
Power Iterated Color Refinement

Kristian Kersting
TU Dortmund University
{fn.ln}@cs.tu-dortmund.de

Martin Mladenov
TU Dortmund University
{fn.ln}@cs.tu-dortmund.de

Roman Garnett
University of Bonn

garnett@uni-bonn.de

Martin Grohe
RWTH Aachen

grohe@informatik.rwth-aachen.de

Abstract

Color refinement is a basic algorithmic routine for graph
isomorphism testing and has recently been used for
computing graph kernels as well as for lifting belief
propagation and linear programming. So far, color re-
finement has been treated as a combinatorial problem.
Instead, we treat it as a nonlinear continuous optimiza-
tion problem and prove that it implements a conditional
gradient optimizer that can be turned into graph cluster-
ing approaches using hashing and truncated power iter-
ations. This shows that color refinement is easy to un-
derstand in terms of random walks, easy to implement
(matrix-matrix/vector multiplications) and readily par-
allelizable. We support our theoretical results with ex-
periments on real-world graphs with millions of edges.

Introduction
The question of efficiently determining whether two given
graphs are isomorphic is a long-standing open problem in
mathematics and AI. It has attracted considerable attention
and effort, due both to its practical importance and its rela-
tionship to questions of computational complexity. The ex-
act complexity status of the graph isomorphism (GI) prob-
lem remains unknown. It is known to be in the class NP,
however neither an NP-completeness proof or a polynomial
time solution have been found. The graph automorphism
(GA) problem, in which a graph is mapped onto itself while
preserving its edge-vertex connectivity, is at least as diffi-
cult, since two graphs G and H are isomorphic if and only
if the disconnected graph formed by the disjoint union of G
andH has an automorphism that swaps the two components.

Color refinement (CR, aka “naive vertex classification”,
“Weisfeiler-Lehman” or “color passing”) is a basic algo-
rithmic routine for graph isomorphism testing, appearing
as a subroutine in almost all practical isomorphism solvers.
Color Refinement iteratively partitions, or colors, the ver-
tices of a graph according to an iterated degree sequence:

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

initially, all vertices get the same color, and then in each
round of the iteration two vertices that so far have the same
color get different colors if for some color c they have a dif-
ferent number of neighbors of color c. The iteration stops
if in some step the partition remains unchanged. The re-
sulting partition is known as the coarsest equitable parti-
tion (CEP) of the graph. When applied in the context of
graph isomorphism testing, the goal of CR is to partition the
vertices of a graph as finely as possible, ideally one would
like to compute the partition of the vertices into the orbits
of the automorphism group of the graph. This is a sensi-
ble idea since (Tinhofer 1991), (Ramana, Scheinerman, and
Ullman 1994) and (Godsil 1997) established a tight corre-
spondence between CR and a relaxed formulation of GA, the
fractional graph automorphisms (FGA) problem: find a dou-
bly stochastic matrix which commutes with the adjacency
matrix of the graph. When applied to AI tasks, the goal of
CR is to compress models in order to speed up e.g. proba-
bilistic inference (Ahmadi et al. 2013) and linear program-
ming (Mladenov, Ahmadi, and Kersting 2012) and to extract
features for graph kernels (Shervashidze et al. 2011).

Although Ramana et al. (1994) have shown that the FGA
problem can be phrased as a linear program (LP), CR has
been exclusively investigated through the lens of combinato-
rial graph theory only. On first sight this might be surprising,
since the best general-purpose solvers in theory and practice
for linear programming are based on continuous optimiza-
tion rather than the combinatorial approach. However, solv-
ing Ramana et al.’s LP using off-the-shelf LP solvers does
not mimic CR — they differ in the solution as well as the
path to the solution — and the graph theory view already
led to quasi-linear O((m + n) log n) algorithms for finding
FGAs of (weighted) graphs with n vertices andm edges due
to asynchronous color updates, see e.g. (Berkholz, Bonsma,
and Grohe 2013; Grohe et al. 2013) for more details. So,
is there a fundamental gap between the combinatorial and
continuous views on CR and FGAs?

Here we show that this is not the case. We present the first
conditional gradient (CG) approach for computing FGAs

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1904

and prove that it essentially mimics CR as presented above.
Then we show that the link to continuous optimization can
led to novel characterizations for computing FGAs. We
prove that FGAs can be computed using iterative graph clus-
tering approaches using hashing and truncated power it-
erations. This creates multiple benefits. It connects CR to
main stream machine learning. It shows that CR is easy to
understand in terms of random walks with restarts by ex-
tending (Boldi, Lonati, and Vigna 2006)’s result that nodes
with different PageRank values have different colors (if the
restart are uniform per color class) to a complete characteri-
zation of CEPs. This also connects CR to random walks for
graph matching (Gori, Maggini, and Sarti 2005) and cluster-
ing (Lin and Cohen 2010). Finally and probably most im-
portantly, it shows that CR is easy to implement and readily
scalable based on (sparse) matrix-matrix/vector multiplica-
tion, either by parallelization or just on a single PC or laptop
using e.g. GraphChi (Kyrola, Blelloch, and Guestrin 2012).

We proceed as follows. After reviewing (F)GAs, we show
how to use CGs for computing FGAs and develop the hash-
ing and power iterated versions. Before concluding, we sup-
port our theoretical results with experimental evidence on
real-world graphs with millions of edges. All proofs can be
found in the appendix.

Undirected Graphs and Automorphisms
A graph G = (V,E) of size n is defined by a finite set of
vertices V = {1, . . . , n} and a set of edges E ⊂ V × V .
We consider only undirected graphs with no self-loop, i.e.,
such that if (i, j) ∈ E then (j, i) ∈ E and (i, i) 6∈ E for
any vertices i, j ∈ V . Each such graph can be equivalently
represented by a symmetric adjacency matrix A of size V ×
V , where Aij = 1 if there is an edge between vertices i and
j, and 0 otherwise. Slightly more general, a weighted graph
is defined by associating nonnegative weigths wij ∈ R≥0 to
all edges of a graph G. Weighted graphs can be represented
by real-valued adjacency matrices A with Aij = wij .

Given a graph G, the problem of computing automor-
phisms of G consists in finding a correspondence between
vertices of G, which aligns G with itself. That is there is a
permutation matrix P of the n vertices with Pij = 1 if the
i-th vertex of G is matched to the j-th vertex of G, and 0
otherwise. After applying the permutation defined by P to
the vertices of G, we obtain a new graph, which we denote
by G′ = P (G). The adjacency matrix A′ of the permuted
graph G′ is simply obtained from A by A′ = PAPT . Each
such permutation matrix P encodes a symmetry in the graph
G; the identity matrix I encodes the trivial symmetry.

Conditional Gradients for Graph Matching
Computing automorphisms can be approached using con-
tinuous optimization formulations for graph isomorphisms,
see e.g. (Zaslavskiy, Bach, and Vert 2009; Quadrianto et al.
2010) and references in there. In order to assess whether
a permutation P defines a good ‘matching’ between the
vertices of G, an objective function must be defined. Al-
though other choices are possible, we start off by measur-
ing the discrepancy between the graphs by the number of

edges (in the case of weighted graphs, it will be the total
weight of edges), which are present in one graph and not in
the other. In terms of adjacency matrices, this can be com-
puted using the Frobenius norm, S(P) := ||A − A′||2F =
||A − PAPT ||2F , where the Frobenius matrix norm is de-
fined by ||A||2F = tr(ATA) =

∑
i,j |Aij |2 . Since permu-

tation matrices are orthogonal matrices (i.e., PPT = I and
PTP = I), multiplying a matrix by P does not change its
l1 resp. Frobenius norm, hence, one can rewrite S(P) =
||(A − PAPT)P ||2F = ||AP − PA||2F . Automorphisms
are then the minima P ∗ of S(P) over the set P of permuta-
tion matrices: P ∗ = arg minP∈P S(P) . Some elements of
the involved sums, however, do not depend on the permua-
tion matrix P . To see this, let B = AP and C = APT and
rewrite S(P) =

∑
ij(Bij − Cji)

2 =
∑

ij B
2
ij +

∑
ij C

2
ji −

2
∑

ij BijCji . The first two sums do not depend on P since
the sums are independent of the order we sum the squared
elements together. Hence, an equivalent formulation of au-
tomorphisms — meaning that they have the same optimal
solutions — is P ∗ = arg maxP∈P F (P) := tr(APAPT) .
That is, we maximize F (P) over the set P of permuation
matrices. In other words we aim at maximizing the number
of edges, which are preserved by the permutation.

As mentioned already, the complexity of solving this
problem when not considering the trivial solution I is un-
known and might be intractable. Hence we relax it by ex-
panding the function F (P) on the set of doubly stochastic
matrices D, i.e., D := {D ∈ Rn×n where D1 = 1 and
1TD = 1T }, the so-called Birkhoff polytope:

(FGA) D∗ = arg maxD∈D F (D) . (1)

This fractional graph automorphism (FGA) problem is a
quadratic program with linear equality and boundary con-
straints. It can be solved locally1 in polynomial time, e.g.,
using the Frank-Wolfe algorithm, which is a so-called con-
ditional gradient (CG) approach, see e.g. (Jaggi 2013) for
more details. CGs 2 are particularly suited to optimization
over doubly stochastic matrices. The idea is to sequentially
maximize linear approximations of F (D). We start with an
initial point D(0) ∈ D. At the k-th iteration, we replace F
with its first order Taylor series expansion T (k)(H) about
the point D(k),

T (k)(H) := F (D(k)) + 〈∇F (D(k)), H −D(k)〉 (2)

where∇F (D(k)) is the gradient of F at the pointD(k). This
lower bound is concave and convex (it is a line) and it can
be maximized effectively over the convex domain D. In our
case, the gradient is∇F (D(k)) = 2AD(k)A . Since D(k) is
fixed at this stage, the maximization is equivalent to solving

H(k) = maxH∈D〈∇F (D(k)), H〉 . (3)

This is a linear program (LP), and since D is constrained in
a unimodular fashion, the set of feasible solutions has only
integral vertices, namely admissible permutation matrices.

1F (D) is convex in D, see e.g. (Quadrianto et al. 2010).
2It coincides with DC programming and CCCP in our case.

1905

Algorithm 1: CGCR(A): CG for Color Refinement

1 Set D(0) = 1
n1 ∈ D, i.e., the flat partition matrix;

2 Set k := 1 ;
3 repeat
4 B := CHARACTMAT

(
∇F (D(k))

)
;

5 S := diag(BT1) /* diagonal mat. of class sizes */;
6 Update D(k+1) := BS−1BT ;
7 Set k := k + 1;

until F (D(k)) ≤ F (D(k−1));
8 return D(k)

Thus, the LP is actually a linear assignment problem (LAP)
that can be solved efficiently using freely available solvers
in O(N3), see e.g. (Jonker and Volgenant 1987). Moreover,
since D is convex the line (1 − λ)D(k) + λH(k) between
D(k) and H(k) is in D, and since the bound is concave the
maximum along the line is attained at λ = 1. One can al-
ways select H(k) as next point D(k+1) in order to maximize
the lower bound. These operations are iterated until some
stopping criterion is met such as F (D(k)) is not improving
anymore These steps in principle comprise the CG approach
to (FGA). However, it has two drawbacks:

• It does not scale to large graphs due to the cubic running
time of LAP solvers.

• It finds integral solutions, typically the trivial one, and
typically misses the coarsest equitable partitions (CEP).

The reason for the latter drawback is that CG computes it-
eratively permutation and not doubly stochastic matrices. In
turn, it cannot employ the ”more general than” relation that
actually exists among all (even doubly stochastic) solutions:
a solution D is more general than — a condensation of —
another solution D′ if D′ij = 0 implies Dij = 0 for all
nodes i and j. Consequently, CG will miss the CEP — the
most general solution — found by CR.

In the following, we will show how to adapt CG so that it
is guaranteed to converge to the CEP. The approach is based
on a novel symmetry-regularized solver for the induced lin-
ear subproblems of the CG approach. Actually, we show that
the resulting CG approach coincides with CR.

Conditional Gradients for Color Refinement
Reconsider the linear approximation of F (D) and the cor-
responding linear program for selecting the hindsight direc-
tion (3). The main idea underlying our approach is to exploit
symmetries already here and, in turn, to favor flat doubly
stochastic matrices as solutions.

Intuitively, if two vertices of the graph G have identical
subgradients, i.e., the ith and jth rows of ∇F (D(k)) are
identical ∇iF (D(k)) = ∇jF (D(k)) both vertices are in-
terchangeable. So, whenever we can ‘match’ vertex i with
vertex j, we could also have ‘matched’ vertex j with vertex
i. Consequently, instead of solving the original LAP, we can
also cluster together the vertices with identical subgradients

Algorithm 2: COLORS(M)

1 Let U ∈ Rc×n be the system of representatives of the
rows of M ;

2 return the index vector v s.t. Mi• = Uv(i)• for the
rows

Algorithm 3: CHARACTMAT(M)

1 v := COLORS(M);
2 Initialize the characteristic matrix
B = 0 ∈ Rn×max(c);

3 for i := 1, 2, . . . , n do
4 Biv(i) := 1;
5 return B

and solve a LAP of reduced dimension. Let B ∈ {0, 1}n×c
encode the partition induced by∇F (D(k)) over the vertices

Bij =

{
1 ith vertex is in jth cluster of∇F (D(k)),

0 otherwise
(4)

and S ∈ Nc×c the diagonal matrix with Sii being the num-
ber of vertices in color class i, where in analogy to CR we
call the clusters of vertices with identical subgradients color
classes. Now one solves the LP of reduced dimensionality,
namely h(k) = arg maxh∈d〈BT∇F (D(k))S−1B, h〉 where
d is the Birkhoff polytope of reduced dimension. The solu-
tion h(k) of reduced dimensionality can be expanded to a
full solution by considering H(k) = S−1Bh(k)BT .

Indeed, this is akin to lifted linear programming (Mlade-
nov, Ahmadi, and Kersting 2012), however, it turns out that
we do not have to evoke an LP solver at all for solving the
reduced LAP if we are willing to follow ascent instead of
steepest direction. CGCR in Alg. 1 is doing this. We start
with the flat partition matrix, line 1, use the doubly stochas-
tic matrixH induced by the row clustering of the gradient as
update, line 4, and iterate. This computes the CEP in a linear
number of iterations as the next two Theorems show.
Theorem 1. CGCR converges to a local maximum of F .

Intuitively, H restricts the length of a line search between
D(k) and I . We can go at most to H and not all the way
‘down’ to I . Thus, clustering the gradient matrix according
to its row-symmetries acts as a regularizer. This symmetry-
regularized CG converges to the CEP.
Theorem 2. CGCR converges in a linear number of itera-
tions to the coarsest equitable partition (CEP). It is sufficient
to cluster AB(k) instead of AD(k)A yielding Alg. 4.

Theorem 2 establishes a fundamental link between com-
binatorial and nonlinear optimization views on CR. Its proof
shows that CR actually maximizes a lower bound on F using
a conditional gradient (CG) approach. However, whereas a
standard CG fails to find the CEP, a symmetry regularization
of its induced linear subproblems forces it to find the CEP.

1906

Algorithm 4: CGCR(A): CG for Color Refinement

1 B(0) := 1, i.e., the all 1 column vector;
2 m(0) := 1 (the current maximal color) and k := 1 ;
3 repeat
4 B(k+1) := CHARACTMAT(AB(k)) ;
5 Set m(k+1) to the number of columns of B(k+1);
6 k := k + 1;

until m(k) = m(k−1);
7 return Bk

And, CG directly applies to weighted graphs where other
approaches such as Saucy, see e.g. (Katebi, Sakallah, and
Markov 2012) and references in there, do not apply.

Although conceptually simple and akin to power itera-
tion methods well known from web mining, naively carrying
CGCR out will not scale (already for unweighted graphs).
Although sparse matrix operations allow one to compute
AB(k) in O(m) flops (where m is the number of edges), a
naive computation of the characteristic matrixB is quadratic
in the number of nodes n. We scan e.g. each column to com-
pute the index vectors of identical elements in O(m(k)n).
Since now the entries are integers, we can apply radix sort
to compute the index vectors of identical rows inO(m(k)n).
In the worst case this is O(n2) since m(k) might be equal
to n. Overall, this yields a running time that is cubic: we
have n refinement rounds in the worst-case, and each round
takes time O(m + n2). This is far too expensive for scal-
ing to unweighted graphs with millions of nodes and edges.
In contrast, the naive implementation of CR is known to be
O((n + m)n), i.e., quadratic. So, can we close the gap for
unweighted graphs? The answer is yes when using hashing,
which can also realize the best known running time for CR,
O((n+m) log n), using asynchronous color updates.

Hashed and Power Iterated Color Refinement
Hashing is known to help to solve continuous optimiza-
tion problems more efficiently, see e.g. (Shi et al. 2009).
It turns out by using a perfect hash we can directly work
with the current color vector c(k) instead of B(k) using
h := c(k) + A log

(
π(c(k))

)
instead of AB(k). Here c(k) is

the vector with B
ic

(k)
i

= 1, and π(j) denotes the j-th prime.

Theorem 3. For two nodes i and j in a graph G, hi = hj

if and only if c(k)i = c
(k)
j and δ

(
[AB(k)]i•, [AB

(k)]j•
)

= 1

where δ is the Kronecker delta function and [·]i• the ith row.

Thus, for unweighted graphs CGCR reduces to iteratively
computing the perfect hash values of the colors of all nodes.
This is realized in HCGCR in Alg. 5. Next to theO(n+m)
flops when using sparse matrices per iteration, the main ad-
ditional costs is to store a precomputed table of sizeO(n) of
the logs of the first n primes. Since there are more than a bil-
lion primes known, see e.g. http://www.bigprimes.
net, this scales well to graphs with billions of nodes. We
also note that one could realizes asynchronous color up-

Algorithm 5: HCGCR(A): Hashed CGCR

1 Let π an array where π(i) equals to the ith prime;
2 c(0) := 1, i.e., the all 1 column vector;
3 m(0) := 1 (the maximal color) and k := 1 ;
4 repeat
5 c(k+1) := COLORS

(
c(k) +A log(π(c(k)))

)
;

6 m(k+1) = max(c(k+1));
7 k := k + 1;

until m(k) = m(k−1);
8 return c(k)

Algorithm 6: PICGCR(A): Power Iterated CGCR

1 B(0) = 1;
2 m(0) := 1 (the current maximal color) and k := 1 ;
3 repeat
4 B(k+1) := CHARACTMAT

(
Π(A,α,B(k))

)
;

5 Set m(k+1) to the number of columns of B(k+1);
6 k := k + 1;

until m(k) = m(k−1);
7 return B(k)

dates. This would lead to stochastic CG approaches akin to
stochastic gradients and the quasi-linear CR developed by
Berkholz et al. (2013). We are not going into details.

We have just closed the gap between the combinatorial
and continuous optimization views on CR for unweighted
graphs. Now, we will illustrate the benefit of this by de-
veloping power iterated CR connecting fractional automor-
phisms to web mining. Actually, HCGCR is already akin to
the well-known power iteration (PI) method for computing
eigenvalues. The following Theorem shows that the connec-
tion of CR to eigenvalue problems is deeper.

Theorem 4. The CEP can be computed iteratively by clus-
tering PI vectors personalized by the current condensation,
see Alg. 6. This converges in a linear number of iterations.

Thus, CEPs of unweighted graphs can be found by re-
peatedly clustering globally the steady-state distributions
of “color preferred’ random walks. This extends Boldi et
al.’s (2006) results from computing condensations of B∗ to
computing B∗ itself and connects fractional automorphisms
to recursive and local spectral clustering approaches, see e.g.
(Kannan, Vempala, and Vetta 2004; Dasgupta et al. 2006;
Mahoney, Orecchia, and Vishnoi 2012). Since Theorem 4
holds for any restart value α, we can trade off the length l of
the random walks with the number of CG iterations k. It is
known that PI’s rate of convergence is the rate at which αl

goes to zero. A rough estimate of the number of PI iterations
l needed to reach a tolerance level ε is τ = log(ε)/ log(α).
However, color classes also change a lot in early CG itera-
tions. To balance both, we propose to set l to min(2k, τ) in
the k-th CG iteration since 2k is our current best estimate of
the diameter of the graph (length of longest shortest path).

1907

Avg. (5 reruns) time in sec. / median # CG iteration
Name / Description # nodes # edges Hashing PIfix PIflex S C
chain100001: Chain graph 100001 100, 000 699.62 50002 420.18 •1252 •136.59 2892 < 0.01 49%
grid1000: Grid graph 1, 000, 000 1, 998, 000 96.26 501 77.44 •21 •23.87 41 0.43 13%
email-EuAll: Email comm. netw., EU res. 265, 214 365, 030 •0.32 8 6.09 •5 0.51 •5 0.05 81%
soc-Epinions1: Who-trusts-whom netw. 75, 888 405, 740 •0.08 5 1.60 5 0.14 •4 0.02 30%
web-Google: Web graph from Google 875, 713 4, 322, 051 •5.61 17 163.49 •11 14.67 •11 1.03 40%
flickr: 2005 crawl of flickr.com by D. Gleich 820, 878 9, 837, 214 •1.32 •5 59.70 6 3.47 •5 0.61 40%
lung2: Transp. in lung, Uni. Aukland 109, 460 492, 564 4.84 227 3.39 •10 •1.48 26 0.06 59%
xenon2: Complex zeolite, sodalite crystals 157, 464 1, 933, 344 0.96 35 3.81 •5 •0.78 10 0.16 59%

Total • 4 1 0 6 4 4

Table 1: Scaling results on graphs generated from http://www.cise.ufl.edu/research/sparse/matrices/index.html (matrices were
turned into graphs using A := A + AT and thresholding |A| > 0). C is the compression ratio (ratio of # of color classes and
n). • denotes best value in a row (among proposed approaches) and < 0.01 smaller than 0.01. CGCR ran out of memory.

Empirical Illustration
To investigate whether CR based on matrix operations
is practical, we implemented naive versions of CGCR,
HCGCR (denoted as Hashing and available at https://
github.com/rmgarnett/fast_wl/) and PICGCR
in Matlab on a single Linux machine(4 × 3.4 GHz cores,
32 GB main memory). The convergence threshold ε for PI
was set to 10−8 and the damping factor α to 0.95. The max-
imum number of PI iterations was set to 500 (denoted as
PIfix) resp. to min(2k, τ) (PIflex). To reduce running time,
we randomly selected half of the color class and the cur-
rently largest color class, and computed their union as pref-
erence vector3; the clustering was done with the resulting PI
vector and the color vector resulting from one HCGCR iter-
ation to ensures convergence. We measured the running time
and the number of iterations. The results in Tab. 1 show that
CEPs (they were always found) are readily computable us-
ing sparse matrix operations.The CG approaches can scale
to graphs with millions of nodes. Hashing seems to be best
on real world graphs with small diameters such as social net-
works; it is fastest per CG iteration and there is not much we
can gain from PI. For graphs with large diameters such a
chains and grids (as they often appear in AI tasks) the PI
methods are faster since hashing may take many CG itera-
tions. PIfix takes the fewest CG iterations but each iteration
may take quite some time. PIflex balances both the best. To
get references for the running times, we compared to Saucy
S4, see also Tab. 1, and to the combinatorial CR implemen-
tation WL in Matlab of (Shervashidze and Borgwardt 2009;
Shervashidze et al. 2011) used for fast Weisfeiler-Lehman
graph kernels, see Tab. 2. The results show that S is faster
for unweighted graphs since it can rely on integer arith-
metic whereas Matlab only supports double sparse matrices.
However, S cannot be used for Shervashidze et al.’s graph
kernels due to its asynchronous color updates and cannot
deal with weighted graphs. Compared to WL, (sparse) ma-
trix approaches can be faster and deal with weighted graphs.
In summary, this shows that recent AI techniques (Ah-

3That is we solve the subproblem exactly only with probability
p resulting in 1/p more CG iterations (Jaggi 2013). To avoid this,
we coupled this approximate solution with the hashing solution.

4http://vlsicad.eecs.umich.edu/BK/SAUCY/.
We modified the C/C++ code s.t. it stops after computing the CEP.

Name / # graphs / avg. # nodes Hashing WL CGCR S
MUTAG / 188 / 17.93 •0.23 0.53 0.6 −
ENZYMES / 600 / 29.87 •0.64 3.46 2.08 −
NCI1 / 111 / 29.87 •5.25 16.07 93.81 −
Weighted MUTAG − − •0.40 −
Weighted ENZYMES − − •1.82 −
Weighted NCI1 − − •111.53 −

Table 2: Running times (sec.) for computing CEPs of graph
sets taking from (Shervashidze et al. 2011) for Weisfeiler-
Lehman graph kernels. − denotes not applicable. Weighted
X denotes row normalized (X + 0.0001).

madi et al. 2013; Mladenov, Ahmadi, and Kersting 2012;
Shervashidze et al. 2011) based on WL can efficiently be re-
alized using (sparse) matrix-matrix/vector multiplications.

Conclusions
We described novel and simple methods for color refine-
ment (CR), a basic algorithmic routine for graph isomor-
phism, fast graph kernels as well as lifted belief propaga-
tion reps. linear programming. The methods are easy to un-
derstand and implement using (sparse) matrix-matrix/vector
multiplications, readily parallelizable, and efficient and scal-
able in terms of time and space. Moreover, they open up
many interesting doors. Using disk-based systems such as
GraphChi (Kyrola, Blelloch, and Guestrin 2012) the frac-
tional automorphisms of massive graphs with billion of
edges are readily computable on just a single PC or laptop.
The results also suggest novel graph clustering and kernel
approaches based on iterative PI vectors where additionally
the lower number of CG iterations is promising. They may
also lead to novel notions of fractional automorphisms im-
posing e.g. norm instead of rank constraints.

Acknowledgments: The authors would like to thank the
anonymous reviewers for their feedback. This work grew out
of the DFG Collaborative Research Center SFB 876 and dis-
cussions with Petra Mutzel and Christian Sohler, and was
partly funded by the DFG, KE 1686/2-1 and GA 1615/1-1.

Appendix
Proof of Theorem 1: Reconsider the Taylor series ap-
proximation (2) used in the kth iteration of CG at the

1908

point H = BS−1BT where B denotes the partition
induced by ∇F (D(k)) as computed in (4). By construc-
tion, H is a doubly stochastic matrix. To see this note
that BT1 is the columns vector of the sizes of color
classes. So, S−1BT1 = 1 and hence BS−1BT1 = 1.
Now, 1TBS−1BT = 1T follows from the symme-
try of H , i.e., H = HT . We are now going to prove
that 〈∇F (D(k)), H〉 = 〈∇F (D(k)), I〉. Due to the
Birkhoff theorem , the matrix H is a convex combina-
tion H =

∑
i wiPi of permutation matrices Pi. Thus

〈∇F (D(k)), H〉 =
∑

i wi〈∇F (D(k)), Pi〉 . For each Pi

its inverse PT
i is among the Pis, since if we can exchange

row i by row j, then we could also have exchanged row j
by row i within the LAP. Thus,

∑
i wi〈∇F (D(k)), Pi〉 =∑

i wi〈∇F (D(k)), PT
i 〉 . It holds 〈∇F (D(k)), PT

i 〉 =

tr(∇TF (D(k))PT
i) = tr((Pi∇F (D(k)))T) . By construc-

tion of B we know Pi∇F (D(k)) = ∇F (D(k)). Hence
the last equation simplifies to tr((Pi∇F (D(k)))T) =
tr(∇TF (D(k))) = 〈∇F (D(k)), I〉 . Here, we have
employed the invariance of the trace operator un-
der cyclic permutations and transposition. Conse-
quently, 〈∇F (D(k)), H〉 =

∑
i wi〈∇F (D(k)), I〉

= 〈∇F (D(k)), I〉
∑

i wi = 〈∇F (D(k)), I〉 . In other
words, plagging this result into (2) at point H ,we get

Tk(H) = Tk(I) . (5)

Intuitively, although H is not identical to I , it behaves like
I w.r.t. the lower bound. Using (5), we now show that H −
D(k) is an ascent direction. The convexity of F implies that
a necessary condition for a local maximum is the inequality
tk(D) := 〈∇F (D(k)), D − D(k)〉 ≥ 0 for all D ∈ D.
Since D is convex, the line joining H and D(k) is contained
in D and so the vector H − D(k) is a feasible direction.
Moreover, due to (5), tk(H) = tk(I) ≥ 〈∇F (D(k)), D(k)−
D(k)〉 = 0 . Now, either tk(H) > 0 or tk(H) = 0. In
the former case, H − D(k) is an ascent direction, and we
can improve the objective value in this direction. So assume
tk(H) = 0. Then tk(I) = 0 since tk(H) = tk(I), and we
get the same directions at pointD(k) as at the trivial solution
I . Thus tk(H) ≥ tk(D) = 〈∇F (D(k)), D −D(k)〉 ∀D ∈
D , and so D(k) is a local maximum and CGCR terminates.

Proof of Theorem 2: Reconsider line 4 of CGCR in
Alg. 1 where we cluster vertices together that have identi-
cal rows in the gradient matrix. Two nodes i and j are in the
same color class iff δTijAD

(k)A = 01×n where δij = (ei −
ej), ei denotes the ith unit column vector, and 01×n is a row
vector of n zeros. Since AD(k)A is symmetric, right multi-
plication with δji yields δTijAD

(k)Aδji = 0 . Now, recall
that D(k) = BS−1BT = XXT with X = BS−1/2. Plug-
ging this into the last equation yields δTijAX(XA)T δji =

0 . Noting that δji = −δij this simplifies to −Y Y T = 0
with Y = δTijAX . Hence Y = 01×c since AX is non-
negative. Unfolding Y this means δTijABS

−1/2 = 01×c .

Right multiplication by S1/2 yields δTijAB = 01×c . This
leads us to modify our original algorithm as summarized in

Alg. 4: instead of AD(k)A we use AB(k) for clustering in
each iteration, saving us from having to construct and store
the doubly stochastic matrix D(k) in each iteration, while
providing us with the same exact results5. Moreover, instead
of using F (D(k)) to check for optimality, we can simply
check whether new colors have been created. If not, we have
converged. That is, we do not have to compute D(k). This
converges in at most a linear number of iterations since in
each step we either create a new color or we stop; overall,
however, there can only be at most n colors. Finally, CGCR
fulfills conditions (1.1) and (1.2) of (Grohe et al. 2013) and
hence converges to the coarsest equitable partition.

Proof of Theorem 3: We have A log
(
π(c(k))

)
i

=∑n
l=1Ail log

(
π(c

(k)
l)
)

=
∑m(k)

c=1 log
(
π(c)

)∑n
l=1Ail ·

δ(cl, c) wherem(k) is the currently maximal color. The inner
sum simplifies to [AB(k)]ic . Now assume hi = hj . Expo-
nentiating both sides (which turns the sums into products)
and setting Ni :=

∏m(k)

c=1 π(c)(AB(k))ic yields

ec
(k)
i Ni = ec

(k)
j Nj (6)

where both Ni and Nj are integers. Rearranging (6) gives
ec

(k)
i −c

(k)
i = Nj/Ni . Note that the right-hand side is ratio-

nal although all nonzero integral powers of e are irrational.
Therefore we conclude that c(k)i = c

(k)
j and (6) simplifies

to Ni = Nj . From the fundamental theorem of arithmetic,
we have that their prime factorizations coincide. Therefore
AB(k))ic = AB(k))jc for all 1 ≤ c ≤ m(k), which is equiv-
alent to δ

(
[AB(k)]i•, [AB

(k)]j•
)

= 1. Since the argument
goes in both directions, we have proven the theorem.

Proof of Theorem 4: Reconsider CGCR in Alg. 4. Start-
ing from the all flat partition6 B(0) = 1, it computesB(1) by
clusteringAB(0). That is, we group together nodes i and j if
δTijAB

(0) = 0 with δij = (ei−ej), ei begin the ith unit col-
umn vector. Then it computes B(2) by clustering AB(1) and
so on. The value [AB(k)]ij is the number of 1-step walks that
start in a node of class j and end in node i. Thus, it groups
together nodes that have the same number of 1-step walks
coming from each current color classes j = 1, 2, Hence
once nodes i and j get assigned to different color classes,
they will stay in different color classes. That is, B(k) is a
condensation7 of B∗. So, CGCR iteratively computes con-
densations B(k) of and converges to the CEP B∗.

We now combine this sandwiching behavior with a sem-
inal result due to Boldi et al. (2006). They have proven that
the steady state distribution of any Markov chain with restart
induced by G also induces a condensation of D∗. More
precisely, let P = C−1A be the transition matrix induced
by G where C is the degree matrix of G. Now, consider
the steady states distribution π(α, v) of the Markov chain

5In particular in early iterations D(k) is very densly populated
with millions of entries when n is large.

6We use B(k), D(k) and the corresponding partition of the
graph in an interchangeable way.

7B(k) is a condensation of B∗ if D(k) is a condensation of D∗ .
That is each color class in B(k) is a union of classes in B∗.

1909

with restart induced by αP + (1 − α)1T v where v is the
preference vector for the restart. Then δijπ(α) = 0 for
0 ≤ α < 1 if nodes i and j are in the same color class
inB∗. In general, the partition induced by π(α, v), however,
will not be B∗ but this can be fixed using CGCR. Specif-
ically, let’s compute π(α, v) using power iteration, that is
x(i+1) := αPx(i) + (1 − α)1T v with x(0) = v. Induction
over the power iterations shows the equality holds for any
iteration i, i.e., δijx(i) = 0 for any i = 1, 2, 3, pro-
vided that the preference vector v is color class-wise uni-
form. This, however is the case for the columns of B(k)

modulo normalization. So, let Π(A,α,B(k)) be the matrix
whose uth column is the power iteration vector. We have
just proven that δTijΠ(A,α,B(k)) = 0 for all iterations k.
In other words, we can cluster in each iteration the matrix
Π(A,α,B(k)). Doing so can result in fewer CG iterations
as we might skip condensations but still converges to B∗

since we are always sandwiched between one condensation
Bl (l ≥ k) computed by HCGCR and B∗.

References
Ahmadi, B.; Kersting, K.; Mladenov, M.; and Natarajan, S.
2013. Exploiting symmetries for scaling loopy belief prop-
agation and relational training. Machine Learning Journal
92(1):91–132.
Berkholz, C.; Bonsma, P.; and Grohe, M. 2013. Tight lower
and upper bounds for the complexity of canonical colour re-
finement. In 21st Annual European Symposium on Algo-
rithms (ESA), 145–156.
Boldi, P.; Lonati, V.; and Vigna, M. S. S. 2006. Graph fibra-
tions, graph isomorphism, and pagerank. Theoretical Infor-
matics and Applications 40(2):227–253.
Dasgupta, A.; Hopcroft, J.; Kannan, R.; and Mitra, P. 2006.
Spectral clustering by recursive partitioning. In 14th Annual
European Symposium on Algorithms (ESA-2006), 256–267.
Godsil, C. 1997. Compact graphs and equitable partitions.
Linear Algebra and its Applications 255:259–266.
Gori, M.; Maggini, M.; and Sarti, L. 2005. Exact and ap-
proximate graph matching using random walks. IEEE Trans.
Pattern Anal. Mach. Intell. 27(7):1100–1111.
Grohe, M.; Kersting, K.; Mladenov, M.; and Selman, E.
2013. Dimension reduction via colour refinement. In
arXiv:1307.5697.
Jaggi, M. 2013. Revisiting frank-wolfe: Projection-free
sparse convex optimization. In Proceedings of the 30th
International Conference on Machine Learning (ICML);
JMLR Proceedings vol. 28, 427–435.
Jonker, R., and Volgenant, A. 1987. A shortest augment-
ing path algorithm for dense and sparse linear assignment
problems. Computing 38:325–340.
Kannan, R.; Vempala, S.; and Vetta, A. 2004. On cluster-
ings: Good, bad and spectral. J. ACM 51(3):497–515.
Katebi, H.; Sakallah, K.; and Markov, I. 2012. Graph sym-
metry detection and canonical labeling: Differences and syn-
ergies. In Voronkov, A., ed., Turing-100, volume 10 of EPiC
Series, 181–195.

Kyrola, A.; Blelloch, G.; and Guestrin, C. 2012. Graphchi:
Large-scale graph computation on just a pc. In USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI).
Lin, F., and Cohen, W. 2010. Power iteration clustering.
In Proceedings of the 27th International Conference on Ma-
chine Learning (ICML), 655–662.
Mahoney, M.; Orecchia, L.; and Vishnoi, N. 2012. Local
spectral method for graphs: with applications to improving
graph partitions and exploring data graphs locally. J. Ma-
chine Learning Research 13:2339–2365.
Mladenov, M.; Ahmadi, B.; and Kersting, K. 2012. Lifted
linear programming. In 15th Int. Conf. on Artificial Intelli-
gence and Statistics (AISTATS 2012), 788–797. Volume 22
of JMLR: W&CP 22.
Quadrianto, N.; Smola, A.; Song, L.; and Tuytelaars, T.
2010. Kernelized sorting. IEEE Trans. Pattern Anal. Mach.
Intell. 32(10):1809–1821.
Ramana, M.; Scheinerman, E.; and Ullman, D. 1994.
Fractional isomorphism of graphs. Discrete Mathematics
132:247–265.
Shervashidze, N., and Borgwardt, K. 2009. Fast subtree
kernels on graphs. In Proceedings of the 23rd Annual Con-
ference on Neural Information Processing Systems (NIPS),
1660–1668.
Shervashidze, N.; Schweitzer, P.; van Leeuwen, E.;
Mehlhorn, K.; and Borgwardt, K. 2011. Weisfeiler–Lehman
Graph Kernels. Journal of Machine Learning Research
12:2539–2561.
Shi, Q.; Petterson, J.; Dror, G.; Langford, J.; Smola, A.; and
Vishwanathan, S. V. N. 2009. Hash kernels for structured
data. Journal of Machine Learning Research 10:2615–2637.
Tinhofer, G. 1991. A note on compact graphs. Discrete
Applied Mathematics 30:253–264.
Zaslavskiy, M.; Bach, F.; and Vert, J.-P. 2009. A path follow-
ing algorithm for the graph matching problem. IEEE Trans.
Pattern Anal. Mach. Intell. 31(12):2227–2242.

1910

