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Abstract
Sequential learning for classification tasks is an effec-
tive tool in the machine learning community. In sequen-
tial learning settings, algorithms sometimes make incor-
rect predictions on data that were correctly classified in
the past. This paper explicitly deals with such inconsis-
tent prediction behavior. Our main contributions are 1)
to experimentally show its effect for user utilities as a
human cognitive bias, 2) to formalize a new framework
by internalizing this bias into the optimization problem,
3) to develop new algorithms without memorization of
the past prediction history, and 4) to show some theoret-
ical guarantees of our derived algorithm for both online
and stochastic learning settings. Our experimental re-
sults show the superiority of the derived algorithm for
problems involving human cognition.

1 Introduction
Online learning and stochastic learning are advantageous for
large-scale learning. Sequential processing of data is the key
of these methods. For classification tasks, these learning al-
gorithms process a bunch of data one by one and change
its classification rule at every round. We call these methods
sequential learning in this paper.

Sequential learning algorithms sometimes make wrong
predictions on data that were correctly classified in the past.
While classical performance evaluation measures for se-
quential learning, such as the expected loss, do not reflect
the history of the past prediction results, previous algo-
rithms have not considered this inconsistent behavior as a
crucial factor. The key statement in this paper is that this
phenomenon has a crucial impact on the evaluation of algo-
rithms on the condition that humans are evaluators. Humans
have a cognitive bias that they attach a higher value to the
data that were correctly classified in the past than the other
data. This effect originates from the endowment effect that
had been widely analyzed in the field of behavior economics.
There are motivating examples in which this cognitive bias
has important roles:
• User utility maximization: Sequential learning has been

used in many services such as image object recogni-
tion and email filtering (Aberdeen, Pacovsky, and Slater
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2010). Many users continuously utilize services whose
prediction rules have been changed over time. Further-
more, some users check prediction results of previously
seen data. Negative flips may drastically decrease the util-
ities of these users.

• Interactive annotation: There are many human-
computer interaction systems based on sequential
learning such as active learning-based annotations (Set-
tles 2011). Encouraging people to make annotations is
crucial for more data generation and better performance.
Some annotators may feel frustrated annotating the data
correctly classified in the past as wrong ones.

To maximize the availability of machine learning, algo-
rithms which interact with humans need to adjust update
rules to heal the bias derived from the past prediction history.
We explicitly deal with this cost as the divestiture loss. We
first conducted an experiment to verify whether the endow-
ment effect negatively affects human’s evaluations. Next, we
set new evaluation measures for sequential learning by in-
corporating the endowment loss. This measure imposes an
additional objective on sequential learning, minimizing the
divestiture loss. We note that this new problem setting can be
easily dealt with if algorithms could store all previous exam-
ples and its prediction results in the memory; however, this
memorization is unpractical for large-scale learning setting
due to the memory constraint. To solve this problem, we de-
rived new variants of Online Gradient Descent (OGD). Our
derived algorithms enable to retain reasonable convergence
guarantees for both online learning and stochastic learning
settings without data memorization. We lastly conducted ex-
periments and the results showed advantages of our algo-
rithm compared with the conventional ones in the sequential
learning framework with a human cognitive bias.

1.1 Notations
Scalars are denoted by lower-case x and vectors are denoted
by bold lower-case x. t-th training input vectors and labels
are denoted xt and yt. Input vectors are n-dimensional and
taken from the input space X ⇢ Rn. Output labels are
taken from the output space Y . For simplicity, we define
zt = (xt, yt) to describe t-th datum. xs:t describes a se-
quence of vectors from s-th to t-th and x1:0 is a empty set.
1a=b is a boolean function which becomes 1 only if a = b.
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2 Sequential Learning
Let us begin by outlining a general sequential learning set-
ting for binary classification tasks, that is, Y = {�1, 1}.
Furthermore, we focus on linear prediction models in this
paper. In this setting, the prediction is performed through
the sign of the inner product of w and x, that is, ŷ =

sgn(hw,xi). The basic iterative procedure is as follows:
1. At round t, receive an input vector xt.
2. Predict the corresponding output ŷt 2 {�1, 1} through

the current weight vector wt.
3. The true label, yt 2 {�1, 1}, is revealed and incur a cost

through the loss function `(wt; zt). Loss functions mea-
sure the predictability of the weight vector for a specific
datum.

4. Update the weight vector to wt+1 in the convex set W ⇢
Rn according to the prediction result.

5. Increment the round number t. The used datum cannot be
accessed in the following procedure. Repeat this process
until no labeled data remains.
As famous examples of the sequential learning frame-

work, online learning and stochastic learning have recently
gained attentions due to its memory efficiency, easiness to
re-learning, and adaptation to streaming data.

2.1 Online Learning
Online learning has a great advantage for large-scale data
processing. Although the data loading time becomes the
dominant factor in the batch learning framework on a large-
scale data due to memory constraints (Yu et al. 2012), online
learning algorithms can run with a limited memory space.
Standard online learning algorithms do not assume any dis-
tribution of the data. This framework can be applied under
not only an i.i.d. assumption but also an adversarial one
wherein an adversary assigns a label after algorithms esti-
mate it. As a novel performance measure, the regret is well
used. For any u 2 W and any sequence z1:T , regret is de-
fined as:

Regret(T ) =
TX

t=1

`(wt; zt)�
TX

t=1

`(u; zt) . (1)

The regret is formalized as the difference between two
terms; 1) the cumulative loss incurred by the algorithm and
2) the one produced by the fixed optimal weight vector.
While no assumption is put on the sequence, it can be mea-
sured even in an adversarial setting. If the upper bound of
regret is sublinear (o(T )), the loss per datum becomes the
same as the one of the best fixed strategy.

2.2 Stochastic Learning
In the standard stochastic learning setting, the final goal is
the minimization of the expected loss. Let us assume that
a certain data distribution D exists and a sequence of data
z1:T is i.i.d. sampled from this distribution. The objective
function is the difference between the expected loss evalu-
ated at the final output of the algorithm and the optimal one.

For any u 2 W ,
Ez⇠D [`(w; z)]� Ez⇠D [`(u; z)] . (2)

If the value of this function converges to 0, the algorithm
will minimize the expected loss as the best fixed strategy do.

2.3 Online (Stochastic) Gradient Descent
Online gradient descent (OGD)1 is a simple algorithm for se-
quential learning. OGD updates the weight vector for the re-
verse direction of the gradient. Therefore, OGD works with
any differentiable loss function. The update formula is

wt+1 = ⇧W (wt � ⌘tr`(wt; zt)) . (3)
r`(wt; zt) means the gradient of the loss function with re-
spect to a weight vector wt evaluated at zt. ⇧W(·) is a pro-
jection function onto a convex set W such that ⇧W(w) =

argminw02W kw �w

0k2. We can see from this update for-
mula that the weight vector is projected onto W if it moves
to the outside of W . ⌘1:T is a sequence of positive learning
rates. The weight vector is continuously updated according
to formula (3) whenever OGD receives new one datum.

OGD uses a first-order approximation of loss functions
to update the weight vector for the sake of faster calcu-
lation. Therefore, OGD is well used when computational
constraints are crucial concerns. OGD has been experimen-
tally shown to have good performances, even if its theoret-
ical properties are worse than other algorithms (Bottou and
Bousquet 2011). OGD has been the topic of extensive theo-
retical analysis. OGD obtains a sublinear regret upper bound
under practical constraints.
Theorem 1. (Zinkevich 2003) Let w1:T+1 be derived ac-
cording to OGD’s update formula (3). Assume that for all
w 2 W , kwk2  R and for all t, kr`(wt; zt)k2  G.
When loss functions are convex and ⌘t =

p
2R/G

p
t, the

upper regret bound is 2
p
2RG

p
T = O(

p
T ).

From this result, we see that OGD is guaranteed to con-
verge to obtain the optimal average loss. If the number of
rounds T is known in advance, OGD can achieve a tighter
bound by setting an appropriate fixed learning rate. When
the loss function is strongly convex, OGD converges to the
optimal solution in O(log T ) (Hazan, Agarwal, and Kale
2007; Shalev-Shwartz and Kakade 2008).

When OGD is used in a stochastic optimization setting,
the average weight vector is guaranteed to converge to the
optimal weight vector. We define Dt as a sequence of labeled
data z1:t i.i.d. sampled from a distribution D and define an
average weight vector as ¯

w =

PT
t=1 wt/T .

Theorem 2. (Cesa-Bianchi, Conconi, and Gentile 2004) As-
sume that the conditions in Theorem 1 are satisfied. For
any u 2 W , EDT [Ez⇠D [`( ¯w; z)]] � Ez⇠D [`(u; z)] 
2

p
2RG/

p
T .

The convergence rate is O(1/
p
T ) and OGD is guaran-

teed to converge to the optimal weight vector.
1In a stochastic learning setting, this algorithm is called stochas-

tic gradient descent (SGD). Though these two algorithms have dis-
tinct objectives, the skeleton of their update procedures is almost
the same. We use the term OGD for describing both types of algo-
rithms if there is no explicit statement.
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3 Sequential learning with a cognitive bias
From the nature of sequential update, algorithms sometimes
make mistakes on the data that were correctly classified in
the past. We first show that this event largely affects user
utilities neglected in the context of the standard sequential
learning setting. Next, we propose a new objective taking in
this human cognitive bias. The endowment effect is a key
component to analyze this bias.

3.1 Endowment Effect
The endowment effect (Thaler 1980) induces in humans a
cognitive bias to prevent rational decision-making. The en-
dowment effect states that people tend to put a higher value
on preventing the loss of an item they already possess than
on buying the same item they does not possess. This human
psychological bias has an important role for utility max-
imization and human engagements. There are many work
on theoretical explanations and experimental tests of the en-
dowment effect (Kahneman, Knetsch, and Thaler 1990).

The endowment effect suggests that the cost of compen-
sation is larger than the cost of paying. Here, the notion of
the endowment effect is that people would pay more in order
to sustain the correct prediction result for past data than to
pay for a correct prediction on new data. As a result, the se-
quential learner must take the data received in the past into
consideration when updating the model. This notion should
be incorporated into the objective as an additional cost.

3.2 Experiment on the endowment effect
Here, we verified that the endowment effect is prominent in
the user utilities. We conducted a subjective experiment us-
ing a crowdsourcing market place to assign tasks to humans.
We set up a synthetic scene recognition task as a binary clas-
sification problem using indoor recognition datasets2. We
used pictures of bookstores and restaurants from this dataset.

We assigned a certain amount of tasks to each worker.
Each session consisted of two phases, training phase and
evaluation phase. In the training phase, workers received
eight pairs of a picture and its predicted label. Workers
checked whether each label was correct and then sent their
answers to the system as user feedback. In the evaluation
phase, the system showed eight different pairs of a picture
and its prediction result to workers. Workers were told that
the previous user feedback was used to classify samples in
the evaluation phase. Workers evaluated the learnability of
this system on a five-star scale. The learnability is denoted
as the improvement ability of the learner during training.

Each worker dealt with two types of sessions. In the type-
I, the same picture did not appear in both the training and
evaluation phases. Therefore, the endowment effect was not
activated in this session. In the type-II, two pictures were re-
displayed in the evaluation phase. These pictures were cor-
rectly classified in the training phase but misclassified in the
evaluation phase. The number of correctly classified pictures
in both phases was fixed; there were four correctly classi-
fied pictures in both phases. Therefore, if worker evalua-
tions were largely different between two sessions, we can

2http://web.mit.edu/torralba/www/indoor.html

Table 1: Experimental result on the endowment effect. The
table shows the number of people who evaluate each ses-
sion’s predictability.

1 2 3 4 5 Average
type-I 2 3 15 73 7 3.80

type-II (duplicate) 2 11 26 54 7 3.53

see that the endowment effect influenced workers’ evalua-
tions. In each session, 100 workers evaluated its learnabil-
ity and verified whether there is any difference of workers’
cognition between these two types or not. The order of dis-
playing these types is randomly permutated. In summary, the
tasks of workers are 1) to click whether each assigned label
is true or false in the training phase, and 2) to evaluate the
classifier’s performance at a five-star scale by checking pre-
dicted labels for additional pictures in the evaluation phase.

Table 1 shows an experimental result. The result in the
table indicates that the type-II sessions have a lower evalu-
ation in comparison with the type-I. The p-value calculated
by Mann-Whitney test is less than a 1% level of significance
(p = 0.0093). This result shows that the endowment effect
largely affects workers’ evaluations.

3.3 Sequential learning and the endowment effect

We define this negative side-effect as a divestiture loss. The
divestiture loss is actualized when the classifier makes an
inaccurate prediction but it correctly classifies the same data
in the past. To internalize this loss explicitly, we integrate
this loss into the optimization problem. When an algorithm
already processed S data (z1:S) and predicted labels for them
(ŷ1:S), the divestiture loss is defined as:

C(w; z, ŷ1:S , z1:S) = 1prev�`(w; z)

where 1prev = min

 
1,

SX

s=1

1z=zs1ys=ŷs

!
. (4)

� is a non-negative trade-off parameter between the original
objective and the divestiture loss. � is chosen according to
the stakeholder’s preference. If � = 0, the divestiture loss
disappears and the objective function becomes the conven-
tional one. 1prev indicates whether the algorithm correctly
classified z in the past. When z was correctly classified,
1prev becomes 1 and the algorithm incurs an additional loss
�`(w; z) from this function. Otherwise, 1prev becomes 0 and
this loss will not be activated. We assume that if we correctly
classify the same datum more than once, the divestiture loss
does not change. New objective functions consist of the sum
of the original losses and the divestiture loss. A new regret
is defined as follows; For any u 2 W ,

Regret(T ) =
TX

t=1

Ft(wt)�
TX

t=1

Ft(u)

where Ft(w) = `(w; zt) + C(w; zt, ŷ1:t�1, z1:t�1) , (5)
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and for any u 2 W , a new expected loss is

EDT [Ez⇠D [G(w; z)]]� EDT [Ez⇠D [G(u; z)]]

s.t. G(w; z) = `(w; z) +
1

T

TX

t=1

C(w; z, ŷ1:t�1, z1:t�1) .

(6)

4 Endowment-induced OGD
In the sequential learning setting with a human cognitive
bias, the original OGD does not achieve a good experimental
result because of the existence of divestiture loss. Although
the divestiture loss appears only when the corresponding ex-
amples were correctly classified, the original OGD treats all
examples the same without referring to on-the-fly prediction
results. The original OGD cannot capture this skewness.

We devised the Endowment-induced Online Gradient De-
scent (E-OGD) to incorporate the notion of the endowment
effect into the original OGD. The key idea is to heavily
weight correct examples in order to absorb the skewness.

E-OGD divides all examples into two categories: 1) ŷt =
yt or 2) ŷt 6= yt. We see that the loss corresponding to
the former examples is bigger than that of the latter exam-
ples due to the divestiture loss. Therefore, correct examples
should be treated as being more important than wrong ones.
E-OGD first classifies each example into one of two types
it should belong to. After the type identification, E-OGD
updates parameters heavily with the trade-off parameter �
with respect to correctly classified examples. In summary,
the weight vector is updated as follows:

wt+1 = ⇧W (wt � ⌘tr`(wt; zt))

where ⌘t =

⇢
c(1 + �)/

p
t if ŷt = yt

c/
p
t if ŷt 6= yt

. (7)

The overall procedure of E-OGD is written in the supple-
mentary material. We note that this E-OGD can update pa-
rameter by using only the currently received datum. We
show that an appropriate step width setting makes the al-
gorithm adaptive to the endowment effect in the following
theoretical analysis.

4.1 Theoretical Analysis of E-OGD
Let us analyze the theoretical aspects of E-OGD. For simpli-
fying the following discussions, we introduce a new term:

rt(z) = 1 + �min

 
1,

t�1X

s=1

1z=zs1ys=ŷs

!
, (8)

and denote rt(zt) as rt and `(·; zt) as `t(·). We analyze the
upper regret bound and the upper bound of the expected loss
of E-OGD in this section. All proofs of theorems and lem-
mas in this section are written in the supplementary paper.
Furthermore, we introduce another choice of step widths and
its theoretical analysis in the supplementary paper.

First, we show relationship between a sequence of step
widths in E-OGD and the endowment effect. We set a se-
quence of step widths as ⌘t = c(1 + �)/

p
t if ŷt = yt and

⌘t = c/
p
t if ŷt 6= yt where c is a positive constant. In this

case, we can analyze the upper bound of regret of E-OGD
by the next theorem.
Theorem 3. Let w1, . . . ,wT+1 be derived according to E-
OGD’s update rule. Assume that for all wt, kwtk2  R
and kr`t(wt)k2  G are satisfied. If loss functions are
convex and we set a sequence of step widths ⌘1:T as denoted
above, the upper bound of regret is obtained by setting c =p
2R/G(1 + �) as follows:

Regret(T )  2

p
2RG(1 + �)

p
T . (9)

From this theorem, E-OGD is guaranteed to converge to
obtain the optimal average loss with respect to the online
learning setting with a human cognitive bias.

For stochastic learning setting, we assume that the data
is i.i.d. sampled from a distribution D. The final goal is to
minimize the sum of the expected loss and divestiture loss,
as described by formula (6). Lemma 1 reformulates the op-
timization problem into an easily analyzable form.
Lemma 1. The optimization problem in the stochastic
learning setting can be reformulated through rt(z).

EDT

"
Ez⇠D

"
1

T

TX

t=1

rt(z)`(w; z)

##
. (10)

Furthermore, it can be reformulated through a new distri-
bution DP and an appropriate constant value HDT condi-
tioned on z1:T as EDT [HDTEz⇠DP [`(w; z)]].

The following theorem is derived from Theorem 3 and
Lemma 1 in order to upper bound the expected loss with a
human cognitive bias (6).
Theorem 4. Assume that the conditions in Theorem 3 are
satisfied and there is an integer tp such that rt(z) = rtp(z)
for any t � tp. In this setting, the following formula is satis-
fied for any u 2 W .

EDT [Ez⇠DP [`( ¯w; z)]]� EDT [Ez⇠DP [`(u; z)]]


p
2RG(1 + �)

(

p
T � (tp + 1)/

p
T )/(2�

p
tp � 1/

p
T )

, (11)

where ¯

w =

PT
t=tp

wt/(T � tp + 1).

Lemma 1 derives that the left-hand side of the formula
(11) equals the original objective function (6). From this the-
oretical result, the average weight vector converges to the
optimal one that minimizes the sum of the expected loss and
the divestiture loss. If tp ⌧ T , the convergence speed is
O(1/

p
T ). And, when the number of data is finite, there is

some constant tp such that rt(z) = rtp(z) for any t � tp.

4.2 Importance-aware Update
When E-OGD receives a correctly classified example, the
weight vector is updated by 1 + � scaling. This update can
be viewed as an approximate update of the original OGD at
1+� times. An importance-aware update can be established
in order to make an exact 1 + � times update through an
one-time update (Karampatziakis and Langford 2011).
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Table 2: Dataset Specifications. T is the number of training
data. S is test data size. N is the number of features.

T S N
news20 15,000 4,996 1,335,191

rcv1 20,242 677,399 47,236
algebra 8,407,752 510,302 20,216,830

BtA 19,264,097 748,401 29,890,095
webspam-t 315,000 35,000 16,609,143

The original OGD and E-OGD do not hold the invari-
ance and safety properties. The invariance property guaran-
tees that the parameter update with an importance weight
h should be the same as the regular update that appears h
times in a row. The safety property guarantees that the mag-
nitude relationship between ŷ and y does not change by the
update using the received datum. When the endowment ef-
fect is strong (� is large), the plain E-OGD might overshoot
because the step width becomes large. The safety property
guarantees to prevent this overshooting. The importance-
aware update framework provides a closed-form update for-
mula for major convex loss functions.

5 Experiments
We conducted several experiments to test the performance of
E-OGD in the online learning framework with a human cog-
nitive bias. We used five large-scale data sets from the LIB-
SVM binary data collections3. The specifications of these
datasets are listed in Table 2. news20 and rcv1 are news
category classification tasks. algebra and BtA (Bridge to
Algebra) are KDD Cup 2010 datasets to predict whether stu-
dents correctly answer algebra problems. webspam-t is a
tri-gram webspam classification dataset used in the Pascal
Large Scale Learning Challenge. The original webspam-
t dataset was not split to two sets, therefore, we randomly
sample 90% data from the dataset and used them as a train-
ing set and remaining data as a test set.

We used these datasets to compare the performances of
OGD and E-OGD in a new stochastic learning setting. We
incur both expected loss and divestiture loss. To evaluate the
divestiture loss, we replaced some examples in the test data
with some training examples at a specific rate. The training
examples are randomly extracted from the training set. If
the algorithm correctly classified in the training phase, but it
misclassified the same example in the test phase, they incur
a divestiture loss. We conducted experiments by setting the
replacement rate of the test examples by training examples
as 5, 10, and 30%. We quantified the performance as

1

S

SX

s=1

`(w; zs) +
�

S

X

zp2P

`(w; zp) . (12)

The first term corresponds to the expected loss, and each da-
tum zs corresponds to one datum in the test set or a replaced
training example. S is the number of test data. The second
term corresponds to the divestiture loss, and each datum zp

3http://www.csie.ntu.edu.tw/⇠cjlin/libsvmtools/datasets/
binary.html

corresponds to the example regarding the divestiture loss. P
is an example set that satisfies two conditions: (1) the exam-
ple was extracted from the training dataset in exchange for
test examples; (2) the example was correctly classified when
the example appeared in the training phase. The cumulative
loss is defined as the sum of these two losses.

Let the weight vector spaces W be a N -dimensional Eu-
clidean space where N is the number of features. We used
the logistic loss as loss functions. Each algorithm learned
the weight vector from the training set through 1 iteration.
Learning rates are ⌘t = ⌘/

p
t. We varied ⌘ from 10

3 to
1.91⇥ 10

�3 with common ratio 1/2 to obtain the appropri-
ate step width for minimizing cumulative loss.

In addition to the normal setting, we performed several
experiments. We show a brief result here. First, we verified
that E-OGD outperformed OGD in most datasets when we
set the hinge-loss as a loss function. Next, we made the value
of � bigger and verified that E-OGD has maintained an ad-
vantage over OGD. These results indicate that the advantage
of E-OGD becomes more crucial as the importance of di-
vestiture loss becomes larger.

5.1 Experimental Results
Table 3 shows the experimental results when we apply OGD
and E-OGD to five datasets. These results indicate E-OGD
has a crucial advantage to make divestiture losses lower
in all settings, and this effect contributes to low cumula-
tive losses. As a result, E-OGD outperforms OGD on all
datasets. Figure 1 plots loss values in each 10,000 rounds
when we used BtA dataset to evaluate the performance.
These results denote that E-OGD has obtained significantly
lower divestiture losses than OGD during most rounds. Low
divestiture loss leads to low cumulative loss, and E-OGD has
constantly outperformed OGD with respect to cumulative
loss. The difference of expected losses between two algo-
rithms becomes smaller while the number of received data
increases. On the other hand, the difference of divestiture
losses between two algorithms becomes bigger. This result
means that E-OGD becomes superior to the normal OGD
with respect to the cumulative loss while the data increases.

Table 4 shows the results of importance-aware update
versions. These results indicate that the importance-aware
update improves the performance of E-OGD in most ex-
perimental settings. Moreover, E-OGD largely outperforms
OGD in terms of cumulative losses.

6 Related Work
Researchers have developed many online and stochastic
learning algorithms as a natural response to the desires of
large-scale learning systems (Shalev-Shwartz 2012). Many
algorithms pursue to minimize the regret upper bound or the
expected loss by using convex (surrogate) loss functions as
a major objective. Follow-The-Regularized Leader (FTRL)
(Shalev-Shwartz and Singer 2007) is a fundamental tem-
plate for online convex optimization. Theoretically speak-
ing, FTRL has desirable properties, including a tighter regret
bound. A number of cutting-edge algorithms have been de-
rived from FTRL; OGD is one of famous examples. FTRL
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Table 3: Experimental results compared to the conventional OGD: the expected loss, divestiture loss, and cumulative loss
(Iteration: 1). The lowest values in each replace rate r, loss type, and dataset are written in bold.

r = 0.05 r = 0.1 r = 0.3
Loss Type E-OGD OGD E-OGD OGD E-OGD OGD
Expected 5.10⇥ 10�2 5.31⇥ 10�2 5.67⇥ 10�2 5.84⇥ 10�2 9.18⇥ 10�2 9.32⇥ 10�2

news20 Divestiture 8.71⇥ 10�3 1.39⇥ 10�2 7.73⇥ 10�3 1.27⇥ 10�2 6.71⇥ 10�3 1.07⇥ 10�2

Cumulative 5.97⇥ 10�2 6.70⇥ 10�2 6.44⇥ 10�2 7.11⇥ 10�2 9.85⇥ 10�2 1.04⇥ 10�1

Expected 7.39⇥ 10�2 7.37⇥ 10�2 7.83⇥ 10�2 7.80⇥ 10�2 9.71⇥ 10�2 9.65⇥ 10�2

rcv1 Divestiture 1.10⇥ 10�2 1.84⇥ 10�2 1.04⇥ 10�2 1.74⇥ 10�2 8.04⇥ 10�3 1.35⇥ 10�2

Cumulative 8.49⇥ 10�2 9.21⇥ 10�2 8.87⇥ 10�2 9.54⇥ 10�2 1.05⇥ 10�1 1.10⇥ 10�1

Expected 3.31⇥ 10�1 3.06⇥ 10�1 3.30⇥ 10�1 3.06⇥ 10�1 3.26⇥ 10�1 3.03⇥ 10�1

algebra Divestiture 6.00⇥ 10�2 1.01⇥ 10�1 5.68⇥ 10�2 9.60⇥ 10�2 4.41⇥ 10�2 7.46⇥ 10�2

Cumulative 3.91⇥ 10�1 4.08⇥ 10�1 3.87⇥ 10�1 4.02⇥ 10�1 3.70⇥ 10�1 3.78⇥ 10�1

Expected 3.29⇥ 10�1 3.11⇥ 10�1 3.27⇥ 10�1 3.10⇥ 10�1 3.18⇥ 10�1 3.03⇥ 10�1

BtA Divestiture 7.64⇥ 10�2 1.17⇥ 10�1 7.24⇥ 10�2 1.11⇥ 10�1 5.63⇥ 10�2 8.62⇥ 10�2

Cumulative 4.05⇥ 10�1 4.28⇥ 10�1 3.99⇥ 10�1 4.21⇥ 10�1 3.74⇥ 10�1 3.90⇥ 10�1

Expected 3.45⇥ 10�2 3.51⇥ 10�2 3.49⇥ 10�2 3.53⇥ 10�2 3.75⇥ 10�2 3.76⇥ 10�2

webspam-t Divestiture 8.11⇥ 10�3 1.09⇥ 10�2 7.72⇥ 10�3 1.04⇥ 10�2 5.63⇥ 10�3 7.73⇥ 10�3

Cumulative 4.29⇥ 10�2 4.60⇥ 10�2 4.26⇥ 10�2 4.57⇥ 10�2 4.32⇥ 10�2 4.54⇥ 10�2

Table 4: Experimental results among importance-aware update family: the expected loss, divestiture loss, and cumulative loss
(Iteration: 1). The lowest value in each replace rate r, loss type, and dataset are written in bold.

r = 0.05 r = 0.1 r = 0.3
Loss Type E-OGD OGD E-OGD OGD E-OGD OGD
Expected 3.11⇥ 10�2 3.85⇥ 10�2 3.40⇥ 10�2 4.14⇥ 10�2 5.20⇥ 10�2 5.86⇥ 10�2

news20 Divestiture 1.37⇥ 10�2 2.20⇥ 10�2 1.31⇥ 10�2 2.08⇥ 10�2 9.84⇥ 10�3 1.59⇥ 10�2

Cumulative 4.48⇥ 10�2 6.05⇥ 10�2 4.70⇥ 10�2 6.22⇥ 10�2 6.18⇥ 10�2 7.46⇥ 10�2

Expected 3.53⇥ 10�2 3.80⇥ 10�2 3.95⇥ 10�2 4.18⇥ 10�2 5.69⇥ 10�2 5.79⇥ 10�2

rcv1 Divestiture 1.25⇥ 10�2 1.78⇥ 10�2 1.18⇥ 10�2 1.68⇥ 10�2 9.10⇥ 10�3 1.30⇥ 10�2

Cumulative 4.79⇥ 10�2 5.58⇥ 10�2 5.13⇥ 10�2 5.87⇥ 10�2 6.60⇥ 10�2 7.09⇥ 10�2

Expected 3.35⇥ 10�1 3.13⇥ 10�1 3.34⇥ 10�1 3.13⇥ 10�1 3.30⇥ 10�1 3.09⇥ 10�1

algebra Divestiture 5.89⇥ 10�2 1.02⇥ 10�1 5.58⇥ 10�2 9.68⇥ 10�2 4.33⇥ 10�2 7.52⇥ 10�2

Cumulative 3.94⇥ 10�1 4.16⇥ 10�1 3.90⇥ 10�1 4.09⇥ 10�1 3.73⇥ 10�1 3.85⇥ 10�1

Expected 3.29⇥ 10�1 3.11⇥ 10�1 3.27⇥ 10�1 3.10⇥ 10�1 3.18⇥ 10�1 3.03⇥ 10�1

BtA Divestiture 7.64⇥ 10�2 1.17⇥ 10�1 7.24⇥ 10�2 1.11⇥ 10�1 5.62⇥ 10�2 8.61⇥ 10�2

Cumulative 4.05⇥ 10�1 4.28⇥ 10�1 3.99⇥ 10�1 4.21⇥ 10�1 3.74⇥ 10�1 3.89⇥ 10�1

Expected 2.62⇥ 10�2 2.75⇥ 10�2 2.61⇥ 10�2 2.74⇥ 10�2 2.79⇥ 10�2 2.90⇥ 10�2

webspam-t Divestiture 8.29⇥ 10�3 1.16⇥ 10�2 7.94⇥ 10�3 1.11⇥ 10�2 5.87⇥ 10�3 8.30⇥ 10�3

Cumulative 3.45⇥ 10�2 3.91⇥ 10�2 3.40⇥ 10�2 3.85⇥ 10�2 3.38⇥ 10�2 3.73⇥ 10�2

has been extended to enable it to deal with other problem
structures besides online and stochastic learning frameworks
(Duchi et al. 2010; Xiao 2010; McMahan 2011). These
frameworks enable sparsity-inducing regularization to be in-
tegrated into FTRL while preserving the advantages of se-
quential learning. They derived the sublinear regret upper
bound and the convergence property to the optimal point in
the stochastic learning setting. The extension to regularized
objectives is one of our future research directions.

Our framework is similar to the cost-sensitive learning
framework wherein the loss of false positives is different
from the loss of false negatives. Langford and Beygelzimer
(2005) provides a reduction technique that works for clas-
sification ranging from cost-sensitive to simple binary and
Wang, Zhao, and Hoi (2012) proposes a cost-sensitive on-
line classification framework. In our framework, the cost of
each example dynamically changes depending on the history
of prediction results. Therefore, the problem becomes more

complicated than these cost-sensitive frameworks.

7 Conclusion

We established an online and stochastic learning framework
with a human cognitive bias by incorporating the notion of
the endowment effect. In this framework, algorithms need
to focus on minimizing not only the original loss but also
the divestiture loss. We developed new algorithms applica-
ble to this framework; Endowment-induced Online Gradient
Descent (E-OGD). We theoretically showed that E-OGD is
guaranteed to have some desirable properties for both online
and stochastic learning frameworks with a human cognitive
bias. Finally, we experimentally showed that our derived al-
gorithms are effective at a large number of tasks involving
human engagements in this framework.
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Figure 1: Experimental results on BtA dataset in each 1,000
rounds: the expected loss, divestiture loss, and cumulative
loss. The x-axis is the number of rounds. The y-axis denotes
the value of each loss. The solid curves are the results ob-
tained by E-OGD. The dotted curves are the results by OGD.
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