant transfer 
learning.  International Joint Conference Artificial Intelligence, 
1848-1854. 
 

1889




