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Abstract
In many practical cases, we need to generalize a model
trained in a source domain to a new target domain. How-
ever, the distribution of these two domains may differ
very significantly, especially sometimes some crucial
target features may not have support in the source do-
main. This paper proposes a novel locality preserving
projection method for domain adaptation task, which
can find a linear mapping preserving the ’intrinsic struc-
ture’ for both source and target domains. We first con-
struct two graphs encoding the neighborhood informa-
tion for source and target domains separately. We then
find linear projection coefficients which have the prop-
erty of locality preserving for each graph. Instead of
combing the two objective terms under compatibility
assumption and requiring the user to decide the impor-
tance of each objective function, we propose a multi-
objective formulation for this problem and solve it si-
multaneously using Pareto optimization. The Pareto
frontier captures all possible good linear projection co-
efficients that are preferred by one or more objectives.
The effectiveness of our approach is justified by both
theoretical analysis and empirical results on real world
data sets. The new feature representation shows better
prediction accuracy as our experiments demonstrate.

Introduction
In recent years, domain adaptation has gained significant at-
tention in many areas of applied machine learning, including
bio-informatics, speech and language processing, computer
vision and etc. In many supervised machine learning and
data mining tasks, it is usually assumed that both the labeled
and unlabeled data are sampled from the same distribution.
However, in many real-world tasks, this assumption does not
hold. For example, in temporal domains, the feature distri-
bution may be different from that of the former features over
time. In clinical studies of disease, the selected samples may
not be representative enough and have selection bias. Given
a new domain of interest, there may not be sufficient labeled
data, and labeled data from a related domain need to be uti-
lized. In these practical problems, given that the instances in
the training and test domains may be drawn from different
distributions, traditional supervised learning can not achieve

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

good performance on the new domain. Domain adaptation
algorithms are therefore designed to bridge the distribution
gap between training (source) data and test (target) data.

Most domain adaptation algorithms seeks to eliminate
the difference between source and target distributions. They
can be mainly categorized into two classes. The first class
of methods seeks to make source distribution close to
target distribution by re-weighting (importance sampling)
source domain data. Such methods include (Huang et al.
2006),(Jiang and Zhai 2007a),(Mansour, Mohri, and Ros-
tamizadeh 2008). The second class of methods are based on
feature mapping or feature representation, such as (Blitzer,
McDonald, and Pereira 2006),(Fox and Gomes 2008),(Pan
and Yang 2010). The assumption is that although source and
target data have different distributions, either there exists
some general features which have similar conditional dis-
tributions in both domains, or it is possible to transform the
original feature space into a new feature space which is pre-
dictive for the target domain.

In this paper, we propose a novel feature representation
transfer method. Given labeled data from source domain and
unlabeled data from target domain, locality preserving pro-
jections are learned simultaneously on both domains through
a multi-objective optimization framework.

There are two key innovations in our method. First, we
adopt locality preserving projections, a linear feature trans-
formation method, to solve domain adaptation problem. Lo-
cality preserving projections (LPP) are first proposed in (He
and Niyogi 2003) as a dimension reduction method. Its key
advantage compared to PCA and LDA is that it can discover
the ”intrinsic dimensionality” of the data, which could be
much lower than the original feature space. It builds a graph
incorporating neighborhood information of the data set and
then computes a transformation which maps the data points
to a subspace. The linear transformation optimally preserves
local neighborhood information. Compared to other dimen-
sion reduction methods, higher classification accuracy can
be achieved in the low dimensional space learned by LPP.
Because of its good performance and simple implementa-
tion, there have been many works using LPP to solve differ-
ent tasks where promising results are achieved. However, to
the best of our knowledge, those methods do not attempt
to solve the domain adaptation problem. In our work, in
order to solve the domain adaptation problem, a discrimi-
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native low dimensional common space is discovered using
LPP. LPP is learnt simultaneously on source and target do-
main. This promises that the source label can be transferred
to target data in the learnt low dimensional common space.

To simultaneously learn LPP on both domains, we use
a multi-objective learning framework, which is our second
contribution. We first construct two graphs encoding the
neighborhood information of source and target data. Intu-
itively, LPP needs to preserve local neighborhood informa-
tion on both source and target data. Therefore, there are
two objective functions to be optimized. A standard way
to solve the above problem is to combine the two objec-
tive terms into a single objective with a trade-off parameter.
The trade-off parameter is crucial, and can be obtained us-
ing cross-validation. However, in this work, we argue that
such paradigm may not be suitable for domain adaptation
task, which is simply because the labels of the target data
are missing, so it is impossible to perform cross-validation.
Therefore, we adopt the multi-objective learning framework.
We use the classic Pareto optimization, which allows mul-
tiple objectives to compete with each other in deciding the
optimal trade-off. More details are introduced in the method-
ology section.

The rest of paper is organized as follows: We first review
the related work. And then, we describe how to formulate
LPP for domain adaptation via multi-objective framework.
We further show how to solve the multi-objective optimiza-
tion by finding the Pareto Frontier via generalized eigende-
composition. After that, experimental results on real world
data sets are described in detail. Finally, we draw some con-
clusions.

Related Work and Discussion
Domain adaptation have been extensively studied in many
research areas (Pan and Yang 2010), (Kulis, Saenko, and
Darrell 2011),(III 2007),(Chen, Weinberger, and Blitzer
2011),(Chen et al. 2012). In this paper, we mainly consider
the methods which assume that there are no labeled data
in target domain (unsupervised domain adaptation). In par-
ticular, we review feature representation domain adaptation
methods.

(Blitzer, McDonald, and Pereira 2006) proposed a heuris-
tic method for domain adaptation which is called structural
correspondence learning (SCL). SCL uses labeled data from
both domains to induce the correspondence among features.
SCL identify some domain invariant ”pivot” features first,
the other features are represented using their relative co-
occurrence count with all pivot features. After that, SCL
computes a projection matrix through the low rank approx-
imation of the matrix. In (Jiang and Zhai 2007b), the main
idea is to select features that are generalizable across do-
mains. The method uses a regularized logistic regression
classifier. During training, it allows the generalizable fea-
tures to be less regularized, compared with the domain-
specific features. However, their method for finding the gen-
eralizable features assumes that there are multiple source
domains. Pan et al. (Pan, Kwok, and Yang 2008) attempt
to discover a latent feature representation across domains
by minimizing the feature distribution difference, which is

measured by the Maximum Mean Discrepancy statistic. The
method solves a semi-definite programming (SDP) and di-
rectly gives the kernel matrix. In (Pan et al. 2011), an im-
proved version is proposed, which is called ”transfer compo-
nent analysis”. The method reduces the distance between do-
main distributions dramatically by projecting the data onto
the learned transfer components. The algorithm learns a ker-
nel function that can be applied on new data sets. Gong et
al. proposes geodesic flow kernel (GFK) to solve domain
adaptation problems. (Gong et al. 2012). The method em-
beds the source and target data into Grassmann manifolds
and constructs geodesic flow between them to model domain
shifts. GFK integrates an infinite number of subspaces that
lie on the geodesic flow from the source subspace to the tar-
get one. and find new feature representations which is robust
to changes of domains. In our work, we aim to learn a linear
mapping matrix, which can preserve the local neighborhood
structure of both source and target data. By learning the lo-
cality preserving projections on both source and target data
simultaneously, we are able to discover a lower dimensional
space which is domain independent.

Locality preserving projections (He and Niyogi 2003) has
been applied to solve many machine learning tasks. For ex-
ample, LPP is adopted in (Cai et al. 2007) to perform doc-
ument indexing. In (He et al. 2005), LPP is used to tackle
face recognition problem in computer vision. Most recently,
(Gu et al. 2012) proposed a feature selection method which
incorporates LPP.

In this paper, we use Pareto optimization to learn LPP
simultaneously on source and target domain. In Pareto op-
timization theory, the Pareto frontier captures all possible
good solutions without requiring the users to set the correct
parameter. Pareto optimization has not been widely used for
the reason that it is NP-hard problem to compute the Pareto
frontier in most cases. Recently, (Davidson et al. 2013) show
that by imposing orthogonal constraints and with some re-
laxation, the Pareto frontier of graph cut type objectives can
be computed efficiently by solving a generalized eigende-
composition problem. In this paper, we follow the solution
proposed in (Davidson et al. 2013). However, we aim to
solve the domain adaptation problem, while (Davidson et al.
2013) aim to tackle the multi-view clustering problem.

Problem Formulation
We assume that our data originate from two domains, Source
(S) and Target (T). Source data is fully labeled, which
is (XS ,yS) = {(x1S , y1S), (x2S , y

2
S), · · · , (xns

S , yns

S )}. Each
pair of (xiS , y

i
S) lies inRd×y space and samples from some

distributions PS(X,Y ). The target data has equal dimen-
sionality d as source data, and is sampled from PT (X,Y ).
However we do not have any labels for the target domain
data, i.e., (XT , ?) = {(x1T , ?), (x2T , ?), · · · , (xnt

T , ?)}. Given
(XS ,yS) and (XT , ?), our goal is to learn linear projection
coefficient w ∈ Rd such that the learned coefficients are
discriminative for both domains.

If we consider w as coefficients in a linear projection
function y = wTx, which maps data x ∈ Rd to a contin-
uous value y, then we think discriminative feature weights
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w should has the property of locality preserving, i.e., if two
data xi and xj are ”close” then wTxi and wTxj should be
as close as well. The same insight has been used in many ex-
isting approaches, where locality preserving property shows
merits in solving other tasks such as dimension reduction,
document indexing and feature selection (He and Niyogi
2003),(Cai et al. 2007),(He, Cai, and Niyogi 2005) .

In the rest of this section, we first describe how to con-
struct the adjacency graphs for source and target data re-
spectively. Given the two graphs, we show how to learn co-
efficients w simultaneously on both source and target data
using a multi-objective optimization framework.

Graph Construction
Let A denote an adjacency graph, where each node repre-
sents a data point. We use AS and AT to denote the graph of
source and target data respectively. When constructingA, an
edge between nodes i and j exists if xi and xj are ”close”.
The criteria for defining ”close” can vary in different scenar-
ios.

To construct AT , since the labels of target data are not
available, we define ”close” in an unsupervised manner, i.e.,
nodes i and j are connected by an edge if i is among p near-
est neighbors of j or j is among p nearest neighbors of i.
Formally, we have:

AT (i, j) =

{
x
j
T
·xi

T

‖xj
T
‖·‖xi

T
‖

if xiT ∈ Np(xjT ) or xjT ∈ Np(xiT )

0 otherwise.
,

(1)
where Np(xiT ) is the set of p nearest neighbors of xiT . Note that

we compute the similarity matrix AT with the cosine similarity
measure. However, other similarity measures may be used.

ForAS , we take advantage of the available labels of source data,
and define ”close” in a supervised manner, i.e., nodes i and j are
connected if xi and xj share the same label:

AS(i, j) =

{
1 if xiS and xjS share the same label
0 otherwise. , (2)

Note that unlike the weight computation for target data, the same
weight 1 is used for all edges instead of computing cosine similar-
ity (Cai et al. 2007).

Multi-Objective Optimization
Given data X and its adjacency graph A, we are trying to find a
discriminative feature weight w which can preserve the local struc-
ture of dataX . Here we assume that w projects data points inX to
vector ŷ, that is ŷ = Xw, where X can either be XS or XT . We
optimize w from a locality preserving view.

w = arg min
w

1

2

n∑
i,j=1

(
ŷi√
di
− ŷj√

dj
)2A(i, j)

= arg min
w

1

2

n∑
i,j=1

(
wTxi√
di
− wTxj√

dj
)2A(i, j)

= arg min
w

wTXD−1/2LD−1/2XTw

= arg min
w

wTXL̄XTw

(3)

where L = D − A is the graph Laplacian,and di =
∑

j A(i, j)

measures the local density around xi. D is a diagonal matrix with
[d1, d2, · · · , dn] as its entries. The normalized graph Laplacian is
denoted as L̄ = D−1/2LD−1/2.

The objective function in (3) incurs a heavy penalty if neighbor-
ing points xi and xj are mapped far away. Intuitively, to minimize
(3) is to find w which can ensure that if xi and xj are ”close” then
wTxi and wTxj are close as well.

In order to optimize w on source and target graph simultane-
ously, it is clear that the optimization must involve two objective
terms: wTXSL̄SX

T
S w and wTXT L̄TX

T
T w. When combining

two objective terms, a common practice is to convert two objec-
tive terms into a single objective term, by adding up two terms and
using a parameter to control the trade-off, i.e.,

w = arg min
w
{wTXSL̄SX

T
S w + αwTXT L̄TX

T
T w} (4)

The parameterα controls the trade-off between source and target
graph. Therefore, it is critical to find a ”good” parameter to guaran-
tee that a feature coefficient is obtained by solving (4). A standard
way to find the ”good” parameter is through cross-validation. How-
ever, we argue that such paradigm may not be suitable for the un-
supervised domain adaptation task, because the target data labels
are unavailable, which makes it impossible to perform the cross-
validation.

In our approach, instead of converging two separate objective
terms into a single objective by introducing a trade-off parameter,
we aim to directly solve the following multi-objective optimization,
which is one of our main contributions.

w = arg min
w
{wTXSL̄SX

T
S w,wTXT L̄TX

T
T w} (5)

We add the following constraints where the last two constraints
exclude the solution with eigenvalue 0.

Ω
.
= {w ∈ R | wTw = 1, XSw ⊥ D1/2

S 1, XTw ⊥ D1/2
T 1}

(6)
To solve the above multi-objective optimization problem, we

aim to find the Pareto frontier (Davidson et al. 2013). Before we
introduce the concept of Pareto frontier, we first define Pareto im-
provement.
Pareto Improvement: We set fS(w) = wTXSL̄SX

T
S w and

fT (w) = wTXT L̄TX
T
T w. Given two coefficients w and w′, we

say w is a Pareto improvements over w′ if and only if one of the
following two conditions holds:

fS(w) < fS(w′) ∧ fT (w) ≤ fT (w′)

or
fS(w) ≤ fS(w′) ∧ fT (w) < fT (w′)

When w is a Pareto improvement over w′, we say w is better than
w′.

Pareto frontier P̂ refers to the optimal set of solutions, which
satisfy the following three properties:

1. any w in P̂ is better than that not in P̂ ;

2. any two w in P̂ are equally good;

3. for any w in P̂ , it is impossible to reduce the cost on one objec-
tive function without increasing its cost on the other objective
function.
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Therefore, the Pareto frontier is a complete set of equally ”good”
solutions that are superior to any other possible solutions. Despite
this good property of Pareto frontier, computing Pareto frontier
is unfortunately NP-hard in most cases. However, (Davidson et
al. 2013) show that if a multi-objective optimization problem has
graph-cut objective terms, then its approximated Pareto frontier can
be solved efficiently with a generalized eigendecomposition prob-
lem.

Computing the Pareto Frontier via
Generalized Eigendecomposition

For the optimization problem defined in formula (5), its Pareto
frontier contains infinite number of solutions. In order to make the
computation efficient, we made an approximation to original opti-
mization problem, by introducing additional constraints to narrow
down the search space. Particularly, we aim to find a subset of solu-
tions in Pareto frontier which is distinctive enough. Therefore, we
apply an mutually orthogonal constraint, which is defined as:

Ω̂
.
= {w ∈ Ω | ∀w 6= w′, XSw ⊥ D1/2

S 1, XTw ⊥ D1/2
T 1}

(7)
Under an assumption that the null space of XSL̄SX

T
S and

XT L̄TX
T
T do not overlap, the optimization turns into solving

a generalized Hermitian definite pencil problem (Demmel et al.
2000). Then Ω̂ is the set of N eigenvectors of the generalized eigen-
value problem (Golub and Van Loan 1996).

XSL̄SX
T
S w = λXT L̄TX

T
T w (8)

However, in order to get a stable solution of the above eigen-
problem, XT L̄TX

T
T is required to be non-singular (Golub and

Van Loan 1996). Since in our applications, this does not always
hold, in order to make the computation numerically stable, we
adopt the SVD decomposition described as below.

SVD decomposition
Suppose we have the SVD decomposition ofXT asXT = UΣV T .
If we let X̄T = UTXT = ΣV T and multiply UT to both sides of
the equation, we can rewrite Eq. (8) as :

UTXSL̄SX
T
S w = λUTXT L̄TXT

Tw

= λX̄T L̄TXT
Tw

(9)

If we let w = Ub, then we have:

UTXSLSX
T
S Ub = λX̄T L̄TXT

TUb

= λX̄T L̄T X̄T
T
b

(10)

Let X̄S = UTXS , then we rewrite Eq. (10) as:

X̄SL̄SX̄S
T
b = λX̄T L̄T X̄T

T
b (11)

whose optimal solution for b∗’s can be still solved as the general-
ized eigenvalue problem. It is easy to check that X̄T L̄T X̄T

T have
a larger chance to be nonsingular so that the above eigen-problem
has a stable closed form.

After we obtain b∗, then w∗ is obtained by solving a set of
linear equations w∗ = Ub∗. The above function consists ofN −2

orthogonal cuts in Ω̂. We further compute the Pareto frontier using
the Algorithm 1.

Algorithm 1: Locality Preserving Projection for Do-
main Adaption with Multi-Objective Learning

input : Data Matrix: XS , XT , Label: yS
output: The set of Pareto optimal weights: P̂

1 Compute the normalized graph Laplacians L̄S , L̄T , and
compute the SVD decomposition for XS = USV .

2 Solve the generalized eigenvalue problem:
UTXSL̄SX

T
S Ub = λX̄T L̄T X̄T

T
b.

3 Let w = UTb, Normalize all w’s such that wTw = 1.
4 Let P̂ be the set of all the w, excluding the two

associated with eigenvalue 0 and∞.
5 for all w in P̂ do
6 for all w′ in P̂ do
7 if w is a Pareto improvement over w′ then
8 remove w′ from P̂ ;
9 continue;

10 if w′ is a Pareto improvement over w then
11 remove w from P̂ ;
12 break;

Approximation Bound for Our Algorithms
As described above, we compute the orthogonal Pareto frontier as
an approximation to the Pareto frontier. Here we create an up-
per bound on how far a point in the Pareto frontier can be to
the orthogonal Pareto frontier. Let Ω̂ = {b̂i}N−2

i=1 and B̂ =

(b̂1, · · · , b̂N−2). Any b ∈ Ω can be represented by a linear com-
bination of b̂i’s: b = B̂a, where a = (a1, a2, · · · , aN−2)T . Ac-
cording to (Davidson et al. 2013), we can derive a lower-bound for
‖a‖.

‖a‖2 ≥ 1/σ2
max(B̂) (12)

where 1/σ2
max(B̂) is the largest singular value of B̂. The larger

1/σ2
max(B̂) is, the closer the two costs on the Pareto frontier and

orthogonal Pareto frontier. This effectively bounds the difference
between the costs of the cuts on the Pareto frontier and those on
the orthogonal Pareto frontier.

Empirical Study
In this section, results of our analysis of locality preserving projec-
tion for domain adaptation with multi-objective learning are pre-
sented. First, the data sets and the experiment settings used in this
analysis are briefly described. Second, we analyze the classification
accuracy for different domain adaptation algorithms on real world
data sets. We aim to answer the following questions: (1) how does
our algorithms perform on data sets with different distributions on
training and test? (2) how does it compare to other domain adapta-
tion algorithms?

Data description and experiment setup
The data set we evaluate first is the USPS handwritten digit
database (Hull 1994). We extract two data sets from 9298 16x16
handwritten digit data sets. The data set ’USPS1’ is constructed as
follows: the source domain contains all the handwritten digits of
’1’s which are labeled ’+1’, all the handwritten digits of ’8’s which
are labeled ’-1’. The target domain includes all handwritten digits
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’7’s and ’3’s with no labels. The data set ’USPS2’ is constructed in
a similar way as that for ’USPS1’. The source domain contains all
handwritten digits ’7’s with label ’+1’ and ’8’s with label ’-1’. The
target domain includes all handwritten digits ’2’s and ’3’s with no
labels.

We then evaluate our algorithm on the 14 tumor data sets which
were published by Ramaswamy et al. (Statnikov et al. 2005), and
we downloaded them in the preprocessing version from Statnikov
(Statnikov et al. 2005). The data sets contain 14 different human
tumor types and 12 normal types. Each type of tumor have only
10s order of subjects and 15009 genes. We extract three transfer
learning data sets by coupling normal and tumor samples from the
same tissue type together. The details of each data sets are as fol-
lows. For ’Bladder-Uterus’, the source domain contains all normal
and disease samples with labels extracted from bladder tissue. The
target domain includes all normal and disease samples without la-
bels extracted from uterus tissue. For ’Prostate-Uterus’, the source
domain contains all normal and disease samples with labels ex-
tracted from prostate tissue. The target domain includes all normal
and disease samples without labels extracted from uterus tissue.
For ’Uterus-Pancreas’, the source domain contains all normal and
disease samples with labels extracted from uterus tissue. The target
domain includes all normal and disease samples without labels ex-
tracted from pancreas tissue. We aim to predict whether a sample
in the target domain is normal or disease given that samples in the
source domain with labels.

At last, we evaluate our algorithm on the Lung tumor and brain
tumor data sets downloaded from (Statnikov et al. 2005). The
source domain for ’Lung1’ contains all samples in ’Adeno’ and
’Squamous’. The target domain for ’Lung1’ contains all samples
in ’CIOD’ and ’SMCL’. In the same way, the source domain for
’Lung2’ contains all samples in ’Adeno’ and ’SMCL’. The target
domain for ’Lung2’ contains all samples in ’CIOD’ and ’Squa-
mous’. The source domain for ’Brain’ contains all samples in
’Medulloblastoma’ and ’Malignant glima’. The target domain for
’Brain’ contains all samples in ’AT/RT’ and ’PNET’. In this part,
we aim to adapt the feature space between source domain and tar-
get domain and aim to separate two types of cancers.

The details of each data sets are listed in Table 1. It is easy to
observe that there are several data sets with extremely small sam-
ple size and high dimensional feature space. And for the USPS
data sets, the distribution for some features in the training data sets
is significantly different from that in the test data sets. We want
to see how our algorithms perform on all these various kinds of
transfer learning data sets. To make comparisons, we implemented
several state-of-art domain adaptation algorithms. GFK embeds the
datasets into Grassmann manifolds and constructs geodesic flows
between them to model domain shifts (Gong et al. 2012). TCA dis-
covers a latent feature representation across domains by learning
some transfer components in reproducing Kernel Hilbert space us-
ing maximum mean discrepancy. Our baseline method ’Original’
use the original features without learning a new representation for
adaptation. We use 1-nearest neighbor classifier to do the classifi-
cation and report the classification accuracy for each data set.

Experiment Results
The results are summarized in Table 2. From the table, it is easy to
observe that our algorithm can achieve better classification on al-
most all data sets. Most importantly, our approach is more reliable
in terms of performance than its competitors when the training and
test data sets differ significantly.

For the gene expression data sets, which have very few of sam-
ples and high dimension of genes, our approach can find a linear
projection which can enhance the classification accuracy. For the

USPS data sets, there are quite a lot of features which have dif-
ferent distribution across the source and target domains. The new
feature representation computed by GFK failed to adapt the source
domain to the target domain.

Conclusion and Future Work
In this paper, we explore the locality preserving projection for do-
main adaptation with multi-objective learning. We propose multi-
objective formulation for domain adaptation. The search space of
our objective is the joint numerical range of two graphs. We find a
relaxed mutually orthogonal optimal sets by using Pareto optimiza-
tions. The effectiveness of our approach is evaluated on the bench-
mark data sets with comparison to the state-of-the-art algorithms.
The pragmatic benefits of our approach over existing domain adap-
tation algorithms are: 1) the users do not need to specify the trade-
off parameters; 2) the training and test data sets do not need to be
similar to each other. Our algorithm can find the new feature repre-
sentation which can effectively preserve the local structure.
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Figure 1: The training and test data sets for USPS handwritten digit: the first two rows represent the training data with labels,
the third and fourth rows represent test data without labels.

Table 1: Summary of Data Sets

Datasets Training Testing Features
Pos vs Neg Pos vs Neg

Lung1 20 : 6 17 : 21 12600
Lung2 21 : 6 17 : 20 12600
Brain 7 : 14 14 : 15 10367
USPS1 664 : 731 1858 : 645 256
USPS2 644 : 731 542: 645 256

Bladder − Uterus 11 : 7 11 : 6 15009
Prostate− Uterus 14 : 9 11 : 6 15009
Uterus− Pancreas 11 : 6 11 : 10 15009

Datasets Original TCA GFK Our method
Lung1 0.5263 0.6053 0.6053 0.8158
Lung2 0.7027 0.6406 0.6406 0.8919
Brain 0.8966 0.8621 0.8966 0.9655
USPS1 0.8554 0.5610 0.6117 0.9036
USPS2 0.8569 0.7787 0.7889 0.8833

Bladder − Uterus 0.6534 0.6191 0.7110 0.7059
Prostate− Uterus 0.7059 0.7647 0.7647 0.8235
Uterus− Pancreas 0.7143 0.7143 0.7619 0.8095

Table 2: Performance comparison of classification accuracy of different domain adaptation algorithms on different datasets.
The best results of each data set are highlighted in bold.
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