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Abstract
In many real-world applications of learning, the envi-
ronment is open and changes gradually, which requires
the learning system to have the ability of detecting and
adapting to the changes. Class-incremental learning (C-
IL) is an important and practical problem where data
from unseen augmented classes are fed, but has not been
studied well in the past. In C-IL, the system should be-
ware of predicting instances from augmented classes as
a seen class, and thus faces the challenge that no such
instances were observed during training stage. In this
paper, we tackle the challenge by using unlabeled data,
which can be cheaply collected in many real-world ap-
plications. We propose the LACU framework as well
as the LACU-SVM approach to learn the concept of
seen classes while incorporating the structure presented
in the unlabeled data, so that the misclassification risks
among the seen classes as well as between the aug-
mented and the seen classes are minimized simultane-
ously. Experiments on diverse datasets show the effec-
tiveness of the proposed approach.

Introduction
Traditional machine learning approaches face many chal-
lenges raised in real-world applications, where the open
and dynamic environments break the stationary settings im-
plied in traditional approaches. A branch of methods dealing
with the changing environments is the incremental learn-
ing, which mainly includes sub-branches of the example-
incremental learning (E-IL) (Ruping 2001; Polikar et al.
2001; Fern and Givan 2003), the attribute-incremental learn-
ing (A-IL) (Vapnik, Vashist, and Pavlovitch 2009), the class-
incremental learning (C-IL) (Fink et al. 2006; Muhlbaier,
Topalis, and Polikar 2009; Kuzborskij, Orabona, and Caputo
2013) as concluded in (Zhou and Chen 2002). Among them,
C-IL is an important problem which is often encountered
in practice. For example, in building an image classification
system for pictures in the Internet, the user may only label a
few classes, say the dog, fish and bird. However, the system
has to predict images from wide classes in the future. When
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Figure 1: An illustration that unlabeled data helps the learn-
ing with augmented class problem.

an image of tiger comes, a traditional classification algo-
rithm will predict it in seen classes, like dog, which could
make the system unusable.

This paper investigates one of the core problems in C-
IL, i.e., how to recognize instances from unseen augmented
classes. An augmented class is a class which is unknown
during the training stage, but appears in the test stage. Once
the system can tell the augmented classes from the seen
ones, latter processing of the augmented classes can be han-
dled. Therefore, we would like the system to report an ex-
tra option to denote that an instance is from the augmented
class, with a high accuracy.

Specifically, the learning with augmented class (LAC)
problem, is given a training dataset D = {(x

i

, y
i

)}L
i=1,

where x
i

2 Rd is an training instance and y
i

2 Y =

{1, 2, ...,K} is the associated class label. Unlike the canoni-
cal classification, during test, we need to predict the class of
the instances from an open dataset D

o

= {x
i

, y
i

}1
i=1, where

y
i

2 Y
o

= {1, 2, ...,K,K + 1, ...,M} with M > K. As
there are classes unobservable during the training time, the
goal of learning with augmented class is to learn a model
f(x) : X ! Y 0

= {1, 2, ...,K, novel}, where the option
novel indicates that x belongs to the augmented class, in
order to minimize following expected risk

f⇤
= argmin

f2H E(x,y)⇠D

o

err(y, f(x)), (1)

where H is a hypnosis space and err is LAC error

err(y, f(x)) =

⇢
I(f(x) 6= y), y 2 Y

I(f(x) 6= novel), y /2 Y
(2)

Here I(expression) is an indicator function which equals 1
when the expression is true and 0 otherwise.
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The main challenge of the task lies under that no in-
stances from augmented classes are observed in the train-
ing set. Meanwhile, in many real-world applications a large
amount of unlabeled data can be easily collected. Previous
studies (Chapelle, Schölkopf, and Zien 2006; Zhu and Gold-
berg 2009; Zhou and Li 2010) have disclosed that unlabeled
data implies useful information that can help improve the
classification performance particularly when the number of
training instances is limited. Inspired from these studies, we
investigate using unlabeled data to help the LAC problem,
where the number of seen classes is limited. Our intuition
is that, as illustrated in Figure 1, when the unlabeled data is
sufficient, large margin classifiers can be identified, which
are usually separators between classes. Therefore the large
margin separators surrounding the seen classes can help dis-
tinguish augmented classes.

Following this idea, we present the LACU (Learning with
Augmented Class with Unlabeled data) framework and the
LACU-SVM approach to the learning with augmented class
problem. The proposed method combines the large mar-
gin principle from the SVM learning algorithm, with the
low density separator technique from semi-supervised learn-
ing algorithms (Chapelle and Zien 2005). By adopting the
one-vs-rest approach, the LACU-SVM picks a classifica-
tion boundary among all low density separators that min-
imizes the empirical risk and structure risk as well as the
augment risk simultaneously. An efficient method based on
the concave-convex procedure (CCCP) is applied for solv-
ing the optimization problem. Experiments on datasets from
several diverse domains show that the proposed approach
significantly outperforms comparison methods.

The rest of this paper starts with an introduction of the re-
lated work. Then the LACU framework is presented, which
is followed by the empirical studies. The paper ends with a
section of discussion and conclusion.

Related Work
Incremental learning requires the necessary adaption of ma-
chine learning methods to the changes of an open and dy-
namic environment, and class-incremental learning (C-IL)
(Zhou and Chen 2002) is a particularly branch that focuses
on the emerging classes. In (Fink et al. 2006; Kuzborskij,
Orabona, and Caputo 2013), the binary classifiers of each
new class is added incrementally and trained by sharing the
hypothesis of the existing classes. In (Muhlbaier, Topalis,
and Polikar 2009), ensemble method is applied by incre-
mentally introducing base learner trained from data contain-
ing new classes. However, these C-IL methods address how
to adapt to augmented classes only when a few of their in-
stances are given, but can not be applied to the LAC problem
as no such instances are available.

The classification with a reject option (Chow 1970) aims
at making reliable prediction by introducing the reject op-
tion when the classifier is not confident on the predic-
tion. Loss functions were proposed to incorporate the rejec-
tion cost (Bartlett and Wegkamp 2008; Yuan and Wegkamp
2010), where making a wrong prediction could result in an
error with a cost 1 and making a rejection always has a cost
smaller than 1. It is clear that the loss with rejection cost

is different with the LAC error. Though one could still use
the rejection methods for learning with augmented class, as
noticed in (Scheirer et al. 2013) that high confidence predic-
tions do not necessarily lead to a small LAC error.

The open set recognition problem is an alternative term
for the LAC problem mainly used by the pattern recogni-
tion community. It has been applied in face recognition (Li
and Wechsler 2005), speaker recognition (Reynolds 2002),
etc. Most of these studies are based on simple heuristics.
In (Phillips, Grother, and Micheals 2011), it focuses on the
operating threshold so that an instance is classified to seen
classes only if the confidence is above the threshold. In
(Scheirer et al. 2013), the risk over open space is consid-
ered and new decision boundaries are added to minimize the
regions for the seen classes.

The outlier detection problem (Hodge and Austin 2004)
requires to identify abnormal instances from a given data set.
It is possible that outlier detection methods can be used for
the LAC problem by predicting abnormal instances as novel.
However, outlier detection is fundamentally different with
the LAC problem since it relies on the application-specific
definition of outlier, but does not minimize the LAC error.

The class discovery problem tries to find the examples of
the rare classes which are unknown as a prior, but known
to be existent in the training data (Pelleg and Moore 2005;
Hospedales, Gong, and Xiang 2013). The augmented classes
differ from the rare classes mainly in two aspects: First, the
augmented class is not necessarily a rare class, but can be-
come a large class. Second, it is possible to query examples
of a rare class since they are already in the training data,
while it is not possible for the augmented classes since their
examples only appear in the test data.

The LACU Framework
The Framework
In many applications, a large amount of unlabeled data can
be easily collected. Thus we may use unlabeled data to help
the LAC problem. Besides the training set, we can access
an unlabeled dataset D

u

= {x
i

}L+U

i=L+1 sampled from D
o

during the training time.
Based on the successful large margin classifiers, our as-

sumption is that classes, even without been labeled, should
be divided by large margin separators. Therefore, when dis-
criminating one seen class to other seen classes, the unla-
beled data can help us identify many large margin separa-
tors that have similar performance to the seen classes. Then
to minimize the augment risk, among these separators, we
select the one that is closest to the labeled region.

Denote f(x) 2 H be the classification function, `
h

(f,D)

be the empirical loss on training examples, `
u

(f,D
u

) be the
loss of in-margin quantity on unlabeled data and `

a

(f,D) be
the augment loss which supports a decision boundary closer
to the labeled examples. In the LACU framework, we search
for a classifier for the LAC problem by minimizing follow-
ing objective function

min

f2H
kfk2H+C1`h(f,D)+C2`u(f,Du

)+C3`a(f,D), (3)
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where the first term kfk2H measures the complexity of the
classification model, and C1, C2, C3 is the coefficients to
balance these losses.

LACU-SVM
Following the one-vs-rest strategy to multi-class classifica-
tion, we extends the support vector machine (Vapnik 2000)
to the optimization objective in Eq. (3), to obtain the LACU-
SVM approach. In LACU-SVM, the optimization in Eq.
(3) is applied K times, each treating a seen class as posi-
tive (y

i

= +1) and the rest seen classes as negative ones
(y

i

= �1) in turn.
Denote f(x) = wT�(x) + b be the linear classification

function, `
h

(f,D) be the hinge loss on labeled data

`
h

(f,D) =

X
L

i=1
max(0, 1� y

i

f(x
i

)).

To search for the large margin separator in the unlabeled
data, we use the definition of `

u

(f,D
u

) which can be eval-
uated by summing up the in-margin quantity as in (Chapelle
and Zien 2005)

`
u

(f,D
u

) =

X
L+U

i=L+1
max(0, 1� |f(x

i

)|).
We define `

a

(f,D) to control the move of the separator
by adjusting the minimum margin values to minimize the
augment loss as

`
a

(f,D) = min

i2I

+ y
i

f(x
i

)�min

i2I

� y
i

f(x
i

),

where I+ and I� are the indices of positive examples and
negative examples in the training data, respectively.

After K classifiers are trained from Eq.(3) with the above
losses, each for an seen class, we use the following predic-
tion rule for a test instance x

ŷ = argmax

k=1,..,K,novel

f
k

(x),

where f
novel

⌘ 0, ties at 0 are predict as novel, and other
ties are broken randomly.

However, the objective function of LACU-SVM in Eq.(3)
is complicated, we thus consider the alternative objective
function kfk2H +C1`h(f,D)+C2`u(f,Du

) with an extra
constraint defined as

min

i2I

+ y
i

f(x
i

)�min

i2I

� y
i

 ��.

Here � > 0 is a parameter controlling the degree of how the
decision boundary is close to the positive examples. This
constraint is equivalent to a series of constraints by elimi-
nating one of the min function as

min

i2I

+ y
i

f(x
i

) + �  y
j

f(x
j

), 8j 2 I�. (4)

Even though, the objective function is still overly complex
because of the symmetric hinge loss used in `

u

(f,D
u

).
From the derivation in (Collobert et al. 2006), the symmetric
hinge loss can be approximated by

max(0, 1� |z|) ⇡ R
s

(z) +R
s

(�z) + constant.

Here R
s

(z) = min(1 � s,max(0, 1 � z)) is the ramp
loss with a hyper-parameter s 2 (�1, 0]. It can be further
rewritten as the difference between two hinge losses, i.e.,

Algorithm 1 LACU-SVM Training Algorithm
Input:

D: Training examples {x
i

, y
i

}L
i=1

D
u

: Unlabeled data set {x
i

}L+U

i=L+1
C1, C2,�, ⌘: Parameters of algorithm

Output:
{✓k}K

k=1: Parameters of learned model
1: for each k 2 {1, ...,K} do
2: t = 0

3: Let ✓k

t

be the solution of a standard SVM trained on
D

k

= {(x
i

, yk
i

= 2I(y
i

= k)� 1)|(x
i

, y
i

) 2 D}
4: Calculate the kernel matrix G
5: Calculate linear coefficient ⇣ by Eq.(9)
6: Calculate �

i

and V as

�
i

=

⇢
C2, yk

i

f(x
i

|✓k

t

) < s and 1  i  L+ 2U

0, otherwise

V = min

i2I

+ yk
i

f(x
i

|✓k

t

)

7: repeat
8: Solve Eq.(8) to obtain ✓k

t+1
9: t = t+ 1

10: Update �
i

and V as in step 6
11: until ✓k

t

= ✓k

t�1
12: end for
13: return {✓k}K

k=1

R
s

(z) = H1(z) � H
s

(z), where H
s

(z) = max(0, s � z).
We then turn to solve the following minimization problem

min

✓
J(✓) = J1(✓) + J2(✓) (5)

s.t. min

i2I

+ y
i

f(x
i

) + �  y
j

f(x
j

), 8j 2 I�

⌘

L

X
L

i=1
y
i

 1

U

X
L+U

i=L+1
f(x

i

) 1

L

X
L

i=1
y
i

(6)

where ✓ = (w, b) is the model parameter, J1(✓) = kfk2H+

C1`h(f,D)+C2
P

L+2U
i=L+1 H1(yif(xi

)) is a convex function,
and J2(✓) = �C2

P
L+2U
i=L+1 Hs

(y
i

f(x
i

)) is a concave func-
tion. Here y

i

= +1 for L+1  i  L+U and y
i

= �1 for
L+ U + 1  i  L+ 2U , x

L+U+i

= x
L+i

for 1  i  U .
The constraint of Eq.(6) is introduced to avoid classifying
all unlabeled data to one class with a very large margin, by
limiting the fraction of positive data in unlabeled data within
a certain range defined by a parameter ⌘ > 0, since the posi-
tive instances always take less fraction in the unlabeled data
than in the labeled data following the one-vs-rest strategy.

After the decomposition of the objective function, the
concave-convex procedure (CCCP) (Yuille and Rangarajan
2003) then can be applied to the optimization problem as in
(Collobert et al. 2006). CCCP is an algorithm which solves
a difference of convex functions programming as a sequence
of convex programming, and is proved to converge with both
convex and non-convex constraints (Lanckriet and Sripe-
rumbudur 2009). In each iteration of CCCP to solve Eq.(5),
we needs to solve following subproblem

✓
t+1 = argmin✓

�
J1(✓) + J 0

2(✓t) · ✓
�
, (7)
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where the objective function of the subproblem becomes a
summation of a convex term and a linear term. Note that
there is still a non-convex constraint which involves a min

function as in Eq.(4). To deal with this issue, we com-
bine the alternative optimization technique into the CCCP
framework, i.e., at time t + 1, we use a fixed value V =

min

i2I

+ y
i

f(x
i

|✓
t

) instead of min

i2I

+ y
i

f(x
i

|✓
t+1). Then

the above optimization of Eq.(7) can be reformulated as dual
form of a quadratic programming problem using standard
SVM techniques as

max↵ ⇣T↵� 1

2

↵TG↵ (8)

s.t. 0  y
i

↵
i

 C1, 1  i  L

� �
i

 y
i

↵
i

 C2 � �
i

, L+ 1  i  L+ 2U

↵
L+2U+1  0, ↵

L+2U+2 � 0

↵
i

 0, L+ 2U + 3  i  L+ 2U + 2 + |I�|
↵>1 = 0

where N = L + 2U + 2 + |I�| is the total number of dual
variables. �

i

is C2 for y
i

f(x
i

|✓
t

) < s (L + 1  i  L +

2U ), 0 otherwise. G 2 RN⇥N is the kernel matrix where
G

ij

= h�(x
i

),�(x
i

)i. Besides the already defined L + 2U
instances, here we introduce another (2 + |I�|) instances,
where �(x

L+2U+1) = �(x
L+2U+2) =

1
U

P
L+U

i=L+1 �(xi

)

and x
i

= x[I�]
i�L�2U�2

for L + 2U + 3  i  N . The
linear coefficient of dual variable is

⇣i =

8
>>><

>>>:

yi, 1  i  L+ 2U
1
L

PL
i=1 yi, i = L+ 2U + 1

⌘
L

PL
i=1 yi, i = L+ 2U + 2

�V � �, L+ 2U + 3  i  L+ 2U + 2 + |I�|

(9)

This is a quadratic programming (QP) problem very close
to the standard SVM dual problem and can be efficiently
solved using the existing Sequential Minimal Optimization
(SMO) solver (Bottou and Lin 2007). The final optimal so-
lution is given by

w =

X
N

i=1
↵
i

�(x
i

),

and b can be obtained by the KKT condition, i.e., y
i

(wTx+
b) = 1, for 0 < y

i

↵
i

< C1(1  i  L) or ��
i

< y
i

↵
i

<
C2 � �

i

(L+ 1  i  L+ 2U).
The overall description of the proposed method is pre-

sented in Algorithm 1. The method takes labeled training
dataset D, unlabeled dataset D

u

and the four parameters C1,
C2, �, ⌘ as input. It trains K binary classifiers for each seen
class following the one-vs-rest strategy in the outer itera-
tion. For each seen class k 2 {1, ...,K}, LACU-SVM ini-
tializes the ✓k

0 as the solution to the standard SVM trained
on labeled data D

k

only as in line 3, and then calculates the
coefficients of Eq.(8), i.e., G, ⇣, � and V as in line 4, 5
and 6. Then it starts the iteration of CCCP by solving the
quadratic programming problem in Eq.(8) from line 7 to 11.
In each inner iteration, it only requires solving a QP prob-
lem by SMO in line 8, and in our empirical study we find
that it usually converges only after a few iterations, making
the training procedure for each class roughly enjoy the com-
putational complexity of SMO.

Experiments
Comparison methods
To validate the the effectiveness of LACU-SVM, we conduct
experiments on benchmark datasets from several diverse do-
mains, compared with state-of-the-art methods including:

LOF: Local Outlier Factor (Breunig et al. 2000) is a pow-
erful outlier detector, where the degree of being an outlier
depends on how isolated the object is with respect to the
surrounding neighborhood so that local outliers can also be
detected. We use LOF for detecting augmented class, and
use the predictions of the one-vs-rest SVM for the other
none-outliers. This strategy is also employed for the follow-
ing outlier detectors.

iForest: iForest (Liu, Ting, and Zhou 2008) is a state-of-
the-art outlier detector which takes advantage of two outliers
quantitative properties, i.e., few and different, by exploring
the concept of isolation of samples.

OC-SVM: One-class SVM (Schölkopf et al. 2001) is an-
other state-of-the-art outlier detector (Ma and Perkins 2003),
which computes a binary function that is supposed to capture
regions in input space where the probability density lives.

MOC-SVM: Since OC-SVM can hardly find local out-
liers since it essentially seeks for a hyperplane to separate
the data and the origin. Thus, for this comparison method,
we train multiple one-class svms for outlier detection, i.e.,
one OC-SVM for each seen class.

1-vs-Set: 1-vs-Set Machine (Scheirer et al. 2013) consid-
ers the risk over open space by introducing extra decision
boundaries to minimize the regions for the seen classes.

OVR-SVM: One-vs-rest SVM is a powerful scheme for
multi-class classification (Rifkin and Klautau 2004). In the
original OVR-SVM, a test instance x is predicted as class y
if y = argmax

k=1,2,..,K f
k

(x) where f
k

is the binary SVM
for class k. To adapt OVR-SVM for predicting the aug-
mented class, we let the model return the class y only when
max

k

f
k

(x) > 0, otherwise return the augmented class.
In the experiments, we use the implementations of OVR-

SVM, OC-SVM and MOC-SVM in the LIBSVM software
(Chang and Lin 2011), and the implementations of 1-vs-Set
Machine and iForest from the code released by the corre-
sponding authors. The coefficient C in SVM is selected via
cross validation on training data using the original OVR-
SVM. The width for Gaussian kernel � is set to a fixed value
of 1/d. For LOF, the minimum and maximum number of
neighbors are 3 and 9, respectively. Note that the original
LOF does not have a kernel version, so we replace the Eu-
clid distance d

e

with 1 � exp(��d
e

) for Gaussian kernel.
Since such adaption can not be applied for iForest, we use
the same version of iForest with the default parameters in its
R-pacakge for both kernels. For LACU-SVM, s in the ramp
loss is set to �0.3, C1 is set to C, C2 is set to C1L/U , and
number of iterations is set to 10 for all experiments. With-
out further explanation, the parameters ⌘ and � in LACU-
SVM are set to 1.3 and 0.1 respectively by default. For eval-
uation, we focus on the macro-averaged F1 by treating the
augmented class as the (K + 1)-th class, to eliminate the
influence of unbalanced data.
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Figure 2: Comparisons of different methods on MNIST dataset (linear kernel)
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Figure 3: Comparisons of different methods on MNIST dataset (Gaussian kernel)

Results
Handwritten Digit Image Classification In the first exper-
iment, we conducted experiments on the MNIST handwrit-
ten digit dataset, where 5 classes are randomly selected as
seen classes from the all the 10 classes. The number of train-
ing data, unlabeled data and test data are 500, 500 and 1000.
For each configuration (with different seen classes), the ex-
periments are repeated for 10 times and both the mean and
the standard variance of the performance are reported. The
results of 10 randomly selected configurations are shown in
Figure 2/3 and for linear/Gaussian kernel. For linear kernel,
the 1-vs-set machine shows to outperform OVR-SVM in all
cases and the LOF methods outperforms OVR-SVM in near
50% cases, while LACU-SVM always obtains the highest
performance and is significantly better than the compared
methods. For Gaussian kernel, LACU-SVM also achieves
the best performance, while the OVR-SVM is slightly worse
and significantly better than the other five methods. In both
kernels, the outlier detection methods with iForest, OC-
SVM and MOC-SVM produce the worst performance.

To further verify the effectiveness of LACU-SVM, we
show some demonstrations of test images for the first con-
figuration in Figure 4. The images are from unseen classes.
LACU-SVM successfully identifies the novelty, while OVR-
SVM predicts them to be seen classes. It is not surpris-
ing that OVR-SVM makes the wrong decisions since those
samples are very similar to the seen classes and OVR-SVM
never observes them during training. At the other hand, by
exploiting the unlabeled data, the proposed LACU-SVM
successfully recognizes these images as augmented classes.

Document Classification In the second experiment, we
conduct experiments on the popular text dataset, i.e., 20
Newsgroups, to show some statistical results of all meth-
ods over various configurations. This dataset consists of
documents from 20 different topics. Some of these top-
ics are highly related like comp.sys.ibm.pc.hardware and

novel

novel

novel

novel

novel

test instances
predictions

OVR-SVM  

Figure 4: Examples of predictions made by OVR-SVM and
LACU-SVM. The classes of 0,1,2,3,6 are observed in train-
ing set, and all classes are in the test set.
comp.sys.mac.hardware, which will be an issue, when one
belongs to seen classes and the other one does not. We also
limit the number of seen classes to 5. The number of train-
ing data, unlabeled data and test data are 500, 1000 and 1000
respectively. We randomly sample 100 configurations from
all possible combinations, and for each configuration the ex-
periment is repeated for 10 times. The results of win/tie/loss
counts of all possible pairs of methods are shown in Table
1, for both linear and Gaussian kernel. The number in the
ith row and the jth column denotes the times of win, tie and
loss of the method in the corresponding row, versus that in
the corresponding column, over all the 100 configurations.
The detailed results of the macro-averaged F1 performances
will be presented in the longer version of the paper.

It shows that, the proposed LACU-SVM wins all the con-
figurations compared with the four outlier detection meth-
ods, and significantly outperforms the OVR-SVM and 1-vs-
Set machine with the loss rate at most 7% for both linear
and Gaussian kernels. Besides our method, OVR-SVM wins
most comparisons, even has beaten 1-vs-Set machine in 74%
case with linear kernel and 100% cases with Gaussian ker-
nel, which implies that it maybe inappropriate to simply in-
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Table 1: The results of win/tie/loss information with 100 randomly selected configurations on 20 Newsgroup dataset (paired
two-tailed t-test at 95% significance level)

Method
Linear kernel Gaussian kernel

LOF iForest OC-SVM MOC-SVM 1-vs-Set OVR-SVM LACU-SVM LOF iForest OC-SVM MOC-SVM 1-vs-Set OVR-SVM LACU-SVM
LOF - 0/100/0 0/0/100 0/7/93 0/0/100 0/0/100 0/0/100 - 0/100/0 0/31/69 0/0/100 0/0/100 0/0/100 0/0/100

iForest 0/100/0 - 0/0/100 0/7/93 0/0/100 0/0/100 0/0/100 0/100/0 - 0/31/69 0/0/100 0/0/100 0/0/100 0/0/100
OC-SVM 100/0/0 100/0/0 - 72/28/0 0/0/100 0/0/100 0/0/100 69/31/0 69/31/0 - 0/42/58 0/0/100 0/0/100 0/0/100

MOC-SVM 93/7/0 93/7/0 0/28/72 - 0/0/100 0/0/100 0/0/100 100/0/0 100/0/0 58/42/0 - 0/1/99 0/0/100 0/0/100
1-vs-Set 100/0/0 100/0/0 100/0/0 100/0/0 - 0/26/74 1/15/84 100/0/0 100/0/0 100/0/0 99/1/0 - 0/0/100 0/4/96

OVR-SVM 100/0/0 100/0/0 100/0/0 100/0/0 74/26/0 - 7/15/78 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 - 7/18/75
LACU-SVM 100/0/0 100/0/0 100/0/0 100/0/0 84/15/1 78/15/7 - 100/0/0 100/0/0 100/0/0 100/0/0 96/4/0 75/18/7 -

troducing an extra parallel decision boundary to limit the
positive region as in 1-vs-Set when the labeled examples of
each seen class may not be distributed in a very concentra-
tive region. The outlier detection methods nearly lose all the
comparisons, especially for LOF and iForest which predict
almost all test instances as none-outliers. It is possibly be-
cause outliers are usually decided by specific tasks, and out-
lier detection does not minimize the LAC error.

Object Recognition In the last experiment, we con-
duct the experiment on the object recognition task, i.e., the
Caltech101 dataset (Fei-Fei, Fergus, and Perona 2007) (101
classes), to show the performance of different methods when
LAC problem becomes more challenging (with more unseen
classes). We limit the number of seen classes to 5 and let the
number of test classes (M ) vary form 30 to 100 . The num-
ber of training images for each seen classes is set to 20 as
a popular setting. The number of unlabeled images and test
images for each test classes are set to 5 and 10 respectively.
We extract the spatial histograms of visual words with 3600
dimensions for each image. We only report the results with
linear kernel since it is considered to be more appropriate for
such representation. For different number of test classes, we
randomly sample 200 configurations and for each configura-
tion the experiment is repeated for 5 times. The overall mean
of macro-average F1 is reported in Figure 5.

It shows that, with the increasing number of test classes,
the performance of most methods degrade as expected.
Among all the methods, LACU-SVM achieves the best per-
formance. The 1-vs-set machine does not achieve a compa-
rable performance. All the outlier detection methods fail in
this data, which further indicates the instances from unseen
classes should not be simply regarded as outliers when deal-
ing with LAC problem.

We further investigate the influence of different parame-
ters in LACU-SVM, i.e., ⌘ and �, in Figure 6(a) and Figure
6(b) respectively. We let ⌘ vary from 1.1 to 1.5 with an in-
terval of 0.5 and let � vary from 0.05 to 0.45 with an interval
of 0.05. The performance tendencies with different number
of test classes are also studied, with M = 40, 60, 80, 100,
for an unbiased analysis of the influence of parameters. The
results show that, the performance of LACU-SVM is overall
not very sensitive to the parameters, and only with a small
M , the performance trends to increase with a larger ⌘ as well
as a smaller �. For M > 40, there is no significant difference
between the performance produced by various parameters.

Figure 5: Performance with different number of test classes
on Caltech101 dataset

(a) With different ⌘ (b) With different �
Figure 6: The influence of parameters ⌘ and � in LACU-
SVM on Caltech101 dataset

Conclusion
Learning with augmented class is a very practical problem
when a system needs to predict the data from an unlim-
ited source. In this paper, we propose to tackle the problem
with the help of unlabeled data. The experiments on several
datasets show the effectiveness of the proposed method. In
the future work, there are several important issues to be con-
sidered. One is that, besides the current SVM based method,
we would like to apply more state-of-the-art multi-class al-
gorithms to the LACU framework. Developing a theoretical
grounded method for the LAC problem is also of interest.
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