
Manifold Spanning Graphs

CJ Carey and Sridhar Mahadevan
School of Computer Science

University of Massachusetts, Amherst
Amherst, Massachusetts, 01003
{ccarey,mahadeva}@cs.umass.edu

Abstract

Graph construction is the essential first step for nearly all
manifold learning algorithms. While many applications as-
sume that a simple k-nearest or ε-close neighbors graph will
accurately model the topology of the underlying manifold,
these methods often require expert tuning and may not pro-
duce high quality graphs. In this paper, the hyperparameter
sensitivity of existing graph construction methods is demon-
strated. We then present a new algorithm for unsupervised
graph construction, based on minimal assumptions about the
input data and its manifold structure.

Introduction
Manifold learning is a well-established set of techniques for
understanding and manipulating the high dimensional data
inherent in state-of-the-art machine learning applications. A
variety of popular algorithms exist for manifold-based di-
mension reduction (Belkin and Niyogi 2001; Coifman and
Lafon 2006; Roweis and Saul 2000; Tenenbaum, Silva, and
Langford 2000; Zhang and Zha 2002), alignment (Ham, Lee,
and Saul 2005; Wang and Mahadevan 2009), and clustering
(Shi and Malik 2000), and each of these algorithms shares a
common first step: the construction of a discrete approxima-
tion of the manifold in the form of a graph.

This first step is critically important for the performance
of the algorithm as a whole, yet the area of manifold graph
construction has received a relative lack of attention from
the manifold learning community. Many papers relegate
the task to the default k-nearest or ε-close neighborhood-
based construction algorithms, even though these have been
shown to be sensitive to noise and scaling issues (Bala-
subramanian and Schwartz 2002). Other approaches have
drawn inspiration from neural networks (Kohonen 1990;
Bishop, Svensén, and Williams 1998), but often fail to rep-
resent complex manifold structures accurately due to their
restrictive global models (Tenenbaum 1998).

Several algorithms have attempted to side-step the graph
construction problem altogether, by explicitly representing
the manifold as a combination of piecewise linear compo-
nents (Kambhatla and Leen 1997; Tipping and Bishop 1999;
Hinton, Dayan, and Revow 1997). These approaches only

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

provide coarse approximations, however, and require spe-
cialized algorithms for the varied downstream applications
that graph-based representations enable naturally, like out-
of-sample extension and cross-manifold alignment.

More recently, attempts have been made to blend the
process of graph construction with dimensionality reduc-
tion (Yang and Chen 2010; Zhang, Chen, and Qiao 2012).
These methods aim to build a graph and compute an em-
bedding simultaneously, which offers potential benefits to
graph quality at the cost of limiting the generality of the al-
gorithm. In this same fashion, many graph construction algo-
rithms have been proposed to exploit additional information
in specific problem domains (Johns and Mahadevan 2007;
Rohban and Rabiee 2012).

In this paper, we introduce a novel algorithm for construc-
tion of manifold topology preserving graphs, based on the
parameter-free forest-joining framework of Kruskal’s mini-
mum spanning tree algorithm (Kruskal 1956) and the struc-
tural information conveyed by locally linear subspace fit-
ting (Hinton, Dayan, and Revow 1997; Kambhatla and Leen
1997; Tipping and Bishop 1999; Zhang and Zha 2002). This
combined approach constructs graphs that respect both inter-
point distances and edge-to-manifold angles, without requir-
ing the use of any expert-tuned hyperparameters.

Manifolds and Graph Construction
It is commonly held that while most information we en-
counter in the real world is high dimensional and noisy, the
true structure of the data lies on a lower-dimensional mani-
fold. These globally nonlinear manifolds are assumed to be
locally linear given neighborhoods of a specific, and typi-
cally unknown, size. Understanding the manifold structure
in data is an important tool when combating the curse of
dimensionality, as this local linearity property enables man-
ifold embedding to spaces with simple distance metrics and
compact feature representations (Tenenbaum 1998).

Manifold Representations
In order to represent a manifold computationally, it is often
useful to create a discrete approximation in the form of a
graph (Martinetz and Schulten 1994). Vertices of the graph
are sampled from the input data (and thus lie on the man-
ifold), and edges are chosen such that no point along the

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1708

Figure 1: θ-parametrized Swiss Roll, in x-y-z input space (left) and r-θ manifold space (right). Points are shaded by θ value.

edge lies outside the manifold. The graph construction prob-
lem can be framed as follows: given a set of points in an
arbitrarily high-dimensional space, produce a set of edges
that satisfy the “along-manifold” constraint. Furthermore,
algorithms should produce enough edges that each manifold
present in the input data can be represented by exactly one
connected component.

Some methods of manifold representation eschew the
graph approximation, however, in favor of computing a
piecewise-linear representation. This family of methods in-
cludes charting (Brand 2002), as well as several local PCA
algorithms (Kambhatla and Leen 1997; Tipping and Bishop
1999). This latter group takes a data-driven approach by fit-
ting linear subspaces that lie tangent to the manifold sur-
face. This concept has proven useful in the Local Tan-
gent Space Alignment embedding algorithm (Zhang and Zha
2002), which, given an existing graph representation, com-
putes subspaces on local neighborhoods to recover embed-
dings with less distortion.

Graph Construction Algorithms
The most commonly used algorithm for graph construction
is k-nearest neighbors, in which distances between all pairs
of points are computed, and edges are added between a
point, p, and the k points with the smallest distance from p.
While computationally efficient and simple, this algorithm
does not necessarily create a symmetric graph, as some of
p’s k nearest neighbors may not include p among their k
nearest neighbors. Symmetry is an important property for
downstream algorithms such as Spectral Embedding (Belkin
and Niyogi 2001), so a k-nearest adjacency matrix W is of-
ten symmetrized as Wsym = W+W>

2 .
The other canonical graph construction method is the ε-

close algorithm: edges are added between each point p and
all other points with distance less than a threshold ε. While
this algorithm always constructs a symmetric graph, it also
tends to over-connect, especially when the input data is not
uniformly distributed or poorly scaled. There is also no guar-
antee on the maximum degree of vertices in the generated
graph.

Others have proposed alternative graph construction algo-
rithms, such as b-matching (Jebara, Wang, and Chang 2009).
Given an affinity matrix, this algorithm produces a balanced

graph that minimizes the sum of edge weights, under the
constraint that each vertex has degree b.

The Manifold Spanning Graph Algorithm
This paper presents a novel, bottom-up algorithm for graph
construction. Inputs areX , anN×Dmatrix ofD-dimension
points, d, an estimate of the intrinsic dimension of the un-
derlying manifold, and m, the desired number of connected
components in the final graph. The high-level procedure can
be divided into three stages:

1. Divide X into many small connected components of size
at least d+1, then compute a d-dimension linear subspace
for each component via PCA.

2. Add edges between components that minimize both Eu-
clidean distance and the maximum angle created by the
new edge and the two subspaces it joins. Continue adding
edges until m connected components remain.

3. Add more edges to fill out gaps in the graph structure, us-
ing the learned subspaces from step 1 as well as distance
and angle thresholds learned in step 2.

The following sections examine each stage in detail.

Connectivity Forest and Subspace Construction
For a manifold with intrinsic dimension d, a locally linear
patch can be accurately described with at least d+ 1 points,
assuming general position (Yale 1968). Therefore, the first
task is to partition the input data into groups of at least
d + 1 points, composing many small, locally linear neigh-
borhoods: a “connectivity forest”. Note that this does not
imply that each vertex in the graph should have degree d, as
each neighborhood need not form a complete graph.

Instead, we begin by connecting each point with its near-
est neighbor in input space. This relies on the assumption
that the edge formed between a point and its first nearest
neighbor in input space does not leave the underlying mani-
fold. In practice, this is a fairly weak assumption, given rea-
sonably densely sampled input data. This assumption is also
required for k-nearest neighbors, as well as ε-close neigh-
bors in the case where m = 1.

Once the first-nearest neighbors are connected, we can
compute the set of strongly connected components C(0)

1709

(Tarjan 1972). For any components Ci ∈ C(0) where |Ci| <
d + 1, additional edges are added by merging Ci with Cj

such that:
Cj = arg min

j 6=i
min

p∈Ci,q∈Cj

‖p− q‖2 (1)

Again, we assume that pairs of edges close in input space
are also close in the manifold’s geodesic space.

When all components in C(0) satisfy the cardinality con-
dition in Equation 1, we compute the set of linear subspaces:

P =
{

PCAd (Ci) | Ci ∈ C(0)
}

(2)

Each Pi is represented by the first d principal components
(Jolliffe 2002) of the vertices in Ci. This procedure at this
stage is reminiscent of the Local PCA algorithm (Kambhatla
and Leen 1997), albeit with a different selection criterion for
the sets of points Ci. The primary difference, however, is
that the subspaces P are not the final representation of the
manifold, but only an intermediate set of constraints on edge
connections. In this way, P may be viewed as an implicit set
of charts (Brand 2002; Lin and Zha 2008), with the inter-
chart connections yet undefined.

Component Joining
Given a desired number of connected components m, we
continue to add edges until

∣∣C(t)
∣∣ = m. For this task, we

consider only edges between “adjacent” connected compo-
nents, that is, (Ci, Cj) pairs satisfying Equation 1. In addi-
tion to this requirement, a candidate edge (p ∈ Ci, q ∈ Cj)
must satisfy:

‖ē‖2 ≤ εdist (3)

max
(
‖Pi − ē‖F , ‖Pj − ē‖F

)
≤ εangle (4)

where ē ≡ p−q. In Equation 4, ‖·‖F refers to the projection
F-norm (Gruber and Theis 2006), in this case measuring the
angle between the edge vector and each adjoining subspace.
This process is illustrated in Figure 2.

It is clear that with appropriate threshold values of εdist
and εangle, only edges which lie on the manifold will be
added. Rather than assigning these thresholds as hyperpa-
rameters of the algorithm, we can employ an incremental
step-up scheme:

1. Initialize εdist and εangle to zero.
2. Set εdist to the minimum inter-component distance, then

set εangle to the minimum angle produced by the corre-
sponding edge.

3. Add any edges that now meet the criteria in constraints 3
and 4.

4. Recalculate strongly connected components C(t+1), and
unless

∣∣C(t+1)
∣∣ = m, return to step 2.

If desired, an additional constraint on the final degree of each
vertex may be imposed to avoid edge overcrowding.

Note that as edges are added and the cardinality of the re-
maining components in C(t) increase, each Ci is likely to
lose its linearity property. For this reason, we refrain from
recomputing PCA subspaces as in Equation 2, but instead
maintain a mapping for elements from each C(t) to their
original components in C(0), and thus P .

Figure 2: Component joining. Dashed lines indicate the Pi

subspace of each component. Dotted lines show two possi-
ble edges that satisfy Equation 3. Only the A-B edge will be
added, as the A-C edge does not satisfy Equation 4.

Figure 3: Limitation of only connecting adjacent compo-
nents. Components A and C should connect along the dotted
edge, but no edges will be added between them after they
merge via the addition of the dashed A-B and B-C edges.

Edge Addition Post-processing
One limitation of the proposed algorithm is that only edges
between “adjacent” connected components are added, which
may result in a lack of edges that convey important structural
information, even after the desired number of connected
components is reached. Figure 3 illustrates this issue.

To mitigate these effects, we can run one iteration of post-
processing, applying the same εdist and εangle constraints to
filter candidate edges, with one additional constraint:

|ShortestPath (p, q)| ≥ h (5)

where ShortestPath (p, q) refers to the number of edges that
a potential (p, q) edge would short-circuit. Thus, the param-
eter h acts as a lower bound on geodesic distance. This helps
to ensure that only those edges that will add significant topo-
logical structure to the graph are added, as edges with low
geodesic distance are already well-approximated by the ex-
isting graph. Setting h ≡ d + 1 is a reasonable default, so
this extra parameter requires no expert tuning.

1710

Algorithm Analysis
If no estimate for d is available a priori, the algorithm can
infer a reasonable d from the explained variance of each
PCA subspace, using Isomap’s “elbow” heuristic on a local
scale. Alternatively, the intrinsic dimension of the underly-
ing manifold can be estimated using any of several existing
techniques (Kégl 2002; Levina and Bickel 2004). Thus, the
d parameter can be considered optional.

The only other parameter is the number of desired con-
nected components,m. This, too, is an optional setting, asm
only determines the algorithm’s stopping condition. In cases
where no good value ofm is known a priori, one may simply
set m = 1 and output a graph at each iteration.

As the Manifold Spanning Graph algorithm is iterative,
it is important to ensure that the convergence condition∣∣C(t+1)

∣∣ = m is met for some value of t. This convergence
property is proved by examining the four possible cases:

1. At least one edge satisfies both constraints 3 and 4. All
candidate edges connect disjoint connected components,
so when the edge is added it merges at least two compo-
nents and decreases

∣∣C(t+1)
∣∣ by at least one.

2. No edge satisfies constraint 3, but at least one edge sat-
isfies constraint 4. εdist is increased to the length of the
minimum-angle edge satisfying constraint4, and the first
condition now applies.

3. No edge satisfies constraint 4, but at least one edge sat-
isfies constraint 3. εangle is increased to the angle of the
minimum-length edge satisfying constraint 3, and the first
condition now applies.

4. No edge satisfies either constraint 3 or 4. εdist is increased
to the minimum length of all candidate edges, εangle is in-
creased to the chosen edge’s angle, and the first condition
now applies.

Thus, we prove that as limt→∞
∣∣C(t)

∣∣ → 1, and that the
MSG algorithm converges in all cases where m ≤

∣∣C(0)
∣∣.

Experimental Results
The preceding algorithm was implemented in Python us-
ing open-source libraries (Oliphant 2007; Pedregosa et al.
2011). Source code will be made available publicly on the
author’s website following publication.

Parametric Swiss Roll
We consider the classic “swiss roll” dataset, shown in Figure
1. Points on the roll are randomly distributed along the z-
axis, and their other coordinates are parameterized by r and
θ, which control the distance from and angle with the origin,
respectively:

x = r sin θ (6)
y = r cos θ

z = Uniform (0, 1)

Under this parametrization, it is trivial to recover the opti-
mal embedding by plotting the points in (θ, z) space. We
can also define an objective measure of graph quality, mark-
ing an edge as incorrect if it connects points p and q, and

Figure 4: Sensitivity of k-nearest (left) and ε-close (right)
algorithms. The dashed vertical lines represent the first hy-
perparameter value producing one connected component.

|θp − θq| > ε. For the following experiments, we used the
threshold ε = 0.1. One measure of overall graph quality is
thus the “edge error ratio”, defined as the ratio of incorrect
edges to total edges in the graph.

We first calculate this error ratio for the standard k-nearest
and ε-close graphs, over the set of reasonable hyperparame-
ters. The results in Figure 4 show that for our particular data
set, there is no value of k which produces a graph with a
low error ratio that also forms a single connected compo-
nent. This replicates previous results (Balasubramanian and
Schwartz 2002) which demonstrated that simple k-nearest
neighbor algorithms are sensitive to noise. While there are
some values of ε that avoid introducing erroneous edges
while forming one connected component, these tend to over-
connect the graph (see Figure 4), and begin to fail dramati-
cally once a certain ideal threshold has been met.

By contrast, the Manifold Spanning Graph algorithm pre-
sented in this paper produces a connected graph with min-
imal incorrect edges, without requiring any hyperparameter
tuning. Figure 5 illustrates the effect of incorrect edges on
an Isomap embedding of the swiss roll data.

To evaluate the average performance of each algorithm,
the number of incorrect edges and total edges were calcu-
lated over 200 randomly-generated swiss rolls (following
Equation 6). Hyperparameters k, ε, and b were optimized to
produce one connected component for the first swiss roll,
then the same parameters were used for all future exam-
ples. No hyperparameter tuning is required for the Mani-
fold Spanning Graph algorithm. Figure 6 demonstrates that
the MSG algorithm consistently produces near-zero incor-
rect edges, while still generating a reasonable number of to-
tal edges.

MNIST digit clustering
Real world data often makes evaluating graph quality diffi-
cult, as the optimal low-dimensional embedding is typically
unknown. However, the MNIST dataset of 10, 000 hand-

1711

(a) k-nearest (b) ε-close

(c) b-matching (d) Manifold Spanning Graph

Figure 5: Side-on view of Swiss Roll graphs (left) and their
resulting Isomap embeddings (right). For the algorithms that
require hyperparameter tuning, the parameters k, ε, and b
were set by choosing the smallest value that produced a sin-
gle connected component. Sub-figures (a) and (c) demon-
strate the disproportionate effect that short-circuit edges
have on the learned embedding.

(a) Incorrect edges (b) Total edges

Figure 6: Summarized performance over 200 random swiss
rolls, each with 500 points. The MSG algorithm produces
graphs with almost zero incorrect edges, forming a single
connected component with a modest number of total edges.
The ε-close algorithm also produces a small number of bad
edges, but tends to overconnect the graph. The k-nearest and
b-matching algorithms produce a reasonable number of total
edges, but many of these are incorrect. The high variance of
these error rates also indicates sensitivity to noise.

written digits (LeCun and Cortes 1998) allows for a sim-
ple “edge error” metric: the ratio of between-class to within-
class edges. Each 28×28 gray-scale image is represented as
a 784-dimensional pixel vector. This test demonstrates the
Manifold Spanning Graph algorithm’s ability to scale up to
high-dimensional data, as well as exercising the ability to
specify m, the number of desired connected components.

Figure 7 demonstrates the applicability of the MSG algo-
rithm on high-dimensional data sets, again revealing a lower
error rate without hyperparameter tuning. The k and b val-
ues were tuned by choosing the first k and b such that the
number of connected components in the resulting graph was
≤ 10, the number of classes in the corpus. The same hyper-
parameter tuning with the ε-close algorithm found no value
of ε producing ≤ 10 connected components with an edge
error ratio under 50%, so we omit further results here.

As a final evaluation of the created graphs from Figure 7,
a simple digit classification task was performed. 30 unique
images were selected at random from the 10, 000-image cor-
pus to act as labeled examples, ensuring that each of the 10
digits had at least one example image. For each of the k-
nearest, b-matching, and Manifold Spanning graphs, a sim-
ple label propagation algorithm (Zhu and Ghahramani 2002)
was used to classify the remaining 9, 970 images. The results
in Table 1 demonstrate once again that the MSG algorithm
produces high-quality graphs without parameter tuning.

Discussion and Future Work
Manifold learning encompasses a powerful set of techniques
which typically rely on the construction of a graph that
accurately represents the input data’s underlying manifold
structure. This graph-based approximation is of critical im-
portance, as even a single incorrect edge could potentially
distort the dimensionality and structure of the discretized
manifold, rendering many downstream computations use-
less. This problem is especially pernicious when manifold
algorithms are applied to high-dimensional, real-world data
sets, in which global structure is often unknown a priori.

This paper presents a novel algorithm for graph construc-
tion based on a bottom-up approach in the style of Kruskal’s
minimum spanning tree algorithm. The proposed method
demonstrates improved accuracy over traditional graph con-
struction algorithms without requiring any expert-tuned hy-
perparameters. The learned graphs approximate the true
manifold structure of the data, relying only on the smooth-
ness and local linearity properties of Riemannian manifolds.

While the assumption that points and their first nearest
neighbor are adjacent in manifold space is reasonable for
completely unstructured data, many corpora carry additional
signal in the form of spatial and temporal correlations. Fu-
ture work will explore specialized algorithms for produc-
ing connectivity forests from these semi-structured inputs,
which may then be joined and filled via the Manifold Span-
ning Graph procedure introduced in this paper.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. NSF CHE-1307179.

1712

(a) k-nearest: 3256/45426 ≈ 7.2% bad
edges (k = 3)

(b) b-matching: 1989/30000 ≈ 6.6% bad
edges (b = 3)

(c) MSG: 1118/23042 ≈ 4.9% bad edges
(m = 10, d = 2)

Figure 7: MNIST neighbor graphs, each represented as a 10, 000 × 10, 000 binary adjacency matrix, sorted by digit label.
Correct edges lie in the block-diagonal region, which corresponds to edges between images of the same digit. Incorrect edges
are counted to compute each graph’s edge error ratio.

0 1 2 3 4 5 6 7 8 9
0 913 0 1 0 0 47 16 2 1 0
1 0 367 20 1 0 3 0 737 7 0
2 25 1 936 5 3 1 3 49 9 0
3 7 5 35 324 2 552 9 17 41 18
4 0 9 1 0 936 1 6 18 1 10
5 19 14 37 0 9 707 6 3 95 2
6 21 2 1 0 4 96 830 3 1 0
7 0 7 7 0 4 0 0 999 1 10
8 12 5 12 4 28 135 5 22 748 3
9 5 12 5 1 477 8 5 145 5 346

(a) k-nearest: 7106/10000 correct

0 1 2 3 4 5 6 7 8 9
0 811 0 23 0 11 12 48 31 8 36
1 9 591 12 3 86 0 0 309 118 7
2 35 0 740 23 31 0 8 115 63 17
3 154 3 40 334 3 252 17 22 48 137
4 7 0 7 0 823 0 23 94 1 27
5 54 0 12 57 22 535 19 15 145 33
6 72 1 8 6 0 123 719 12 14 3
7 6 0 29 25 52 1 1 900 12 2
8 15 1 33 22 11 63 0 26 770 33
9 6 1 5 6 398 4 3 370 13 203

(b) b-matching: 6426/10000 correct

0 1 2 3 4 5 6 7 8 9
0 968 0 0 0 0 3 6 2 1 0
1 0 737 3 23 0 0 3 369 0 0
2 39 177 709 5 2 4 7 83 6 0
3 11 5 8 752 6 31 0 14 134 49
4 5 18 2 0 622 2 3 5 1 324
5 10 5 0 44 20 744 39 12 14 4
6 23 7 0 0 1 0 923 2 2 0
7 6 25 3 2 39 8 0 935 0 10
8 77 14 4 64 19 50 3 27 703 13
9 6 1 3 10 622 3 1 33 15 315

(c) MSG: 7408/10000 correct

Table 1: Confusion matrices from the MNIST digit classification task. True digit labels are on the rows, with predicted labels
along the columns. For each true label, the predicted label with the largest count is shown in bold. The classifier using the
MSG-generated graph achieved the best overall accuracy.

1713

References
Balasubramanian, M., and Schwartz, E. L. 2002. The
isomap algorithm and topological stability. Science
295(5552):7–7.
Belkin, M., and Niyogi, P. 2001. Laplacian eigenmaps and
spectral techniques for embedding and clustering. Advances
in neural information processing systems 14:585–591.
Bishop, C. M.; Svensén, M.; and Williams, C. K. 1998. Gtm:
The generative topographic mapping. Neural computation
10(1):215–234.
Brand, M. 2002. Charting a manifold. In Advances in neural
information processing systems, 961–968.
Coifman, R. R., and Lafon, S. 2006. Diffusion maps. Appl.
Comput. Harmon. Anal 21:5–30.
Gruber, P., and Theis, F. J. 2006. Grassmann clustering.
Proc. EUSIPCO 2006.
Ham, J.; Lee, D.; and Saul, L. 2005. Semisupervised align-
ment of manifolds. In Proceedings of the Annual Conference
on Uncertainty in Artificial Intelligence, Z. Ghahramani and
R. Cowell, Eds, volume 10, 120–127.
Hinton, G. E.; Dayan, P.; and Revow, M. 1997. Modeling the
manifolds of images of handwritten digits. Neural Networks,
IEEE Transactions on 8(1):65–74.
Jebara, T.; Wang, J.; and Chang, S.-F. 2009. Graph con-
struction and b-matching for semi-supervised learning. In
Proceedings of the 26th Annual International Conference on
Machine Learning, 441–448. ACM.
Johns, J., and Mahadevan, S. 2007. Constructing basis func-
tions from directed graphs for value function approximation.
In Proceedings of the 24th international conference on Ma-
chine learning, 385–392. ACM.
Jolliffe, I. 2002. Principal component analysis. Springer
series in statistics. Springer-Verlag.
Kambhatla, N., and Leen, T. K. 1997. Dimension reduction
by local principal component analysis. Neural Computation
9(7):1493–1516.
Kégl, B. 2002. Intrinsic dimension estimation using pack-
ing numbers. In Advances in neural information processing
systems, 681–688.
Kohonen, T. 1990. The self-organizing map. Proceedings
of the IEEE 78(9):1464–1480.
Kruskal, J. B. 1956. On the shortest spanning subtree of a
graph and the traveling salesman problem. Proceedings of
the American Mathematical society 7(1):48–50.
LeCun, Y., and Cortes, C. 1998. The mnist database of
handwritten digits.
Levina, E., and Bickel, P. J. 2004. Maximum likelihood
estimation of intrinsic dimension. In Advances in neural
information processing systems, 777–784.
Lin, T., and Zha, H. 2008. Riemannian manifold learning.
Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on 30(5):796–809.
Martinetz, T., and Schulten, K. 1994. Topology representing
networks. Neural Networks 7(3):507–522.

Oliphant, T. E. 2007. Python for scientific computing. Com-
puting in Science & Engineering 9(3):10–20.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; et al. 2011. Scikit-learn: Machine learn-
ing in python. The Journal of Machine Learning Research
12:2825–2830.
Rohban, M. H., and Rabiee, H. R. 2012. Supervised neigh-
borhood graph construction for semi-supervised classifica-
tion. Pattern Recognition 45(4):1363–1372.
Roweis, S., and Saul, L. 2000. Nonlinear dimensionality
reduction by locally linear embedding. Science 290(2323–
232).
Shi, J., and Malik, J. 2000. Normalized cuts and image
segmentation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 22(8):888–905.
Tarjan, R. 1972. Depth-first search and linear graph algo-
rithms. SIAM journal on computing 1(2):146–160.
Tenenbaum, J. B.; Silva, V. D.; and Langford, J. C. 2000.
A global geometric framework for nonlinear dimensionality
reduction. Science.
Tenenbaum, J. B. 1998. Mapping a manifold of perceptual
observations. Advances in neural information processing
systems 682–688.
Tipping, M. E., and Bishop, C. M. 1999. Mixtures of proba-
bilistic principal component analyzers. Neural computation
11(2):443–482.
Wang, C., and Mahadevan, S. 2009. A general framework
for manifold alignment. In AAAI Fall Symposium on Mani-
fold Learning and its Applications, 53–58.
Yale, P. B. 1968. Geometry and symmetry. Courier Dover
Publications.
Yang, B., and Chen, S. 2010. Sample-dependent graph con-
struction with application to dimensionality reduction. Neu-
rocomputing 74(1):301–314.
Zhang, Z., and Zha, H. 2002. Principal manifolds and
nonlinear dimension reduction via local tangent space align-
ment. arXiv preprint cs/0212008.
Zhang, L.; Chen, S.; and Qiao, L. 2012. Graph optimiza-
tion for dimensionality reduction with sparsity constraints.
Pattern Recognition 45(3):1205–1210.
Zhu, X., and Ghahramani, Z. 2002. Learning from labeled
and unlabeled data with label propagation.

1714

