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Abstract

In machine learning and statistics, probabilistic infer-
ence involving multimodal distributions is quite diffi-
cult. This is especially true in high dimensional prob-
lems, where most existing algorithms cannot easily
move from one mode to another. To address this issue,
we propose a novel Bayesian inference approach based
on Markov Chain Monte Carlo. Our method can effec-
tively sample from multimodal distributions, especially
when the dimension is high and the modes are isolated.
To this end, it exploits and modifies the Riemannian
geometric properties of the target distribution to cre-
ate wormholes connecting modes in order to facilitate
moving between them. Further, our proposed method
uses the regeneration technique in order to adapt the
algorithm by identifying new modes and updating the
network of wormholes without affecting the stationary
distribution. To find new modes, as opposed to redis-
covering those previously identified, we employ a novel
mode searching algorithm that explores a residual en-
ergy function obtained by subtracting an approximate
Gaussian mixture density (based on previously discov-
ered modes) from the target density function.

Introduction
In Bayesian inference, it is well known that standard Markov
Chain Monte Carlo (MCMC) methods tend to fail when the
target distribution is multimodal (Neal 1993; 1996; Celeux,
Hurn, and Robert 2000; Neal 2001; Rudoy and Wolfe 2006;
Sminchisescu and Welling 2011; Craiu, R., and Y. 2009).
These methods typically fail to move from one mode to an-
other since such moves require passing through low proba-
bility regions. This is especially true for high dimensional
problems with isolated modes. Therefore, despite recent ad-
vances in computational Bayesian methods, designing ef-
fective MCMC samplers for multimodal distribution has
remained a major challenge. In the statistics and machine
learning literature, many methods have been proposed ad-
dress this issue (Neal 1996; 2001; Warnes 2001; Laskey and
Myers 2003; Hinton, Welling, and Mnih 2004; Braak 2006;
Rudoy and Wolfe 2006; Sminchisescu and Welling 2011;
Ahn, Chen, and Welling 2013). However, these methods
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tend to suffer from the curse of dimensionality (Hinton,
Welling, and Mnih 2004; Ahn, Chen, and Welling 2013).

In this paper, we propose a new algorithm, which exploits
and modifies the Riemannian geometric properties of the tar-
get distribution to create wormholes connecting modes in
order to facilitate moving between them. Our method can
be regarded as an extension of Hamiltonian Monte Carlo
(HMC). Compared to random walk Metropolis, standard
HMC explores the target distribution more efficiently by ex-
ploiting its geometric properties. However, it too tends to fail
when the target distribution is multimodal since the modes
are separated by high energy barriers (low probability re-
gions) (Sminchisescu and Welling 2011).

In what follows, we provide an brief overview of HMC.
Then, we introduce our method assuming that the locations
of the modes are known (either exactly or approximately),
possibly through some optimization techniques (e.g., (Kirk-
patrick, Gelatt, and Vecchi 1983; Sminchisescu and Triggs
2002)). Next, we relax this assumption by incorporating a
mode searching algorithm in our method in order to identify
new modes and to update the network of wormholes.

Preliminaries
Hamiltonian Monte Carlo (HMC) (Duane et al. 1987; Neal
2010) is a Metropolis algorithm with proposals guided by
Hamiltonian dynamics. HMC improves upon random walk
Metropolis by proposing states that are distant from the cur-
rent state, but nevertheless have a high probability of accep-
tance. These distant proposals are found by numerically sim-
ulating Hamiltonian dynamics, whose state space consists of
its position, denoted by the vector θ, and its momentum, de-
noted by a vector p. Our objective is to sample from the
distribution of θ with the probability density function (up to
some constant) π(θ). We usually assume that the auxiliary
momentum variable p has a multivariate normal distribution
(the same dimension as θ) with mean zero. The covariance
of p is usually referred to as the mass matrix, M , which in
standard HMC is usually set to the identity matrix, I , for
convenience.

Based on θ and p, we define the potential energy, U(θ),
and the kinetic energy, K(p). We set U(θ) to minus the log
probability density of θ (plus any constant). For the auxil-
iary momentum variable p, we set K(p) to be minus the log
probability density of p (plus any constant). The Hamilto-
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nian function is then defined as follows:

H(θ,p) = U(θ) +K(p)

The partial derivatives of H(θ,p) determine how θ and p
change over time, according to Hamilton’s equations,

θ̇ = ∇pH(θ,p) = M−1p

ṗ = −∇θH(θ,p) = −∇θU(θ)
(1)

Note thatM−1p can be interpreted as velocity.
In practice, solving Hamiltonian’s equations exactly is

difficult, so we need to approximate these equations by dis-
cretizing time, using some small step size e. For this pur-
pose, the leapfrog method is commonly used. We can use
some number, L, of these leapfrog steps, with some stepsize,
e, to propose a new state in the Metropolis algorithm. This
proposal is either accepted or rejected based on the Metropo-
lis acceptance probability.

While HMC explores the target distribution more ef-
ficiently than random walk Metropolis, it does not fully
exploits its geometric properties. Recently, (Girolami and
Calderhead 2011) proposed a new method, called Rieman-
nian Manifold HMC (RMHMC), that improvs the efficiency
of standard HMC by automatically adapting to the local
structure. To this end, they follow (Amari and Nagaoka
2000) and propose Hamiltonian Monte Carlo methods de-
fined on the Riemannian manifold endowed with metric
G0(θ), which is set to the Fisher information matrix. More
specifically, they define Hamiltonian dynamics in terms of
a position-specific mass matrix, M , set to G0(θ). The
standard HMC method is a special case of RMHMC with
G0(θ) = I . Here, we use the notationG0 to generally refer
to a Riemannian metric, which is not necessarily the Fisher
information. In the following section, we introduce a natu-
ral modification ofG0 such that the associated Hamiltonian
dynamical system has a much greater chance of moving be-
tween isolated modes.

Wormhole Hamiltonian Monte Carlo
Consider a manifold M endowed with a generic metric
G0(θ). Given a differentiable curve θ(t) : [0, T ] → M
one can define the arclength along this curve as

`(θ) :=

∫ T

0

√
θ̇(t)TG0(θ(t))θ̇(t)dt (2)

Under very general geometric assumptions, which are nearly
always satisfied in statistical models, given any two points
θ1,θ2 ∈ M there exists a curve θ(t) : [0, T ]→M satisfy-
ing the boundary conditions θ(0) = θ1,θ(T ) = θ2 whose
arclength is minimal among such curves. The length of such
a minimal curve defines a distance function on M. In Eu-
clidean space, where G0(θ) ≡ I , the shortest curve con-
necting θ1 and θ2 is simply a straight line with the Euclidean
length ‖θ1 − θ2‖2.

As mentioned above, while standard HMC algorithms ex-
plore the target distribution more efficiently, they neverthe-
less fail to move between isolated modes since these modes
are separated by high energy barriers (Sminchisescu and

Welling 2011). To address this issue, we propose to replace
the base metric G0 with a new metric for which the dis-
tance between modes is shortened. This way, we can facil-
itate moving between modes by creating “wormholes” be-
tween them.

Let θ̂1 and θ̂2 be two modes of the target distribution.
We define a straight line segment, vW := θ̂2 − θ̂1, and re-
fer to a small neighborhood (tube) of the line segment as a
wormhole. Next, we define a wormhole metric, GW (θ), in
the vicinity of the wormhole. The metricGW (θ) is an inner
product assigning a non-negative real number to a pair of
tangent vectors u,w: GW (θ)(u,w) ∈ R+. To shorten the
distance in the direction of vW , we project both u,w to the
plane normal to vW and then take the Euclidean inner prod-
uct of those projected vectors. We set v∗W = vW /‖vW ‖ and
define a pseudo wormhole metricG∗

W as follows:

G∗
W (u,w) := 〈u− 〈u,v∗W 〉v∗W ,w − 〈w,v∗W 〉v∗W 〉

= uT[I − v∗W (v∗W )T]w

Note that G∗
W := I − v∗W (v∗W )T is semi-positive definite

(degenerate at v∗W 6= 0). We modify this metric to make
it positive definite, and define the wormhole metric GW as
follows:

GW = G∗
W + εv∗W (v∗W )T = I − (1− ε)v∗W (v∗W )T (3)

where 0 < ε� 1 is a small positive number.
To see that the wormhole metric GW in fact shortens the

distance between θ̂1 and θ̂2, consider a simple case where
θ(t) follows a straight line: θ(t) = θ1 + vW t, t ∈ [0, 1]. In
this case, the distance underGW is

dist(θ̂1, θ̂2) =

∫ 1

0

√
vT
WGWvW dt =

√
ε‖vW ‖ � ‖vW ‖

which is much smaller than the Euclidean distance.
Next, we define the overall metric, G, for the whole pa-

rameter space of θ as a weighted sum of the base metricG0

and the wormhole metricGW ,

G(θ) = (1−m(θ))G0(θ) +m(θ)GW (4)

where m(θ) ∈ (0, 1) is a mollifying function designed to
make the wormhole metricGW influential in the vicinity of
the wormhole only. In this paper, we choose the following
mollifier:

m(θ) := exp{−(‖θ−θ̂1‖+‖θ−θ̂2‖−‖θ̂1−θ̂2‖)/F} (5)

where the influence factor F > 0, is a free parameter
that can be tuned to modify the extent of the influence of
GW : decreasing F makes the influence of GW more re-
stricted around the wormhole. The resulting metric leaves
the base metric almost intact outside of the wormhole, while
making the transition of the metric from outside to inside
smooth. Within the wormhole, the trajectories are mainly
guided in the wormhole direction v∗W : G(θ) ≈ GW , so
G(θ)−1 ≈ GW

−1 has the dominant eigen-vector v∗W (with
eigen-value 1/ε � 1), thereafter v ∼ N (0,G(θ)−1) tends
to be directed in v∗W .

We use the modified metric (4) in RMHMC and refer
to the resulting algorithm as Wormhole Hamiltonian Monte
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Figure 1: Comparing HMC and WHMC in terms of sam-
pling from a two-dimensional posterior distribution with two
isolated modes (Welling and Teh 2011).

Carlo (WHMC). Figure 1 compares WHMC to standard
HMC based on the following illustrative example appeared
in the paper by (Welling and Teh 2011):

θd ∼ N (θd, σ
2
d), d = 1, 2.

xi ∼
1

2
N (θ1, σ

2
x) +

1

2
N (θ1 + θ2, σ

2
x).

Here, we set θ1 = 0, θ2 = 1, σ2
1 = 10, σ2

2 = 1, σ2
x = 2, and

generate 1000 data points from the above model. In Figure
1, the dots show the posterior samples of (θ1, θ2) given the
simulated data. While HMC is trapped in one mode, WHMC
moves easily between the two modes. For this example, we
set G0 = I to make WHMC comparable to standard HMC.
Further, we use 0.03 and 0.3 for ε and F respectively.

For more than two modes, we can construct a network of
wormholes by connecting any two modes with a wormhole.
Alternatively, we can create a wormhole between neighbor-
ing modes only. In this paper, we define the neighborhood
using a minimal spanning tree (Kleinberg and Tardos 2005).

The above method could suffer from two potential short-
comings in higher dimensions. First, the effect of wormhole
metric could diminish fast as the sampler leaves one mode
towards another mode. Second, such mechanism, which
modifies the dynamics in the existing parameter space, could
interfere with the native HMC dynamics in the neighbor-
hood of a wormhole, possibly preventing the sampler from
properly exploring areas around the modes as well as some
low probability regions.

To address the first issue, we add an external vector field
to enforce the movement between modes. More specifically,
we define a vector field, f(θ,v), in terms of the position pa-
rameter θ and the velocity vector v = G(θ)−1p as follows:

f(θ,v) := exp{−V (θ)/(DF )}U(θ)〈v,v∗W 〉v∗W
= m(θ)〈v,v∗W 〉v∗W

with mollifier m(θ) := exp{−V (θ)/(DF )}, where D is
the dimension, F > 0 is the influence factor, and V (θ) is a
vicinity function indicating the Euclidean distance from the
line segment vW ,

V (θ) := 〈θ− θ̂1,θ− θ̂2〉+ |〈θ− θ̂1,v∗W 〉||〈θ− θ̂2,v∗W 〉|
(6)

The resulting vector field has three properties: 1) it is con-
fined to a neighborhood of each wormhole, 2) it enforces the
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Figure 2: Sampling from a mixture of 10 Gaussian distribu-
tions with dimension D = 100 using WHMC with a vector
field f(θ,v) to enforce moving between modes in higher
dimensions. Dashed lines show the minimal spanning tree.

movement along the wormhole, and 3) its influence dimin-
ishes at the end of the wormhole when the sampler reaches
another mode. Such a vector field acts as an external driv-
ing force on the sampler. In high dimensions, this approach
works more effectively than the wormhole metric discussed
above.

After adding the vector field, we modify the Hamiltonian
equation governing the evolution of θ as follows:

θ̇ = v + f(θ,v) (7)
We also need to adjust the Metropolis acceptance probabil-
ity accordingly since the transformation is not volume pre-
serving. (More details are provided in the supplementary
file.) Figure 2 illustrates this approach based on sampling
from a mixture of 10 Gaussian distributions with dimension
D = 100.

To address the second issue, we allow the wormholes to
pass through an extra auxiliary dimension to avoid their in-
terference with the existing HMC dynamics in the given pa-
rameter space. In particular we introduce an auxiliary vari-
able θD+1 ∼ N (0, 1) corresponding to an auxiliary dimen-
sion. We use θ̃ := (θ, θD+1) to denote the position param-
eters in the resulting D + 1 dimensional space MD × R.
θD+1 can be viewed as random noise independent of θ and
contributes 1

2θ
2
D+1 to the total potential energy. Correspond-

ingly, we augment velocity v with one extra dimension, de-
noted as ṽ := (v, vD+1). At the end of the sampling, we
project θ̃ to the original parameter space and discard θD+1.

We refer to MD × {−h} as the real world, and call
MD × {+h} the mirror world. Here, h is half of the dis-
tance between the two worlds, and it should be in the same
scale as the average distance between the modes. For most
of the examples discussed here, we set h = 1. Figure 3 il-
lustrates how the two worlds are connected by networks of
wormholes. When the sampler is near a mode (θ̂1,−h) in
the real world, we build a wormhole network by connecting
it to all the modes in the mirror world. Similarly, we connect
the corresponding mode in the mirror world, (θ̂1,+h), to
all the modes in the real world. Such construction allows the
sampler to jump from one mode in the real world to the same
mode in the mirror world and vice versa. This way, the al-
gorithm can effectively sample from the vicinity of a mode,
while occasionally jumping from one mode to another.
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Figure 3: Illustrating a wormhole network connecting the
real world to the mirror world (h = 1). As an example, the
cylinder shows a wormhole connecting mode 5 in the real
world to its mirror image. The dashed lines show two sets
of wormholes. The red lines shows the wormholes when the
sampler is close to mode 1 in the real world, and the magenta
lines show the wormholes when the sampler is close to mode
5 in the mirror world.

The attached supplementary file provides the details of
our algorithm (Algorithm 1), along with the proof of con-
vergence and its implementation in MATLAB.

Mode Searching After Regeneration
So far, we assumed that the locations of modes are known.
This is of course not a realistic assumption in many situa-
tions. In this section, we relax this assumption by extend-
ing our method to search for new modes proactively and to
update the network of wormholes dynamically. In general,
however, allowing such adaptation to take place infinitely
often will disturb the stationary distribution of the chain,
rendering the process no longer Markov (Gelfand and Dey
1994; Gilks, Roberts, and Sahu 1998). To avoid this issue,
we use the regeneration method discussed by (Nummelin
1984; Mykland, Tierney, and Yu 1995; Gilks, Roberts, and
Sahu 1998; Brockwell and Kadane 2005).

Informally, a regenerative process “starts again” prob-
abilistically at a set of times, called regeneration times
(Brockwell and Kadane 2005). At regeneration times, the
transition mechanism can be modified based on the entire
history of the chain up to that point without disturbing the
consistency of MCMC estimators.

Identifying Regeneration Times
The main idea behind finding regeneration times is to regard
the transition kernel T (θt+1|θt) as a mixture of two kernels,
Q and R (Nummelin 1984; Ahn, Chen, and Welling 2013),

T (θt+1|θt) = S(θt)Q(θt+1) + (1− S(θt))R(θt+1|θt)

where Q(θt+1) is an independence kernel, and the residual
kernel R(θt+1|θt) is defined as follows:

R(θt+1|θt)=


T (θt+1|θt)− S(θt)Q(θt+1)

1− S(θt)
, S(θt) ∈ [0, 1)

1, S(θt) = 1

S(θt) is the mixing coefficient between the two kernels such
that

T (θt+1|θt) ≥ S(θt)Q(θt+1),∀θt,θt+1 (8)
Now suppose that at iteration t, the current state is θt.

To implement this approach, we first generate θt+1 using
the original transition kernel θt+1|θt ∼ T (·|θt). Then, we
sample Bt+1 from a Bernoulli distribution with probability

r(θt,θt+1) =
S(θt)Q(θt+1)

T (θt+1|θt)
(9)

If Bt+1 = 1, a regeneration has occurred, then we discard
θt+1 and sample it from the independence kernel θt+1 ∼
Q(·). At regeneration times, we redefine the dynamics using
the past sample path.

Ideally, we would like to evaluate regeneration times in
terms of WHMC’s transition kernel. In general, however,
this is quite difficult for such Metropolis algorithm. On the
other hand, regenerations are easily achieved for the inde-
pendence sampler (i.e., the proposed state is independent
from the current state) as long as the proposal distribu-
tion is close to the target distribution (Gilks, Roberts, and
Sahu 1998). Therefore, we can specify a hybrid sampler
that consists of the original proposal distribution (WHMC)
and the independence sampler, and adapt both proposal
distributions whenever a regeneration is obtained on an
independence-sampler step (Gilks, Roberts, and Sahu 1998).
In our method, we systematically alternate between WHMC
and the independence sampler while evaluating regeneration
times based on the independence sampler only.

To this end, we follow (Ahn, Chen, and Welling 2013) and
specify our independence sampler as a mixture of Gaussians
located at the previously identified modes. More specifically,
T (θt+1|θt), S(θt) and Q(θt+1) are defined as follows to
satisfy (8):

T (θt+1|θt) = q(θt+1)min

{
1,
π(θt+1)/q(θt+1)

π(θt)/q(θt)

}
(10)

S(θt) = min

{
1,

c

π(θt)/q(θt)

}
(11)

Q(θt+1) = q(θt+1)min

{
1,
π(θt+1)/q(θt+1)

c

}
(12)

where q(·) is the independence proposal kernel, which is
specified using a mixture of Gaussians with means fixed at
the k known modes prior to regeneration. The covariance
matrix for each mixture component is set to the inverse ob-
served Fisher information (i.e., Hessian) evaluated at the
mode. The relative weights are initialized as 1/k and up-
dated at regeneration times according to the number to times
each mode has been visited. Algorithm 2 in the supplemen-
tary file shows the steps for this method.
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Identifying New Modes
When the chain regenerates, we can search for new modes,
modify the transition kernel by including newly found
modes in the mode library, and update the wormhole net-
work accordingly. This way, starting with a limited num-
ber of modes (identified by some preliminary optimization
method), WHMC could discover unknown modes on the fly
without affecting the stationarity of the chain.

To search for new modes after regeneration, as opposed
to frequently rediscovering the known ones, we propose to
remove/down-weight the known modes using the history of
the chain up to the regeneration time and run an optimiza-
tion algorithm on the resulting residual density, or equiva-
lently, on the corresponding residual energy (i.e., minus log
of density). To this end, we fit a mixture of Gaussians with
the best knowledge of modes (locations, Hessians and rela-
tive weights) prior to the regeneration. The residual density
function could be simply defined as πr(θ) = π(θ) − q(θ)
with the corresponding residual potential energy as follows,

Ur(θ) = log(πr(θ) + c) = − log(π(θ)− q(θ) + c)

where the constant c > 0 is used to make the term inside the
log function positive. To avoid completely flat regions (e.g.,
when a Gaussian distribution provides a good approximation
around the mode), which could cause gradient-based opti-
mization methods to fail, we could use the following tem-
pered residual potential energy instead:

Ur(θ, T ) = − log

(
π(θ)− exp

(
1

T
log q(θ)

)
+ c

)
where T is the temperature. Figure 4 illustrates this concept.

When the optimizer finds new modes, they are added to
the existing mode library, and the wormhole network is up-
dated accordingly.

Empirical Results
In this section, we evaluate the performance of our method,
henceforth called Wormhole Hamiltonian Monte Carlo
(WHMC), using three examples. The first example involves
sampling from mixtures of Gaussian distributions with vary-
ing number of modes and dimensions. In this example,
which is also discussed by (Ahn, Chen, and Welling 2013),
the locations of modes are assumed to be known. The sec-
ond example, which was originally proposed by (Ihler et al.
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Figure 5: Comparing WHMC to RDMC using K mixtures
of D-dimensional Gaussians. Left panel: REM (along with
95% confidence interval based on 10 MCMC chains) for
varying number of mixture components, K = 5, 10, 15, 20,
with fixed dimension, D = 20. Right panel: REM (along
with 95% confidence interval based on 10 MCMC chains)
for varying number of dimensions, D = 10, 20, 40, 100,
with fixed number of mixture components, K = 10.

2005), involves inference regarding the locations of sensors
in a network. For our third example, we also use mixtures
of Gaussian distributions, but this time we assume that the
locations of modes are unknown.

We evaluate our method’s performance by comparing it
to Regeneration Darting Monte Carlo (RDMC) (Ahn, Chen,
and Welling 2013), which is one of the most recent al-
gorithms designed for sampling from multimodal distribu-
tions based on the Darting Monte Carlo (DMC) (Smin-
chisescu and Welling 2011) approach. DMC defines high
density regions around the modes. When the sampler en-
ters these regions, a jump between the regions will be at-
tempted. RDMC enriches the DMC method by using the
regeneration approach (Mykland, Tierney, and Yu 1995;
Gilks, Roberts, and Sahu 1998). However, these methods
tend to fail in high dimensional spaces where modes are iso-
lated, small and hard to hit.

We compare the two methods (i.e., WHMC and RDMC)
in terms of Relative Error of Mean (REM) proposed by
(Ahn, Chen, and Welling 2013). The value of REM at time
t is REM(t) = ‖θ(t)− θ∗‖1/‖θ∗‖1, which summarizes the
error in approximating the expectation of variables across all
dimensions. Here, θ∗ is the true mean and θ(t) is the mean
estimated by MCMC samples collected up to time t. We ex-
amine REM(t) as a function of t until a pre-specified time
representing a given computational budget (Ahn, Chen, and
Welling 2013; Anoop Korattikara 2014). Because RDMC
uses standard HMC algorithm with a flat metric, we also
use the baseline metric G0 ≡ I to make the two algorithms
comparable. Our approach, however, can be easily extended
to other metrics such as Fisher information.

Mixture of Gaussians with Known Modes
First, we evaluate the performance of our method based
on sampling from K mixtures of D-dimensional Gaussian
distributions with known modes. (We relax this assumption
later.) The means of these distributions are randomly gen-
erated from D-dimensional uniform distributions such that

1957
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the average pairwise distances remains around 20. The cor-
responding covariance matrices are constructed in a way that
mixture components have different density functions. Simu-
lating samples from the resulting D dimensional mixture of
K Gaussians is challenging because the modes are far apart
and the high density regions have different shapes.

The left panel of Figure 5 compares the two meth-
ods for varying number of mixture components, K =
5, 10, 15, 20, with fixed dimension (D = 20). The right
panel shows the results for varying number of dimensions,
D = 10, 20, 40, 100, with fixed number of mixture com-
ponents (K = 10). For both scenarios, we stop the two
algorithms after 500 seconds and compare their REM. As
we can see, WHMC has substantially lower REM compared
to RDMC, especially when the number of modes and di-
mensions increase. As we can see, in dimensions above 20,
RDMC is trapped in a subset of modes.

Sensor Network Localization
For our second example, we use a problem previously dis-
cussed by (Ihler et al. 2005) and (Ahn, Chen, and Welling
2013). We assume thatN sensors are scattered in a planar re-
gion with 2d locations denoted as {xi}Ni=1. The distance Yij
between a pair of sensors (xi, xj) is observed with probabil-
ity π(xi, xj) = exp(−‖xi− xj‖2/(2R2)). If the distance is
in fact observed (Yij > 0), then Yij follows a Gaussian dis-
tributionN (‖xi−xj‖, σ2) with small σ; otherwise Yij = 0.
That is,

Zij = I(Yij > 0)|x ∼ Binom(1, π(xi, xj))

Yij |Zij = 1, x ∼ N (‖xi − xj‖, σ2)

where Zij is a binary indicator set to 1 if the distance be-
tween xi and xj is observed.

Given a set of observations Yij and prior distribution of
x, which is assumed to be uniform in this example, it is of
interest to infer the posterior distribution of all the sensor lo-
cations. Following (Ahn, Chen, and Welling 2013), we set
N = 8, R = 0.3, σ = 0.02, and add three additional base
sensors with known locations to avoid ambiguities of trans-
lation, rotation, and negation (mirror symmetry). The loca-
tions of sensors form a multimodal distribution (D = 16).

Figure 6 shows the posterior samples based on the two
methods. As we can see, RDMC very rarely visits one of
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Figure 7: Comparing WHMC to RDMC in terms of REM
using K = 10 mixtures of D-dimensional Gaussians with
D = 20 (left panel) and D = 100 (right panel).

the modes (shown in red in the top middle part); whereas,
WHMC generates enough samples from this mode to make
it discernible. As a result, WHMC converges to a substan-
tially lower REM (0.02 vs. 0.13) after 500 seconds.

Mixture of Gaussians with Unknown Modes
We now evaluate our method’s performance in terms of
searching for new modes and updating the network of worm-
holes. For this example, we simulate a mixture of 10 D-
dimensional Gaussian distributions, with D = 10, 100, and
compare our method to RDMC. While RDMC runs four par-
allel HMC chains initially to discover a subset of modes and
to fit a truncated Gaussian distribution around each identi-
fied mode, we run four parallel optimizers (different start-
ing points) using the BFGS method. At regeneration times,
each chain of RDMC uses the Dirichlet process mixture
model to fit a new truncated Gaussian around modes and
possibly identify new modes. We on the other hand run the
BGFS algorithm based on the residual energy function (with
T = 1.05) to discover new modes for each chain. Figure 7
shows WHMC reduces REM much faster than RDMC for
both D = 10 and D = 100. Here, the recorded time (hor-
izontal axis) accounts for the computational overhead for
adapting the transition kernels. For D = 10, our method
has a substantially lower REM compared to RDMC. For
D = 100, while our method identifies new modes over time
and reduces REM substantially, RDMC fails to identify new
modes so as a result its REM remains high over time.

Conclusions and Discussion
We have proposed a new algorithm for sampling from multi-
modal distributions. Using empirical results, we have shown
that our method performs well in high dimensions.

Although the examples discussed here use a flat base
metric I , with the computational complexity of O(D), our
method can be easily extended to more informative base
metric, such as Fisher information with the computational
complexity of O(D3), to adapt to the local geometry.
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