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Abstract
We consider the problem of personalization of online services
from the viewpoint of ad targeting, where we seek to find
the best ad categories to be shown to each user, resulting in
improved user experience and increased advertisers’ revenue.
We propose to address this problem as a task of ranking the
ad categories depending on a user’s preference, and introduce
a novel label ranking approach capable of efficiently learn-
ing non-linear, highly accurate models in large-scale settings.
Experiments on a real-world advertising data set with more
than 3.2 million users show that the proposed algorithm out-
performs the existing solutions in terms of both rank loss and
top-K retrieval performance, strongly suggesting the benefit
of using the proposed model on large-scale ranking problems.

Introduction
Personalization of online content has become an important
topic in the recent years. It has been defined as ”the ability
to proactively tailor products and product purchasing expe-
riences to tastes of individual consumers based upon their
personal and preference information” (Chellappa and Sin
2005), which may lead to improved user experience and
directly translate into financial gains for online businesses
(Riecken 2000). In addition, personalization fosters stronger
bond between users and companies, and can help in increas-
ing user loyalty and retention (Alba et al. 1997). For these
reasons it has been recognized as an important strategic goal
of major internet companies (Manber, Patel, and Robison
2000; Das et al. 2007), and is a focus of significant research
efforts. Personalized content has already become an integral
part of many popular online services, a trend likely to con-
tinue in the future (Tuzhilin 2009).

We consider content personalization from the viewpoint
of targeted advertising (Essex 2009), an increasingly impor-
tant aspect of online businesses. Here, for each individual
user the task is to find the best matching ads to be displayed,
which improves user’s online experience (as only relevant
and interesting ads are shown to the user) and can lead to in-
creased revenue for the advertisers (as users are more likely
to click on the ad and make a purchase). Due to its large im-
pact and many open research questions, targeted advertising
has garnered significant interest from the machine learning
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community, as witnessed by a large number of recent work-
shops and publications (Broder 2008; Pandey et al. 2011;
Majumder and Shrivastava 2013).

One of the most popular approaches in present-day target-
ing, particularly in brand awareness campaigns, is to assign
categories to the display ads, such as ”sports” or ”finance”,
and then separately learn to predict user interest in each of
these categories using historical records (Ahmed et al. 2011;
Pandey et al. 2011; Tyler et al. 2011). Typically, a taxon-
omy is used to decide on the categories, and depending on
how detailed it is hundreds of separate category qualifica-
tion tasks may need to be solved. Thus, for each ad cate-
gory, a separate predictive model is trained, able to estimate
the probability of an ad click for the entire user population.
Then, for each category,N users with the highest click prob-
ability are selected for ad exposure. Known issues with the
approach include overexposure, where a single user may be
among the top N users for many categories, and starvation,
where some users do not qualify for any of the categories.

An alternative avenue, known in the industry as a user-
interest model, is to sort for each user outputs of the pre-
dictive models, and qualify users based on their top K cate-
gories. The approach guarantees that a user is qualified into
several categories, eliminating overexposure and starvation
issues. However, this method may still be suboptimal, as the
predictive models are trained in isolation and do not consider
relationships between different categories. In this paper we
explore methods capable of capturing more complex class
dependencies, and consider the user-interest model from a
label ranking standpoint (Vembu and Gärtner 2011). How-
ever, the sheer scale of ad targeting problems, with data sets
comprising millions of users and features and hundreds of
categories, renders many existing label ranking approaches
intractable, presenting new challenges to the researchers.

To address this issue, we propose a novel label ranking al-
gorithm suitable for large-scale settings. The method lends
ideas from the state-of-the-art AMM classifiers (Wang et al.
2011), efficiently learning accurate, non-linear models on
limited resources. Empirical evaluation was performed in
a real-world ad targeting setting, using, to the best of our
knowledge, the largest dataset considered thus far in the la-
bel ranking literature. The results show that the algorithm
significantly outperformed the existing methods, indicating
the benefits of the proposed approach to label ranking tasks.
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Background
In this section we present works and ideas that led to the pro-
posed algorithm. We first discuss label ranking setting, and
then describe Adaptive Multi-hyperplane Machine (AMM),
a non-linear, multi-class model used to develop a novel
large-scale label ranking approach introduced in this paper.

Label ranking
Unlike standard machine learning problems such as multi-
class or multi-label classification, label ranking is a rela-
tively novel topic which involves a complex task of label
preference learning. More specifically, rather than predicting
one or more class labels for a newly observed example, we
seek to find a strict ranking of classes by their importance or
relevance to the given example. For instance, let us consider
targeted advertising domain, and assume that the examples
are internet users and class labels are user preferences from
the set Y = {”sports”, ”travel”, ”finance”}. Then, instead
of simply inferring that the user is a ”sports” person, which
would result in user being shown only sports-related ads, it
is more informative to know that the user prefers sports over
finance over travel, resulting in more diverse and more ef-
fective ad targeting. Note that the label ranking problem dif-
fers from the learning-to-rank setup (Cao et al. 2007), where
the task is to rank the examples and not labels, and can also
be seen as a generalization of classification and multi-label
problems (Dekel, Manning, and Singer 2003).

More formally, in the label ranking scenario the input is
defined by a feature vector x ∈ X ⊂ Rd, and the output
is defined by a ranking π ∈ Π of class labels. Here, the la-
bels originate from a predefined set Y = {1, 2, . . . , L} (e.g.,
π = [3, 1, 4, 2] for L = 4), and Π is a set of all label permu-
tations. Let us denote by πi a class label at the ith position
in the label ranking π, and by π−1i a position (or rank) of
label i in the ranking π. For instance, in the above example
we would have π1 = 3 and π−11 = 2. Then, for any i and
j, where 0 ≤ i < j ≤ L, we say that label πi is preferred
over label πj , or equivalently πi � πj . Moreover, in the
case of an incomplete order π, we say that any label i ∈ π
is preferred over the missing ones. Further, let us assume
that we are given a sample from the underlying distribution
D = {(xt , πt), t = 1, ...,T}, where πt is a vector contain-
ing either a total or a partial order of class labels Y . The
learning goal is to find a model f that maps input examples
x into a total ordering of labels, f : X → Π.

In the recent years the problem has seen increased at-
tention by the machine learning community (e.g., see re-
cent workshops and tutorials at ICML, NIPS, and other
venues), and many effective algorithms have been proposed
in the literature (Har-Peled, Roth, and Zimak 2003; Dekel,
Manning, and Singer 2003; Kamishima and Akaho 2006;
Cheng, Hühn, and Hüllermeier 2009; Grbovic, Djuric, and
Vucetic 2013); for an excellent review see (Vembu and
Gärtner 2011). In (Cheng, Hühn, and Hüllermeier 2009;
Cheng, Dembczyński, and Hüllermeier 2010) authors pro-
pose instance-based methods for label ranking, where train-
ing examples are first clustered according to their feature
vectors, and then centroid and mean ranking are found for

each cluster and used for inference. This idea was extended
in (Grbovic et al. 2013; Grbovic, Djuric, and Vucetic 2013),
where authors use feature vectors to supervise clustering, re-
sulting in improved performance. Apart from the prototype-
based methods, often considered approaches include learn-
ing a scoring function gi for each class, i = 1, . . . , L, and
sorting their output in order to infer label ranking (Elisse-
eff and Weston 2001; Dekel, Manning, and Singer 2003;
Har-Peled, Roth, and Zimak 2003), or training a number
of binary classification models to predict pairwise label
preferences and aggregating their output into a total order
(Hüllermeier et al. 2008; Hüllermeier and Vanderlooy 2010).

Adaptive Multi-hyperplane Machine
The AMM algorithm is a budgeted, multi-class method suit-
able for large-scale problems (Wang et al. 2011; Djuric et
al. 2014). It is an SVM-like algorithm that formulates a non-
linear model by assigning a number of linear hyperplanes
to each class in order to capture data non-linearity. Given a
d-dimensional example x and a set Y of L possible classes,
AMM has the following form,

f(x) = arg max
i∈Y

g(i,x), (1)

where the scoring function g(i,x) for the ith class,

g(i,x) = max
j

wT
i,jx, (2)

is parameterized by a weight matrix W written as

W =

[
w1,1 . . .w1,b1 |w2,1 . . .w2,b2 | . . . |wL,1 . . .wL,bL

]
,

(3)
where b1, . . . , bL are the numbers of weights (i.e., hyper-

planes) assigned to each of the L classes, and each block in
(3) is a set of class-specific weights. Thus, from (1) we can
see that the predicted label of the example x is the class of
the weight vector that achieves the maximum value g(i,x).

AMM is trained by minimizing the following convex
problem at each tth training iteration,

L(t)(W|z) ≡ λ

2
||W||2F + l(W; (xt, yt); zt), (4)

where λ is the regularization parameter, and the instanta-
neous loss l(·) is computed as

l(W; (xt, yt); zt) = max

(
0, 1 + max

i∈Y\yt
g(i,xt)−wT

yt,ztxt

)
.

(5)
Element zt of vector z = [z1 . . . zT ] determines which

weight belonging to the true class of the tth example is used
to calculate (5), and can be fixed prior to the start of a train-
ing epoch or, as done in this paper, can be computed on-
the-fly as an index of a true-class weight that provides the
highest score (Wang et al. 2011).

AMM uses Stochastic Gradient Descent (SGD) to solve
(4). The SGD is initialized with the zero-matrix (i.e.,
W(0) = 0), which comprises infinite number of zero-
vectors for each class. This is followed by an iterative proce-
dure, where training examples are observed one by one and
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the weight matrix is modified accordingly. Upon receiving
example (xt, yt) ∈ D at the tth round, w(t)

ij is updated as

w
(t+1)
ij = w

(t)
ij − η

(t)∇(t)
ij , (6)

where η(t) = 1/(λt) is a learning rate, and ∇(t)
ij is the sub-

gradient of (4) with respect to w
(t)
i,j ,

∇(t)
i,j =


λw

(t)
i,j + xt, if i = it, j = jt,

λw
(t)
i,j − xt, if i = yt, j = zt,

λw
(t)
i,j , otherwise,

(7)

with

it = arg max
k∈Y\yt

g(k,x) and jt = arg max
k

(w
(t)
it,k

)Txt. (8)

If the loss (5) at the tth iteration is positive, class weight from
the true class yt indexed by zt is moved towards xt during
the update, while the class weight w(t)

it,jt
with the maximum

prediction from the remaining classes is pushed away. If the
updated weight is a zero-weight then it becomes non-zero,
thus increasing the weight count bi for that class by one. In
this way, complexity of the model adapts to complexity of
the data, and bi, i = 1, . . . , L, are learned during training.

Methodology
It has been shown that the existing label ranking methods
achieve good performance on many tasks, however, in the
large-scale setting considered in this paper, they might not be
as effective. When faced with non-linear problems compris-
ing millions of examples and features, the proposed methods
are either too costly to train and use, or may not be expres-
sive enough to learn complex problems. To address this is-
sue, in this section we present a novel ranking algorithm,
called AMM-rank, that extends the idea of adaptability and
online learning from AMM to label ranking setting, allow-
ing large-scale training of accurate ranking models.

AMM-rank algorithm
Before detailing the training procedure of AMM-rank, we
first consider its predictive label ranking model. As dis-
cussed previously, we assume that the tth training example
xt is associated with (possibly) incomplete label ranking πt
of length Lt ≤ L. Given a trained AMM-rank model (3)
and a test example x, a score for each class is found using
equation (2), and the predicted label ranking is obtained by
sorting the scores in the descending order,

π̂ = sort([g(1,x), g(2,x), . . . , g(L,x)]), (9)

where the sort function returns indices of the sorted scores.
Training of AMM-rank resembles the training of AMM

multi-class model described in the previous section. Learn-
ing is initialized with a zero-matrix comprising an infinite
number of zero-vectors for each class, followed by itera-
tively observing examples one by one and modifying the
weight matrix. At each tth training iteration we minimize the
following regularized instanteneous rank loss,

L(t)
rank(W|z) ≡ λ

2
‖W‖2F + lrank(W; (xt, yt); zt). (10)

The ranking loss lrank(·) is defined as

lrank(W; (xt, yt); zt) =

Lt∑
i=1

ν(i)
L∑
j=1

I(πi � j) max(0, 1 + g(j,xt)−wT
πi,ztixt),

(11)
where ν(i) is a predefined importance assigned to the ith
rank, and function I(arg) returns 1 if arg evaluates to true,
and 0 otherwise. As in label ranking setting we need to keep
track of predicted scores of all L classes and not only the
top one, note that we introduced vector zt instead of a scalar
zt as in (4), whose element zti determines which weight be-
longing to label i is used to compute (10) for the tth example.

Depending on the problem at hand, using the function
ν(i) a modeler can emphasize the importance of some ranks
over the others. For example, let us assume ν(i) = 1/i.
Then, in the ranking loss defined in (11), the factor i−1 en-
forces higher penalty for misranking of top-ranked topics,
while the mistakes made for lower-ranked topics incur pro-
gressively smaller costs. This approach has been explored
previously in information retrieval setting (Weston et al.
2012). However, it is also applicable in the context of tar-
geted advertising, where lower-ranked classes have progres-
sively lower relevance to an ad publisher than the higher-
ranked ones. Furthermore, penalty is incurred whenever the
lower-ranked label was either predicted to be preferred over
the higher-ranked one, or the score of the preferred label was
higher with a margin smaller than 1.

We use SGD at each training iteration to minimize the ob-
jective function (10). Subgradient of the instantaneous rank
loss with respect to the weights can be computed as

∇(t)
i,j = λw

(t)
i,j − xt I(j = zti) ν(π−1i )

L∑
k=1

(
I
(
i � k)·

I(1 + g(k,xt) > (w
(t)
ij )Txt

))
+ xt I(j = zti)·

L∑
k=1

(
ν(k) I(k � i) I

(
1 + (w

(t)
ij )Txt > (w

(t)
kztk

)Txt
))
.

(12)
An SGD update step (12) can be summarized as follows. At
every training round all model weights are reduced towards
zero by multiplying them with (1 − 1/t) (the first term on
the RHS). In addition, if the jth weight of the ith class was
used to compute the score for the tth label (i.e., I(j = zti)
equals 1), it is pushed further towards xt whenever the ith
label was either wrongly predicted to be less preferred or
correctly predicted with margin smaller than 1 (the second
term on the RHS). Moreover, the weight is pushed further
away from xt whenever the score of the class preferred over
the ith class was either lower or higher with margin less than
1 (the third term on the RHS). Similarly to the AMM model,
the complexity of AMM-rank ranking model is automati-
cally learned during training, and adapts to the complexity
of the considered label ranking problem.
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Experiments
In this section we describe the problem setting and present a
large-scale, real-world data set that was used for evaluation,
followed by description and analysis of empirical results.

Dataset
We are addressing a problem from display advertising do-
main which consists of several key players: 1) advertisers,
companies that want to advertise their products; 2) publish-
ers, websites that host the advertisements (such as Yahoo
or Google); and 3) online users. The web environment pro-
vides publishers with the means to track user behavior in
much greater detail than in the offline setting, including cap-
turing user’s registered information (e.g., demographics, lo-
cation) and activity logs that comprise search queries, page
views, email activity, ad clicks, and purchases. This brings
the ability to target users based on their past behavior, which
is typically referred to as ad targeting (Ahmed et al. 2011;
Pandey et al. 2011; Tyler et al. 2011; Agarwal, Pandey, and
Josifovski 2012; Aly et al. 2012). Having this in mind, the
main motivation for the following experimental setup was
the task of estimating user’s ad click interests using their past
activities. The idea is that, if we sort the interests in descend-
ing order of preference and attempt to predict this ranking,
this task can be formulated as a label ranking problem.

The data set that was used in the empirical evaluation was
generated using the information about users’ online activ-
ities collected at Yahoo servers. The activities are tempo-
ral sequences of raw events that were extracted from server
logs and are represented as tuples (ui, ei, ti), i = 1, . . . , N ,
where ui is ID of a user that generated the ith tuple, ei is
an event type, ti is a timestamp, and N is a total number of
recorded tuples. For each user we considered events belong-
ing to one of the following six groups:

• page views (”pv”) - website pages that the user visited;

• search queries (”sq”) - user-generated search queries;

• search link clicks (”slc”) - user clicks on search links;

• sponsored link clicks (”olc”) - user clicks on search-
advertising links that appear next to actual search links;

• ad views (”adv”) - display ads that the user viewed;

• ad clicks (”adc”) - display ads that the user clicked on.

Events from these six groups are all categorized into an in-
house hierarchical taxonomy by an automatic categoriza-
tion system and human editors. Each event is assigned to
a category from a leaf of the taxonomy, and then propa-
gated upwards toward parent categories. Considering that
the server logs for each user are retained for several months,
the recorded events can be used to capture users’ interests in
categories over long periods of time.

Following the ad categorization step, we can compute in-
tensity and recency measures for each of L considered cat-
egories in each of the six groups. Let Dugct denote a set of
all tuples that were generated by user u, where ei belongs
to group g and is labeled with category c, with timestamp
ti ≤ t. Then, intensity and recency are defined as follows,
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Figure 1: Number of ad click events per category

• intensity is an exponentially time-decayed count of all
tuples in Dugct, computed as

intensity(u, g, c, t) =
∑

(ui,ei,ti)∈Dugct

αt−ti , (13)

where α is a fixed decay factor, with 0 < α < 1 (we omit
the exact value as it represents sensitive information).

• recency is a difference between timestamp t and a time-
stamp of the most recent event from Dugct, computed as

recency(u, g, c, t) = min
(ui,ei,ti)∈Dugct

(t− ti). (14)

The intensity and recency measures were used to generate
both the features and the label ranks for each user. In par-
ticular, we first chose two timestamps that were one month
apart, Tfeatures and Tlabels, where Tfeatures < Tlabels.
Then, at timestamp Tfeatures we used (13) and (14) to com-
pute intensity and recency of L categories in each of ”pv”,
”sq”, ”slc”, and ”olc” groups separately, which, together
with user’s age (split into 9 buckets and represented as 9 bi-
nary features) and gender (represented as 2 binary features)
was used as a feature vector x, resulting in input space di-
mensionality d of (2 · 4 ·L+ 9 + 2). In addition, in order to
evaluate the influence of user ad views to their ad clicks, we
also considered the case where intensity and recency of L
categories in the ”adv” group were appended to the feature
vector, increasing the dimensionality by 2L.

Furthermore, to quantify user interests and generate
ground-truth ranks π, we considered only ”adc” events be-
tween Tfeatures and Tlabels, and computed intensity of L
categories at timestamp Tlabels. We consider level of interest
of user u in category c to be equal to intensity of c in ”adc”
group, and preference ranking of categories is obtained sim-
ply by sorting their intensities. Note that the ground-truth
ranking is in most cases incomplete, as users usually do not
interact with all categories from the taxonomy.

We considered L = 50 second-level categories of the
taxonomy (e.g., ”finance/loans”, ”retail/apparel”), and col-
lected data comprising 3,289,229 anonymous users that
clicked on more than 2 categories. Category distribution in
the ground-truth ranks is given in Fig. 1, where we see that a
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Females, aged 21-25
01. Retail/Apparel
02. Technology/Internet Services
03. Telecommunications/Cellular and Wireless
04. Travel/Destinations
05. Consumer Goods/Beauty and Personal Care
06. Technology/Consumer Electronics
07. Consumer Goods/Contests and Sweepstakes
08. Travel/Vacations
09. Travel/Non US
10. Life Stages/Education

Males, aged 21-25
01. Technology/Internet Services
02. Retail/Apparel
03. Telecommunications/Cellular and Wireless
04. Travel/Destinations
05. Technology/Consumer Electronics
06. Travel/Non US
07. Travel/Vacations
08. Consumer Goods/Contests and Sweepstakes
09. Retail/Home
10. Entertainment/Games

Females, aged 65+
01. Consumer Goods/Beauty and Personal Care
02. Retail/Apparel
03. Life Stages/Education
04. Finance/Loans
05. Finance/Insurance
06. Finance/Investment
07. Technology/Internet Services
08. Entertainment/Television
09. Retail/Home
10. Telecommunications/Cellular and Wireless

Males, aged 65+
01. Finance/Investment
02. Finance/Loans
03. Retail/Apparel
04. Life Stages/Education
05. Technology/Internet Services
06. Finance/Insurance
07. Consumer Goods/Beauty and Personal Care
08. Retail/Home
09. Telecommunications/Cellular and Wireless
10. Technology/Computer Software

Figure 2: Topic ranking found by the AG-Mal model

large fraction of ad clicks would be missed if users were tar-
geted only with the most clicked categories, which directly
results in lost revenue for both publishers and advertisers.

Results
We compared AMM-rank to following approaches: a) multi-
class AMM (Wang et al. 2011), where the top-ranked cate-
gory was used as a true class and the output scores for all cat-
egories were sorted to obtain ranking, used as a naı̈ve base-
line; b) Central-Mal, which always predicts central ranking
of the training set computed using the Mallows model (Mal-
lows 1957); c) AG-Mal, which computes Central-Mal over
all users grouped in different age (”13-17”, ”18-20”, ”21-
24”, ”25-29”, ”30-34”, ”35-44”, ”45-54”, ”55-64”, ”65+”)

and gender (male/female) buckets; d) IB-Mal, which com-
putes Central-Mal over k nearest neighbors (Cheng, Hühn,
and Hüllermeier 2009); e) logistic regression (LR), where L
binary models were trained and we sorted their outputs to
obtain a ranking; and f) pairwise approach (Hüllermeier et
al. 2008), where L(L−1)/2 binary LR models were trained
and we sorted the sum of their soft votes towards each label
to obtain a ranking (PW-LR). AMM-rank and PW-LR have
O(NL2) and IB-Mal has O(N2L) time complexity, while
the remaining methods are O(NL) approaches.

Central-Mal is a very simple and efficient baseline, and is
an often-used method for basic content personalization. As
the method simply predicts population’s mean ranking, to
improve its performance we considered AG-Mal, a method
commonly used in practice, where we first compute mean
rank for each age-gender group, and then use the group’s
mean rank as a prediction for qualified users. Further, IB-
Mal is an instance-based method which is extremely com-
petitive to the other state-of-the-art approaches (e.g., see
Grbovic, Djuric, and Vucetic 2013), where we first find k
nearest neighbors by considering feature vectors x and then
predict Mallows mean ranking over the neighbors (due to
large time cost, for each user we search for nearest neigh-
bors in a subsampled set of 100,000 users). Lastly, we con-
sidered LR since it represents industry standard for ad tar-
geting tasks, and PW-LR as it was shown to achieve state-
of-the-art performance on a number of ranking tasks (Gr-
bovic, Djuric, and Vucetic 2012b; 2013). Due to large scale
of the problem, we did not consider state-of-the-art methods
such as mixture models which require iterative training (Gr-
bovic, Djuric, and Vucetic 2012a; Grbovic et al. 2013). We
also did not consider log-linear model (Dekel, Manning, and
Singer 2003), shown in (Grbovic, Djuric, and Vucetic 2013)
to be outperformed by the IB-Mal, and do not report results
of instance-based Plackett-Luce (Cheng, Dembczyński, and
Hüllermeier 2010) due to observed limited performance.

We used Vowpal Wabbit package1 for logistic regression,
BudgetedSVM (Djuric et al. 2014) for AMM, that we also
modified to implement AMM-rank. We set ν(i) = 1, i =
1, . . . , L, and used the default parameters from Budget-
edSVM package for AMM-rank, with the exception of the
λ parameter which, together with competitors’ parameters,
was configured through cross-validation on a small held-out
set; this resulted in k = 10 for IB-Mal. As discussed previ-
ously, we considered two versions of the ad targeting data:

• adv - feature vector x does not include recency and inten-
sity of categories from ”adv” group (with d = 411);

• adv, feature vector x does include recency and intensity
of categories from ”adv” group (with d = 511).

Before comparing the ranking approaches, it is informa-
tive to consider the examples of label ranks found by AG-
Mal on adv data, given in Figure 2. We can see that there ex-
ist significant differences between different gender and age
groups. Albeit the obtained ranks seem very intuitive, we
will see shortly that AG-Mal is significantly outperformed
by the other methods, illustrating complexity of the ranking

1github.com/JohnLangford/vowpal wabbit
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Figure 3: Comparison of retrieval performance of label ranking algorithms in terms of precision, recall, and F1 measures

Table 1: Disagreement error εdis of the label ranking methods

Algorithm adv adv
AMM 0.3446 0.2611
Central-Mal 0.2957 0.2957
AG-Mal 0.2820 0.2820
IB-Mal 0.2694 0.1899
LR 0.2110 0.1419
PW-LR 0.2091 0.1226
AMM-rank 0.1996 0.1083

task and the need for more involved approaches. In the fol-
lowing, we compare the algorithms using disagreement error
εdis (Dekel, Manning, and Singer 2003), computed as a frac-
tion of pairwise category preferences predicted incorrectly,

εdis =
1

Ntest

Ntest∑
t=1

L∑
i,j=1

I
(
(πti � πtj) ∧ (π̂−1tπtj

> π̂−1tπti
)
)

Lt
(
L− 0.5(Lt + 1)

) ,

(15)
as well as precision, recall, and F1 at the top K ranks,

precision@K =
1

Ntest

Ntest∑
t=1

K∑
i=1

I(π̂ti ∈ πt)
K

,

recall@K =
1

Ntest

Ntest∑
t=1

K∑
i=1

I(π̂ti ∈ πt)
Lt

,

F1@K =
2 · precision@K · recall@K

precision@K + recall@K
,

(16)

which are commonly used measures for ranking problems.
Here, π̂t denotes predicted label rank for the tth example.

Performance of the competing methods in terms of εdis,
following 5-fold cross-validation, is reported in Table 1. We
can see that the inclusion of ad view features resulted in large
performance improvement, confirming findings from (Gupta
et al. 2012) that past exposure to an ad increases propen-
sity of a user to actually click the ad. As expected, multi-
class AMM achieved poor performance as it optimizes only
for the topmost category, and this result represents a lower
bound on the disagreement loss. A simple baseline Central-
Mal achieved higher error, which was decreased by only a

small margin using AG-Mal. We can see that IB-Mal re-
sulted in significant performance improvement, however in
large-scale, online setting it may be very inefficient. Logistic
regression, a commonly used method in ad targeting tasks,
obtained low error, further improved using the pairwise ap-
proach. However, state-of-the-art PW-LR was significantly
outperformed by the proposed AMM-rank which achieved
more than 10% better result. We note that, other than IB-
Mal, the methods are very efficient, obtaining training and
test times of less than 10 minutes on a regular machine.

However, the main goal in ad targeting campaigns is not to
infer the complete list of preferences for a user. Instead, we
aim to find the top K most preferred categories, due to the
constraint that we only have a limited budget for ad display,
in terms of both time and space. Therefore, it is not of im-
portance when two less preferred categories are misranked,
and in the second set of experiments we explore how the
label ranking methods perform in such setting. We consid-
ered showing K = {1, 2, . . . , 10} display ads, and for the
top K ranks measure precision, recall, and F1 score of the
categories on which the user clicked during the testing pe-
riod. The results obtained by the label ranking algorithms are
illustrated in Figure 3. We can see that AMM-rank outper-
formed the competitors, achieving better performance for all
values ofK. This becomes even more relevant when we con-
sider that even a small improvement in a web-scale setting
of targeted advertising may result in a significant revenue
increase for the publisher. We can conclude that the results
strongly suggest advantages of the proposed approach over
the competing algorithms in large-scale label ranking tasks.

Conclusion
In order to address challenges brought about by the scale of
the online advertising tasks that renders many state-of-the-
art methods inefficient, we introduced AMM-rank, a novel,
non-linear algorithm for large-scale label ranking. We eval-
uated its performance on a real-world ad targeting data com-
prising more than 3 million users, thus far the largest label
ranking data considered in the literature. The results show
that the method outperformed the competing approaches by
a large margin in terms of both rank loss and retrieval mea-
sures, indicating that the AMM-rank algorithm is a very suit-
able method for solving large-scale label ranking problems.
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