
 

Abstract  

Nowadays, most recommender systems (RSs) mainly aim to 
suggest appropriate items for individuals. Due to the social 
nature of human beings, group activities have become an in-
tegral part of our daily life, thus motivating the study on 
group RS (GRS). However, most existing methods used by 
GRS make recommendations through aggregating individual 
ratings or individual predictive results rather than considering 
the collective features that govern user choices made within 
a group. As a result, such methods are heavily sensitive to 
data, hence they often fail to learn group preferences when 
the data are slightly inconsistent with predefined aggregation 
assumptions. To this end, we devise a novel GRS approach 
which accommodates both individual choices and group de-
cisions in a joint model. More specifically, we propose a 
deep-architecture model built with collective deep belief net-
works and dual-wing restricted Boltzmann machines. With 
such a deep model, we can use high-level features, which are 
induced from lower-level features, to represent group prefer-
ence so as to relieve the vulnerability of data. Finally, the ex-
periments conducted on a real-world dataset prove the supe-
riority of our deep model over other state-of-the-art methods. 

 Introduction 

In recent years, various recommender systems (RSs) have 

been applied to capture personalized requirements and offer 

tailored services for better user experience and new business 

opportunities. Collaborative filtering (CF) algorithms as a 

fundamental building block of modern RS have been widely 

studied. However, human beings are of a social nature, so 

various kinds of group activities are observed throughout 

life, e.g. seeing a movie, or planning travel. Recently, the 

RS community has begun to study group behavior to make 

group recommendations (Jameson and Smyth 2007). For in-

stance, PolyLens (O’Connor et al. 2002) is an early GRS 

where users can create groups and ask for recommendations. 

Moreover, Berkovsky and Freyne (2010) studied recipe rec-

ommendations for families where all members eat a meal 

together. 

Each member of a group may have different opinions on 

the same items, so the main challenge in GRSs is to satisfy 

most group members with diverse preferences. Obviously, 

this is not achieved through an individual-based CF method. 

To date, the existing mainstream approaches of GRS try to 

aggregate group information from individual user models 

(Jameson and Smyth 2007, Masthoff 2011). In general, 

these methods can be classified into two types of models 

which differ in the timing of data aggregation. The first type 

of model is called Group Preference Aggregation (GPA), 

which firstly aggregates all members’ ratings into a group 

profile, and then any individual-based CF approach can be 

used if it regards groups as virtual individual users. In con-

trast, the second type of model is called Individual Prefer-

ence Aggregation (IPA) which firstly predicts the individual 

ratings over candidate items, and then aggregates the pre-

dicted ratings of members within a group via predefined 

strategies to represent group ratings. 

However, both these two aggregation models have their 

deficiencies. Quite often, only a few members will give rat-

ings to the same items used by a group. Hence, we can 

hardly construct a representative group profile because each 

group rating is often generated merely from a single mem-

ber. As a result, the recommendations may be biased to-

wards some of the members in a group. The IPA model ag-

gregates group recommendations using the predictive re-

sults produced by individual models. However, the recom-

mendations made by individual models fail to consider indi-

vidual behavior when she/he makes choices in the role of a 

group member. In essence, these models lack the capability 

to build a good representation of the group preference, 

which we believe crucial to the success of GRSs. 

The above discussions disclose the need for a GRS to sat-

isfy each member and the group as a whole. In this paper, 

we attempt to address this challenge by employing the deep-

learning technique that has been proved effective to learn 

high-level features (Bengio et al. 2013). Since the hypothe-

sis behind our approach is that the individual choices are 

governed by collective factors when she/he acts as a group 

member, we design a collective Deep Belief Network (DBN 

(Hinton et al. 2006)) to disentangle collective features w.r.t. 

a group, according to the choices of each member. Further-

more, each group choice can be regarded as a joint decision 

by all members, so we can take advantage of collective fea-

tures as the priors to model the probability of making each 

group choice. Accordingly, we design a dual-wing Re-

stricted Boltzmann Machine (RBM (Hinton et al. 2006)) at 
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the top level to learn the representation of group preferences 

by jointly modeling group choices and collective features. 

In summary, our main contributions include: 

• We propose a deep-architecture model to learn a high-

level representation of group preferences, which avoids 

the vulnerability of data in traditional approaches. 

• We design a collective DBN over all member profiles of 

a group so as to disentangle the high-level collective fea-

tures from the low-level members’ features. 

• We devise a dual-wing RBM at the top level to learn a 

comprehensive representation of group preferences using 

both collective features and group choices. 

• We conducted empirical evaluations on a real-world data 

set. The results demonstrate the superiority of our ap-

proach in comparison with state-of-the-art methods. 

Related Work 

Since most current GRSs still employ individual-based CF 

techniques, we firstly review some state-of-the-art CF meth-

ods. The k-nearest neighborhood algorithm is an early CF 

method (Su and Khoshgoftaar 2009) which has been applied 

in some real-world RSs (Sarwar et al. 2001). However, this 

method does not work well when the data is very sparse be-

cause it may fail to find similar users or items. Recently, la-

tent factor models have become the most prevalent approach 

in CF. Therein, matrix factorization (MF) methods have be-

come dominant in recent years (Salakhutdinov and Mnih 

2008, Koren et al. 2009). Recent developments have demon-

strated the power of RBMs, which is able to extract useful 

features from input data. Hence, some researchers have 

studied CF with RBMs (Salakhutdinov et al. 2007, Georgiev 

and Nakov 2013). However, individual-based CF ap-

proaches cannot be directly used by GRSs because they as-

sume that choices are independently made by individuals. In 

contrast, group-based choices are joint decisions made by all 

group members. 

Current GRSs measure group satisfaction by means of ag-

gregating members’ information using some aggregation 

models, such as GPA and IPA. In fact, quite a few heuristic 

strategies have been designed to work with the aggregation 

models. In particular, Average and Least Misery are the two 

most prevalent strategies (Masthoff 2011), so they will be 

employed in this paper. For example, PolyLens (O’Connor 

et al. 2002) uses the Least Misery strategy which assumes a 

group tends to be as happy as its least happy member. Yu et 

al. (2006) took the Average strategy to recommend televi-

sion programs for groups. Moreover, Berkovsky and Freyne 

(2010) compared these two strategies for recipe recommen-

dations for families. In this paper, we study a case of movie 

recommendations for households, which was sponsored by 

CAMRa2011 (Said et al. 2011). Some recent work (Hu et 

al. 2011, Gorla et al. 2013) studied this problem using some 

aggregation models. Therein, Hu et al. (2011) tested the MF 

method under GPA and IPA models with various strategies. 

However, such methods are heavily dependent on the input 

data, which often fail to learn the representation of group 

preference when the data is slightly inconsistent with the ag-

gradation assumption. To avoid such vulnerability, we de-

sign a deep model to represent group preference using high-

level features that are learned from lower-level features. 

Such a deep model can effectively remove the sensitivity 

from data (Bengio et al. 2013). 

Preliminaries 

Firstly, we formulate the problem and introduce some con-

cepts used in this paper. Then, we give a brief review on the 

RBM model and parameter estimation since our model is 

built with RBMs and DBNs. In fact, RBMs are the building 

blocks of a DBN, where the key idea is to use greedy layer-

wise training (Hinton et al. 2006).  

Problem Statement 

This paper is aimed to learn an expressive representation of 

the group preferences so as to make appropriate recommen-

dations to groups. Especially, we address the typical case of 

movie recommendation for households which was spon-

sored by CAMRa2011 Challenge (Said et al. 2011). 

Before introducing our model, we first need to give some 

definitions to clarify the following presentation. 

• Collective Features: these represent compromised pref-

erences of a group, which are shared among all members 

and can be disentangled from the Member Features. 

• Individual Features: these represent independent indi-

vidual-specific preference, which can be disentangled 

from the Member Features w.r.t. this user. 

• Member Features: these model the individual preference 

of a user when she/he makes choices as a group member, 

which can be regarded as a mixture of Collective Features 

and Individual Features. 

Restricted Boltzmann Machines 

An RBM (Hinton et al. 2006) is a Markov random field over 

a vector of binary visible units 𝒗 ∈ {0,1}𝐷 and hidden units 

𝒉 ∈ {0,1}𝐹, where the connections only exist between 𝒗 and 

𝒉. The distribution of an RBM is defined through an energy 

function E(𝒗, 𝒉; 𝜽): 

𝑃(𝒗, 𝒉; 𝜽) = exp(−E(𝒗, 𝒉; 𝜽)) 𝑍(𝜽 )⁄             (1) 

𝜽 = {𝑾, 𝒃, 𝒅} are the model parameters, where 𝑾 ∈ ℝ𝐷×𝐹 

encodes the visible-hidden interaction, 𝒃 ∈ ℝ𝐷 and 𝒅 ∈ ℝ𝐹 

encodes the biases of 𝒗 and 𝒉. The pattern of such interac-

tion can be formally specified through the energy function: 

E(𝒗, 𝒉; 𝜽) = −𝒗T𝑾𝒉 − 𝒃T𝒗 − 𝒅T𝒉                 (2) 
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The conditional distributions w.r.t. visible units and hidden 

units are factorial (Bengio et al. 2013), which can be easily 

derived from Eq. (1): 

𝑃(𝑣𝑖 = 1|𝒉; 𝜽) = 𝑠(𝑏𝑖 + ∑ 𝑊𝑖𝑗ℎ𝑗
𝐷
𝑗=1 )              (3) 

𝑃(ℎ𝑗 = 1|𝒗; 𝜽) = 𝑠(𝑑𝑗 + ∑ 𝑣𝑖𝑊𝑖𝑗
𝐾
𝑖=1 )              (4) 

where 𝑠(⋅) is a sigmoid function. In particular, the RBM has 

been generalized to Gaussian RBM (GRBM) to work with 

real-value data. The energy of the GRBM is defined by: 

E(𝒗, 𝒉; 𝜽) = ∑
(𝑣𝑖−𝑏𝑖)

2

2𝜎𝑖
2

𝐷
𝑖=1 − ∑ 𝑑𝑗ℎ𝑗

𝐹
𝑖=1 − ∑ ∑

𝑣𝑖𝑊𝑖𝑗ℎ𝑗

𝜎𝑖

𝐹
𝑗=1

𝐷
𝑖=1   (5) 

where the Gaussian visible units 𝒗 ∈ ℝ𝐷, the hidden units 

𝒉 ∈ {0,1}𝐹 and 𝜽 = {𝑾, 𝒃, 𝒅, 𝝈} are the model parameters. 

Accordingly, the conditional distributions w.r.t. each visible 

unit and each binary hidden unit are given by: 

𝑃(𝑣𝑖|𝒉; 𝜽) = 𝒩(𝑏𝑖 + 𝜎𝑖 ∑ 𝑊𝑖𝑗ℎ𝑗
𝐹
𝑗=1 , 𝜎𝑖

2)           (6) 

𝑃(ℎ𝑗 = 1|𝒗; 𝜽) = 𝑠(𝑑𝑗 + ∑ 𝑣𝑖𝑊𝑖𝑗 𝜎𝑖⁄𝐷
𝑖=1 )           (7) 

Each model parameters 𝜃𝑘 ∈ 𝜽 can be estimated using 

gradient descent to minimize the negative log-likelihood: 

−
𝜕 log 𝑝(𝒗;𝜽)

𝜕𝜃𝑘
= 𝔼𝑷(𝒉|𝒗) (

𝜕E(𝒗,𝒉;𝜽)

𝜕𝜃𝑘
) − 𝔼𝑷(𝒗,𝒉) (

𝜕E(𝒗,𝒉;𝜽)

𝜕𝜃𝑘
)  (8) 

The first term, a.k.a. data-dependent expectation, is tractable 

but the second term, a.k.a. model-dependent expectation, is 

intractable and must be approximated (Bengio et al. 2013). 

In practice, contrastive divergence (CD) (Hinton 2002) is a 

successful algorithm which approximates the expectation 

with a short k-step Gibbs chain (often k=1), denoted as CDk. 

Moreover, Tieleman (2008) proposed an improved CD al-

gorithm, namely persistent CD. 

Model and Inference 

Most current GRSs are built on GPA or IPA models, so they 

are vulnerable to the data. To address this issue, we need to 

learn high-level and abstract features to replace the shallow 

features that directly couple on data. 

To learn high-level features, we build a multi-layer model 

in terms of a deep learning technique. Using such a model, 

we can recover low-level features accounting for the data, 

and then pool low-level features to form higher-level invar-

iant features (Bengio et al. 2013). In particular, we employ 

DBN and RBM as the building blocks to construct a collec-

tive DBN, where the term “collective” signifies that this 

DBN jointly model all members in a group as a whole. This 

collective DBN is capable of disentangling the collective 

features from low-level member features. Such collective 

features are an abstract representation of group preference, 

which avoids the deficiency of direct aggregation on the in-

dividual ratings. Furthermore, we design a dual-wing RBM 

on the top of the DBN to learn the comprehensive features 

w.r.t. each group, where one wing is connected to the group 

profile and the other is connected to the collective features 

learned from the collective DBN. Such a deep-structure de-

sign jointly models group choices and collective features, so 

that it can produce high-level features to represent the group 

preference so as to overcome the vulnerabilities in current 

shallow models. 

Disentangling Collective and Individual Features 

In individual-based RSs, users independently make deci-

sions on choosing which items, whereas in GRSs, each 

member needs to consider other members’ preferences 

when he/she makes choices. That is, each choice is a mixed 

individual and collective decision. Therefore, we need to 

disentangle the individual and collective factors leading to 

the decisions. 

To achieve this goal, we can first learn the low-level 

member features from the member profile, i.e. ratings given 

by the member, through the bottom-layer model depicted on 

the left of Figure 1. Then, we can disentangle the high-level 

collective and individual features from the member features 

using the top-layer model. In particular, the top-layer model 

is a collective RBM as illustrated on the right of Figure 1, 

where the plate notation is used to represent the repeated in-

dividual and member features of a group, and the collective 

features are coupled with all member features. 

U
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n

nc

Member Profile

Member Features

Collective Features Individual Features

m

5 2 1 m
Member Features

Individual Features

Collective Features

 

Figure 1: Left: Overview of the two-layer collective DBN used to 

disentangle high-level collective and individual features. Right: 

More detailed structure of the collective RBM at the top layer 

where the collective features are connected to the member features 

w.r.t. each member. 

To date, the most effective approach to learn the parame-

ters of a DBN is through greedy layer-wise training using a 

stack of RBMs (Hinton et al. 2006, Bengio 2009). In our 

model, the bottom-layer model is a GRBM w.r.t. each user. 

Such a user-based RBM model has been studied in the liter-

ature for individual-based CFs (Salakhutdinov et al. 2007, 

Georgiev and Nakov 2013). We simply use the same method 

to learn the member features, denoted 𝒎𝑢 ∈ ℝ𝐷, w.r.t. each 

member 𝑢, where the conditional distributions used for CD 

have been given by Eq. (6) and (7). 

When the member features are learned, we take them as 

the visible units to learn higher-level features. In particular, 

it is possible to disentangle the collective and individual fea-

tures from the member features since they represent a com-

promised preference among all members. As shown in Fig-

ure 1, we construct a collective RBM for each group, where 

the collective features, denoted 𝒄 ∈ ℝ𝐾, are connected to the 
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member features w.r.t. each member. Then, we can write the 

following energy function to describe the interaction pattern 

of this collective RBM. 

E(𝒎, 𝒏, 𝒄; 𝜽) = 

−𝒇𝑇𝒄 − ∑ (−𝒎𝑢
𝑇𝑾𝒏𝑢 − 𝒎𝑢

𝑇𝑿𝒄 − 𝒃𝑇𝒎𝑢 − 𝒅𝑇𝒏𝑢)𝑈
𝑢=1   

where 𝑈 denotes the number of members in the group and 

𝜽 = {𝑾, 𝑿, 𝒃, 𝒅, 𝒇}  are the model parameters. 𝑾 ∈ ℝ𝐷×𝐹 

encodes the interaction between member features and indi-

vidual features and 𝑿 ∈ ℝ𝐷×𝐾  encodes the interaction be-

tween member features and collective features. 

Similar to the conditional distributions for a standard 

RBM, we can easily derive the conditional distribution w.r.t. 

each member feature 𝑚𝑢,𝑖, each individual feature 𝑛𝑢,𝑗 and 

each collective feature 𝑐𝑘. 

    𝑃(𝑚𝑢,𝑖 = 1|𝒄, {𝒏𝑢}; 𝜽) 

= 𝑠(𝑏𝑖 + ∑ 𝑊𝑖𝑗𝑛𝑗
𝐹
𝑗=1 + ∑ 𝑋𝑖𝑘𝑐𝑘

𝐾
𝑘=1 )         (9) 

𝑃(𝑛𝑢,𝑗 = 1|𝒎; 𝜽) = 𝑠(𝑑𝑗 + ∑ 𝑚𝑢,𝑖𝑊𝑖𝑗
𝐷
𝑖=1 )                  (10) 

𝑃(𝑐𝑘 = 1|𝒎; 𝜽) = 𝑠(𝑓𝑘 + ∑ ∑ 𝑚𝑢,𝑖𝑋𝑖𝑗
𝐷
𝑖=1

𝑈
𝑢=1 )             (11) 

With these conditional distributions in hand, we can learn 

each parameter 𝜃𝑖 ∈ 𝜽 using CD. For example, the stochas-

tic gradient descent update using CDk is given by: 

𝜃𝑖 ← 𝜃𝑖 − 𝛼 (
𝜕E(𝒎0,𝒏0,𝒄0;𝜽)

𝜕𝜃𝑖
−

𝜕E(𝒎𝑘,𝒏𝑘,𝒄𝑘;𝜽)

𝜕𝜃𝑖
)         (12) 

where 𝒎0  are the visible data, 𝒏0  and 𝒄0  are respectively 

sampled from Eq. (10) and (11). 𝒎𝑘, 𝒏𝑘, 𝒄𝑘 are the k-step 

sample from a Gibbs chain with the initial values 𝒎0, 𝒏0, 𝒄0. 

When the model parameters are learned, we set the value of 

collective feature 𝑐𝑘 using its expectation, i.e. �̂�𝑘 = 𝑠(𝑓𝑘 +
∑ ∑ 𝑚𝑚,𝑖𝑋𝑖𝑗

𝐷
𝑖=1

𝑀
𝑚=1 ), instead of a stochastic binary value to 

avoid unnecessary sampling noise (Hinton 2012). 

Modeling a Comprehensive Representation of 

Group Preferences 

GPA models create group profiles by aggregating individual 

ratings but, as discussed in the introduction, the recommen-

dations may be biased towards a minority of members’ taste 

based on such group profiles. To avoid such deficiency, the 

group profiles used in our approach simply consist of the 

group choices over items. Formally, we denote the group 

choices using binary ratings: 𝑟𝑔𝑖 = 1 indicates item 𝑖 which 

was chosen by group 𝑔 and 𝑟𝑔𝑖 = 0 otherwise. Given such 

group profiles, we can run an individual-based CF method 

for making recommendations by taking each group as a vir-

tual user. However, only using such group profiles may lead 

to learning less expressive features because we cannot dis-

tinguish the degree of like on the same items between groups 

due to the identical ratings. 

Each group choice is a joint decision made by all mem-

bers whereas collective features exactly represent compro-

mised preference of a group according to members’ choices. 

Hence we can take advantage of the collective features to 

model the degree of like on an item, more formally, the 

probability of making that choice. As a result, we design a 

dual-wing RBM (DW-RBM) on the top of our model as il-

lustrated in Figure 2, where one wing of the DW-RBM is 

connected to the group profile, and the other wing is con-

nected to the collective features layer of the collective DBN. 

Under such a construction, it learns a set of comprehensive 

features that jointly model the group choices and the collec-

tive features. In fact, our approach can be viewed as a trans-

fer learning model in which the collective features learned 

from the low-level collective DBN are transferred to the 

high-level DW-RBM model so as to learn a more compre-

hensive representation of the group preferences. 

h
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Features

Collective Features Individual Features

m
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1 0 r 0 1
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Figure 2: A dual-wing RBM is placed on the top of DBN, which 

jointly models the group choices and collective features to learn 

the comprehensive features of group preference. 

For any item with a one-rating, i.e. 𝑟𝑔𝑖 = 1, we can say 

that group 𝑔 is explicitly interested in item 𝑖. However, it is 

not certain that group 𝑔 is not interested in item 𝑖 or is una-

ware of it if 𝑟𝑔𝑖 = 0. Therefore, we cannot simply treat un-

chosen items as true-negative instances. Thus, it is a so-

called “one-class” or “implicit feedback” CF problem (Hu 

et al. 2008, Pan et al. 2008). These methods use a weighted 

matrix factorization approach where it assigns a relatively 

large weight to apply a higher penalty on the loss on fitting 

one-ratings and a much smaller weight to apply a lower pen-

alty on the loss on fitting zero-ratings (Hu et al. 2008, Pan 

et al. 2008). Equally, it can be interpreted from a probabil-

istic view (Wang and Blei 2011): the one-rating is generated 

from an informative distribution with a high confidence 

level whereas the zero-rating is generated from a less in-

formative distribution with a low confidence level. Follow-

ing the same idea (Wang and Blei 2011), we define a con-

centrated distribution governed by a small variance param-

eter for one-ratings whereas a diffuse distribution governed 

by a large variance parameter for zero-ratings. 

{
𝜎𝑔𝑖

2 = 𝛼𝑓(𝑔, 𝑖) 𝑖𝑓 𝑟𝑔𝑖 = 1

𝜎𝑔𝑖
2 = 𝛽            𝑖𝑓 𝑟𝑔𝑖 = 0

                 (13) 

where 𝛽 > 𝛼𝑓(𝑖) > 0, 𝛼, 𝛽 are constants and the function 

𝑓(𝑔, 𝑖) can simply be a constant 1, or a more sophisticated 

form to retrieve the group satisfaction measured by some 

aggregation strategy. For example, if we take the Least Mis-

ery strategy, we can define 𝑓(𝑔, 𝑖) = 1 𝑙𝑚(𝑔, 𝑖)⁄ , where 
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𝑙𝑚(𝑔, 𝑖) returns the least member rating on item 𝑖. That is, 

larger group satisfaction means smaller variance. 

Following the setting of one-class CF (Wang and Blei 

2011), we model the group profile using Gaussian visible 

units with different variance parameters. Under such a con-

struction, the energy function for the DW-RBM can be de-

fined as follows (note that we omit the subscript 𝑔 for con-

cise, since each DW-RBM models a single group): 

E(𝒓, 𝒄, 𝒉; 𝜽) = ∑
(𝑟𝑖−𝑏𝑖)2

2𝜎𝑖
2

𝐷
𝑖=1 − ∑ 𝑓𝑘𝑐𝑘

𝐾
𝑘=1 − ∑ 𝑑𝑗ℎ𝑗

𝑌
𝑗=1   

− ∑ ∑
𝑟𝑖𝑊𝑖𝑗ℎ𝑗

𝜎𝑖

𝑌
𝑗=1

𝑀
𝑖=1 − ∑ ∑ 𝑐𝑘𝑋𝑘𝑗

𝑌
𝑗=1 ℎ𝑗

𝐾
𝑘=1        (14) 

where 𝒓 ∈ {0,1}𝑀 are the group ratings, 𝒉 ∈ {0,1}𝑌 are the  

comprehensive features and 𝜽 = {𝑾, 𝑿, 𝒅, 𝒇} are the model 

parameters. 𝑾 ∈ ℝ𝑀×𝑌  encodes the interaction between 𝒓 

and 𝒉 and 𝑿 ∈ ℝ𝐷×𝐹 encodes the interaction between 𝒄 and 

𝒉. According to this energy function, we can respectively 

obtain the conditional distribution w.r.t. each rating 𝑟𝑖, each 

collective feature 𝑐𝑘, and each comprehensive feature ℎ𝑗: 

𝑃(𝑟𝑖|𝒉; 𝜽) = 𝒩(𝑏𝑖 + 𝜎𝑖 ∑ 𝑊𝑖𝑗ℎ𝑗
𝐹
𝑗=1 , 𝜎𝑖

2)              (15) 

𝑃(𝑐𝑘 = 1|𝒚; 𝜽) = 𝑠(𝑓𝑘 + ∑ 𝑋𝑘𝑗ℎ𝑗
𝑌
𝑗=1 )                  (16) 

         𝑃(ℎ𝑗 = 1|𝒗, 𝒄; 𝜽) = 

𝑠(𝑑𝑗 + ∑ 𝑟𝑖𝑊𝑖𝑗 𝜎𝑖⁄𝑀
𝑖=1 + ∑ 𝑐𝑘𝑋𝑘𝑗

𝐾
𝑘=1 )              (17) 

Then, the model parameters 𝜽 can be estimated by CD as 

demonstrated in the previous subsection. 

Recommendation for a Group 

The one-class CF approach (Hu et al. 2008, Pan et al. 2008) 

ranks the items for recommendation according to the recon-

structed ratings. Given a zero-rating item, the reconstructed 

rating tends to be relatively large if this item meets a user’s 

preference, otherwise it tends to be small. 

In the same way, we can reconstruct a group profile using 

the DW-RBM. In particular, we perform a one-step mean-

field reconstruction (Welling and Hinton 2002) instead of a 

stochastic reconstruction to avoid sampling noise. 

ℎ̂𝑗 = 𝑠(𝑑𝑗 + ∑ 𝑟𝑖𝑊𝑖𝑗 𝜎𝑖⁄𝑀
𝑖=1 + ∑ 𝑐𝑘𝑋𝑘𝑗

𝐾
𝑘=1 )           (18) 

          �̂�𝑖 = 𝔼[𝒩(𝑏𝑖 + 𝜎𝑖 ∑ 𝑊𝑖𝑗ℎ̂𝑗
𝐹
𝑗=1 , 𝜎𝑖

2)]  

= 𝑏𝑖 + 𝜎𝑖 ∑ 𝑊𝑖𝑗ℎ̂𝑗
𝐹
𝑗=1                                          (19)  

Then, we can rank the recommendation items 𝑪 for a group 

by sorting their reconstructed ratings {�̂�𝑖}𝑖∈𝑪. 

Experiments 

Many studies on GRS were evaluated using synthetic group 

preferences created from individual profiles due to the lack 

of available data on group preferences. However, such syn-

thetic datasets cannot truly reflect the characteristics of 

group behaviors because all the individual choices are made 

independently. To overcome this deficiency, CAMRa2011 

(Said et al. 2011) released a real-world dataset containing 

the movie watching records of households and the ratings on 

each watched movie given by some group members. Fol-

lowing track 1 of CAMRa2011, we evaluated our approach 

and other comparative methods to compare the performance 

of movie recommendation for households. 

Data Preparation 

The dataset for track 1 of CAMRa2011 has 290 households 

with a total of 602 users who gave ratings (on a scale 1~100) 

over 7,740 movies. This dataset has been partitioned into a 

training set and an evaluation set. The training set contains 

145,069 ratings given by those 602 members, and 114,783 

movie choice records from the view of 290 groups. That is, 

only 1.26 members give rating to a watched movie. The 

evaluation set contains 286 groups with 2,139 group-based 

choices. Some statistical information is provided in Table 1. 

Table 1: Statistics of the evaluation data 

Data #Users/#Groups #Ratings Density 

Trainuser 602 145,069 0.0313 

Traingroup 290 114,783 0.0510 

Evalgroup 286 2,139 / 

Evaluation Metrics and Comparative Methods 

We use the metrics Mean Average Precision (MAP) and 

Area Under the ROC Curve (AUC) to evaluate models. 

• MAP computes the mean of the average precision scores 

over all households 𝑯 

𝑀𝐴𝑃 =
1

|𝑯|
∑

1

|𝑴ℎ|
∑

𝑚

�̂�(𝑴ℎ,𝑚)

|𝑴ℎ|
𝑚=1ℎ∈𝑯   

where 𝑴ℎ denotes the relevant movies w.r.t. household ℎ 

and �̂�(𝑴ℎ,𝑚) denotes the rank of the m-th relevant movie. 

• AUC measures the probability that the rank of relevant 

movies 𝑴+ is higher than irrelevant movies 𝑴− w.r.t. a 

group, and it is estimated as follows: 

𝐴𝑈𝐶 =
∑ ∑ 𝛿[𝑟𝑎𝑛𝑘(𝑖)<𝑟𝑎𝑛𝑘(𝑘)]𝑘∈𝑴−𝑖∈𝑴+

|𝑴+|∙|𝑴−|
  

where δ(.) returns 1 if rank(i)<rank(k) and 0 otherwise. 

To compare our approach with state-of-the-art methods, 

we evaluate the following methods in the experiments: 

• kNN: This is a baseline method to recommend movies 

watched by the top-k most similar groups. 

• MF-GPA: This method performs matrix factorization 

(Salakhutdinov and Mnih 2008) on the group ratings that 

are aggregated from individual ratings through a specified 

strategy. 

• MF-IPA: This method performs matrix factorization on 

individual ratings, and then aggregates the predicted rat-

ings as the group ratings, using a specified strategy. 

• OCMF: This method performs one-class MF (Hu et al. 

2008) on the binary group ratings where the weights are 

set according to a specified strategy. 
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• DLGR: This is our deep learning approach, where the var-

iance parameters of the DW-RBM (cf. the previous sec-

tion) are set according to a specified strategy. 

• OCRBM: This simply uses an RBM over the group 

choices without a connection to collective features. The 

variance parameters are set the same as the DW-RBM. 

In the experiments, we tune the hyper parameters for each 

model, e.g. the dimensionality of latent features and the reg-

ularization parameters, by cross validation. 

Results 

To perform a comprehensive comparison, we evaluated all 

comparative methods using the two most prevalent, Average 

and Least Misery, aggregation strategies (if applicable), in 

addition to the evaluation without using any strategy. Spe-

cially, we set 𝛽 = 1 and 𝛼 = 0.5 (cf. Eq. (13)) for OCRBM 

and DLGR when no strategy is used, and we set 𝛼 = 1 and 

𝑓(𝑔, 𝑖) = 1 [1 + log 𝑠(𝑔, 𝑖)]⁄  when a strategy 𝑠(∙) is used. 

Also, we used similar settings for the weights of OCMF. 

The results of MAP and mean AUC are reported in Table 

2. The baseline method kNN does not achieve a good per-

formance because it is hard to find a set of groups with iden-

tical taste over a sparse dataset. For the similar reason, MF-

IPA and MF-GPA also do not perform very well. Note that 

MF-IPA outperforms MF-GPA. The main reason for this is 

that most movies are rated by only one instead of most mem-

bers, so the GPA model aggregates a biased group profile. 

OCMF and OCRBM perform much better than MF-IPA and 

MF-GPA because they construct their models on the group 

choices instead of the aggregated ratings but use them in a 

more subtle way. Moreover, it is easy to see that our model 

DLGR marginally outperforms any other method regardless 

of using an aggregation strategy or not using a strategy. The 

main reason is that all these methods except DLGR try to 

directly learn a good representation of the group preference 

from the data. However, they may fail to learn the expres-

sive features based on such a shallow structure. In contrast, 

DLGR can learn a high-level representation from low-level 

features through deep architecture which removes the vul-

nerabilities of data. In particular, DLGR outperforms its 

sub-model OCRBM. This is because OCRBM makes no use 

of the individual member choices which contain useful fea-

tures determining the group choices. In comparison, DLGR 

provides a more robust solution which not only models the 

group choices but also takes advantage of the collective fea-

tures learned from all members’ choices. 

In general, a group with more members implies more dif-

ferent preferences, so it is harder to find recommendations 

satisfying all members. In our problem, each household may 

contain 2~4 members in this dataset. A household with 2 

members, typically a couple, may easily agree on choosing 

a movie, whereas a household with more than 2 members, 

typically parents and children, may have different tastes due 

to the generation gap. Therefore, we additionally evaluated 

the MAP w.r.t. 2-member households and the 2+-member 

households under Average and Least Misery strategies. 

 
Figure 3: MAP w.r.t. 2-member groups vs. 2+-member groups 

Figure 3 plots the MAP w.r.t. the above two cases. We 

can see that DLGR outperforms all other comparative meth-

ods and the performance difference between the two cases 

is relatively small. Such a result proves that DLGR is still 

effective to represent group preference even when there are 

more members with different preferences. In comparison, 

other comparative models are constructed in a shallow man-

ner, and are more sensitive to data hence they cannot learn 

the best features to represent group preference when the 

group becomes larger. 

Conclusion 

In this paper, we propose a deep learning approach to over-

come the deficiencies in current GRSs. Essentially, our 

model aims to learn high-level comprehensive features to 

represent group preference so as to avoid the vulnerabilities  

in a shallow representation. The empirical evaluation on a 

real-world dataset proves that our approach can achieve 

much better performance than other state-of the-art models. 

Since our approach constructs a deep architecture that is able 

to disentangle group-specific features at a high level, it is 

applicable to many other areas that study the group behavior 

with coupled interactions among members. 
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Table 2: MAP and mean AUC of all comparative models with different strategies 

 MAP AUC 

Model/Strategy No Strategy Average Least Misery No Strategy Average Least Misery 

kNN (k=5) 0.1595 N/A N/A 0.9367 N/A N/A 

MF-GPA N/A 0.1341 0.0628 N/A 0.9535 0.9297 

MF-IPA N/A 0.1952 0.1617 N/A 0.9635 0.9503 

OCMF 0.2811 0.2858 0.2801 0.9811 0.9813 0.9810 

OCRBM 0.2823 0.2922 0.2951 0.9761 0.9778 0.9782 

DLGR 0.3236 0.3252 0.3258 0.9880 0.9892 0.9897 
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