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Abstract
In machine learning, linear discriminant analysis (LDA) is a
popular dimension reduction method. In this paper, we first
provide a new perspective of LDA from an information the-
ory perspective. From this new perspective, we propose a new
formulation of LDA, which uses the pairwise averaged class
covariance instead of the globally averaged class covariance
used in standard LDA. This pairwise (averaged) covariance
describes data distribution more accurately. The new perspec-
tive also provides a natural way to properly weigh different
pairwise distances, which emphasizes the pairs of class with
small distances, and this leads to the proposed pairwise co-
variance properly weighted LDA (pcLDA). The kernel ver-
sion of pcLDA is presented to handle nonlinear projections.
Efficient algorithms are presented to efficiently compute the
proposed models.

Introduction
In the big data era, a large number of high-dimensional data
(i.e., DNA microarray, social blog, image scenes, etc) are
available for data analysis in different applications. Linear
Discriminant Analysis (LDA) (Hastie, Tibshirani, and Fried-
man 2001) is one of the most popular methods for dimension
reduction, which has shown state-of-the-art performance.
The key idea of LDA is to find an optimal linear transfor-
mation which projects data into a low-dimensional space,
where the data achieves maximum inter-class separability.
The optimal solution to LDA is generally achieved by solv-
ing an eigenvalue problem.

Despite the popularity and effectiveness of LDA, how-
ever, in standard LDA model, instead of emphasizing the
pairwise-class distances, it simply takes an average of
metrics computed in different pairs (i.e., computation of
between-class scatter matrix Sb or within-class scatter ma-
trix Sw). Thus, some pairwise class distances are depressed,
especially for those pairs whose original class distances are
relatively large.

To overcome this issue, in this paper, we present a new
formulation for pairwise linear discriminant analysis. To ob-
tain a discriminant projection, the proposed method consid-
ers all the pairwise between-class and with-class distances.
We call it “pairwise-covariance LDA (pcLDA)”. Then, the
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pcLDA problem is cast into solving an optimization prob-
lem, which maximizes the class separability computed from
pairwise distance. An efficient algorithm is proposed to
solve the resultant problem, and experimental results indi-
cate the good performance of the proposed method.

A new perspective of LDA
The standard linear discriminant analysis (LDA) is to seek a
projection G = (g1, · · · ,gK�1) 2 <p⇥(K�1) which maxi-
mizes the class separability by solving,

max

G
Tr(

G

T
SbG

G

T
SwG

) = max

G
Tr(GT

SbG)(G

T
SwG)

�1, (1)

where Sw is the within-class scatter matrix, and Sb is the
between-class scatter matrix, and given by

Sb =
1

n

KX

k=1

nk(µk � µ)(µk � µ)T ,

Sw = ⌃ =
1

n

KX

k=1

nk⌃k, ⌃k , 1

nk

X

xi2Ck

(xi � µk)(xi � µk)
T ,

where nk is the number of data in class Ck, µk 2 <
p⇥1 is

the mean for the data from class Ck, µ is the global mean for
all the data. In the history of LDA (Hastie, Tibshirani, and
Friedman 2001), the objective function of LDA is evolved
from Fisher’s initial 2-class LDA:

max

g

g

T
Sbg

g

T
Swg

. (2)

For multi-class LDA, this can be generalized to either the
trace-of-ratio of Eq.(1), or the following ratio-of-traces ob-
jective:

max

G

Tr(GT
SbG)

Tr(GT
SwG)

. (3)

Mathematically, both generalization are natural; there is no
clear difference in terms of machine learning. The trace-of-
ratio objective Eq.(1) is the most widely used one. However,
the ratio-of-trace objective of Eq.(3) has been used by many
researches, e.g., (Wang et al. 2007), (Kong and Ding 2012),
etc. To our knowledge, there exist no clear explanations of
the differences between these two different LDA objectives.
In this paper, we bridge this gap, by providing theoretical
support to the LDA objective of Eq.(1) from KL-divergence
perspective, which is described in Theorem 1 below.
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(a) 2-dim Data distribution
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(b) LDA and pcLDA

í�� í�� í� � � �� ��
í��
í��
í�
�
�
��
��

�

�

í�� í�� í� � � �� ��
í��
í��
í�
�
�
��
��

�

�
FODVV��
FODVV��
FODVV��
SF/'$�VXEVSDFH

FODVV��
FODVV��
FODVV��
/'$�VXEVSDFH

(c) Enlarged LDA and pcLDA

Figure 1: A synthetic data set of 150 data points, 50 data of each class. (a) data distribution; (b) 1-dimensional projection of LDA and
pcLDA. Note that both the subspaces (lines) pass through (0,0). We shift them to avoid clutter. (c) Enlarged 1-dim LDA and pcLDA.

From the KL-divergence to classic LDA
LDA assumes that data points of each class k are a Gaussian
distribution. The covariance matrix of this class ⌃k is called
the within-class scatter matrix S

k
w. In this paper, we use

“covariance” or “averaged covariance” instead of the usual
“within-class scatter matrix” Sw to emphasize the new per-
spective. The within-class scatter matrix defined in Eq.(2) is
the globally averaged (i.e., averaged over all k classes) co-
variance matrix. Furthermore, we propose the pairwise av-
eraged covariance as a better formulation which is used in
pcLDA.

We start with the KL-divergence between two Gaussian
distributions Nk(µk,⌃k),Nl(µl,⌃l) with the same covari-
ances: ⌃k = ⌃l = ⌃kl. The KL-divergence of Nk and Nl
is:

DKL(Nk||Nl) =
1

2

(µk � µl)
T
⌃

�1
kl (µk � µl). (4)

KL-divergence is used as a measure of distance between
two classes. When the data are transformed using projection
G, i.e., we project xi to the subspace yi = G

T
xi, or Y =

G

T
X, the KL-divergence in Y-space is

DY

KL(Nk||Nl) =
1

2
(µk � µl)

T
G(GT⌃klG)�1

G

T (µk � µl). (5)

We have the following results.
Theorem 1. When the covariances of all K classes are identical,
i.e., ⌃k = ⌃, k = 1 · · ·K, the sum of all pairwise KL-divergences:

JY
0 =

X

k<l

nknlD
Y
KL(Nk||Nl) (6)

is identical to the objective function of standard LDA of Eq.(1),
where

P
k<l =

PK
k=1

PK
l=k+1.

Proof: Note that (µk � µl)
T
⌃

�1
(µk � µl)

= Tr[(µk � µl)(µk � µl)
T
⌃

�1
]

= Tr[(µkµ
T
k + µlµ

T
l � µkµ

T
l � µlµ

T
k )⌃

�1
], we have

JX

0 =
KX

k=l

KX

l=1

nknlTr[(µkµ
T
k + µlµ

T
l � µkµ

T
l � µlµ

T
k )⌃�1]

= 2nTr[
KX

k=1

nk(µk � µ)(µk � µ)T⌃�1] = 2nTr[Sb⌃
�1].
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(a) Standard LDA.
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(b) Pairwise-covariance LDA.

Figure 2: Results on Iris dataset with 3 classes, each class has
50 data points. Original 4-dimensional data are projected into 2
dimensions. (a) Results of standard LDA; (b) Results of pairwise-
covariance LDA.

Now we project xi to the subspace yi = G

T
xi. The covari-

ance in Y-space is ⌃Y = G

T⌃G and the between-class
scatter matrix becomes: SY

b = G

T
SbG. Thus

J0(G) = 2nTr(GT
SbG)(G

T
⌃G)

�1 (7)

is identical to the LDA objective function of Eq.(1) aside
from the unimportant constant 2n. u–

Pairwise-covariance LDA
Motivation In standard LDA, covariances ⌃k of all K
classes are assumed to be exactly identical. This results in
a standard LDA of Eq.(1), as we can see from Theorem 1. In
practice, data covariance for each class is often different. For
2-class problem, when ⌃1 6= ⌃2, the quadratic discriminant
analysis (QDA) (Hastie, Tibshirani, and Friedman 2001) can
be used. However, in QDA, the boundary between differ-
ent classes is a quadratic surface, and the discriminant space
can not be represented by G

T
X explicitly. For multi-class,

one can directly solve it using the Gaussian mixture density
function with Bayes rules. In this paper, we seek a discrimi-
nant subspace that can be obtained by the linear transforma-
tion G

T
X, which has not been studied before.

Illustrative example In most datasets, data variance for
each class is generally different, standard LDA uses the
pooled (i.e., the global averaged) within-class scatter ma-
trices of all classes. However, the global averaged covari-
ance Sw could differ from each individual covariance sig-
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nificantly. A simple example is shown in Fig.1, where a 2-
dimensional data from three classes are shown in Fig.(1(a)).
Each class has 50 data points. The covariance for data from
each class is ⌃1,⌃2,⌃3:

⌃1 =

"
2.336 0.015

0.015 1.097

#
, ⌃2 =

"
1.704 �0.539

�0.539 1.575

#
,

⌃3 =

"
1.514 0.512

0.512 1.531

#
;⌃123 =

"
1.851 �0.004

�0.004 1.401

#
.

These individual covariances are very different. In standard
LDA, we average all the classes and obtain Sw = ⌃123. In
this paper, we propose a formulation of LDA that uses pair-
wise classes. The three pairwise averaged class-covariance:
⌃12, ⌃13 and ⌃23 are

⌃12 =

"
2.020 �0.262

�0.262 1.336

#
, ⌃13 =

"
1.925 0.264

0.264 1.314

#
,

⌃23 =

"
1.609 �0.013

�0.013 1.553

#
.

We see that the pairwise averaged covariance are much
closer to the two individual covariances as compared to the
global average.

Formulation For simplicity, we define the distance
dk,l(G) between two classes k, l as

dk,l(G) = 2DY
KL(Nk,Nl),

where DY

KL(Nk,Nl) is defined in Eq.(5), and ⌃kl is a pair-
wise covariance matrix (average of the pair of classes) and
defined as

⌃kl = �
nk⌃k + nl⌃l

nk + nl
+ (1� �)⌃. (8)

Here we use the globally averaged covariance ⌃ = Sw as
a regularization. Parameter 0  �  1 controls the balance
of global covariance matrix ⌃ and local pairwise covariance
matrix ⌃k, ⌃l.

The pairwise-covariance LDA is defined the same as that
in Theorem 1:

max

G
J1(G) =

X

k<l

nknldkl(G), (9)

where G 2 <

p⇥(K�1) is the projection. The objective in
Eq.(9) is similar to standard LDA (except that we use pair-
wise covariance instead of global averaged covariance).

The proposed new model
Back to the form of Eq.9, it is easy to see that we can define a
better objective. In maximizing J1, all pairs of distances are
treated equally. However, in classification, we wish the pair
of classes with smaller distances to be given more weight,
i.e., after projecting to Y = G

T
X subspace, they are more

separated (as compared to other pairs of classes). On the
other hand, if two classes are already well-separated, i.e.,
their distances are large, they can have less weight in the ob-
jective function. Therefore, we propose the following pair-
wise covariance properly weighted objective function:

min

G
J2(G) =

X

k<l

nknl

[dkl(G)]

q
, s.t. G

T
G = I, (10)

where q � 1 is a hyper-parameter. In this objective function,
the pair of classes with smaller distances contribute more
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(a) Results of standard LDA.
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(b) Results of pcLDA.
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(c) Convergence of algorithm.

Figure 3: Data: 45 data points (images) from 3 classes on
mnist dataset. Original 784-dimensional data are projected into 2-
dimension. (a) Results of standard LDA; (b) Results of pcLDA; (c)
Convergence of algorithm on mnist. Shown are objective func-
tion vs. iterations.

than the pair of classes with larger distances. Parameter q
controls how much the pair of classes with smaller distances
are weighted. The larger q is, the stronger that pair of classes
is weighted. In practice, we found that q = {1, 2} are good
choices. This model is our final proposed model. For sim-
plicity, we call it pairwise-covariance LDA (pcLDA) with
the proper weighting implicit.

As defined in Eq.(10), the objective is invariant under
any non-singular transformation using A 2 <

(K�1)⇥(K�1),
i.e., J2(GA) = J2(G). To fix this uncertainty, we require
G

T
G = I.

Illustrations of pcLDA
We illustrate pcLDA on synthetic and real data. In Fig.1,
LDA and pcLDA results on a synthetic 2D dataset of 150
data points (50 data of each class) are shown. We show the
data distribution and 1-dimensional projection results using
LDA and pcLDA. The point here is that the globally aver-
aged covariance Sw is a poor representation of the individual
covariances, but the pairwise-covariance approach seems to
give a better representation such that a single pcLDA dimen-
sion can clearly separate the 3 classes, while standard LDA
needs 2-dimensions to separate data from different classes
(results not shown).

In Fig.2, we show the results on the widely used iris
data1. Iris has 150 data points with K=3 classes. Thus LDA
project to K-1=2 dimensions. Fig.2 indicates that pcLDA
gives clear discrimination between classes 2 and 3 while
standard LDA has strong mixing between classes 2 and 3.
In Fig.3, we show results on 45 images (from K=3 classes)
from mnist handwritten digits image dataset. LDA projec-
tions to 2-dimension are shown. Result of pcLDA shows that

1http://archive.ics.uci.edu/ml/datasets/Iris
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the 3 classes contract strongly and become more separated as
compared to the LDA results. These results demonstrate the
benefits of the pairwise-covariance properly weighted LDA.
More experiments and comparisons with related methods
are reported in §7.

Algorithm to solve Pairwise-covariance LDA
The key idea of our approach is to use gradient descent al-
gorithm to solve pcLDA of Eq.(10). The gradient of J2(G)
is

rJ2 , @J2

@G
= �

X

k<l

qnknl

[dkl(G)]

q+1

@dkl(G)

@G
. (11)

For notational simplicity, we write

Bkl = (µk � µl)(µk � µl)
T ,

dkl(G) = Tr(GT
BklG)(G

T
⌃klG)

�1. (12)

Using Eq.(12), the derivative of dkl(G) is

@dkl(G)

@G
= 2[BklG(G

T
⌃klG)

�1

�⌃klG(G

T
⌃klG)

�1
(G

T
BklG)(G

T
⌃klG)

�1
]. (13)

Note that (GT⌃klG)�1 is an inverse of a small (K-1)-by-
(K-1) matrix. rJ2 can be efficiently computed using Algo-
rithm 1.

Algorithm 1 Computation of rJ2(G) (i.e., Eq.11) or rJ2(A)

(i.e., gradient of Eq.21).
Input: G, {⌃k, µk}, q
Output: rJ2

Algorithm:
1: F = 0

2: for l = 1 to K do
3: for k = l + 1 to K do
4: Compute µkl = µk � µl.
5: Compute b = G

Tµkl.
6: Compute ⌃kl according to Eq.(8). % ⌃�

kl according to Eq.(23)
7: Compute B = ⌃klG .
8: Compute b = (GT

B)�1
b.

9: Compute a = nknl(µkl � Bb)/(µT
klGb)q+1.

10: Compute F = F + a ⇥ b

T % cross-product between vectors a,b
11: end for
12: end for
13: rJ2 = �2qF.
14: Output: rJ2.

The constraint GT
G = I enforces G on the Stiefel man-

ifold. Variations of G on this manifold is parallel transport,
which gives some restriction to the gradient. This has been
been worked out in (Edelman, Arias, and Smith 1998). The
gradient that preserves the manifold structure is

rJ2 �G[rJ2]
T
G. (14)

Thus the algorithm computes the new G as follows,

G G� ⌘(rJ2 �G[rJ2]
T
G) (15)

The step size ⌘ is usually chosen as,

⌘ = ⇢kGk1k/krJ2 �G(rJ2)
T
Gk1, ⇢ = 0.001 ⇠ 0.01. (16)

where kAk1 =
P

ij |Aij |. Occasionally, due to the
loss of numerical accuracy, we do the projection: G  

G(GT
G)�

1
2 to restore G

T
G = I. Starting with the stan-

dard LDA solution of G, this algorithm is iterated until the
algorithm converges to a local optimal solution. Fig. 3(c)
shows the convergence of algorithm on dataset mnist.

Pairwise-covariance Kernel LDA
Kernel LDA (Mika et al. 1999; Tao et al. 2004) is non-
linear generalization of LDA. We can derive the kernel
version of pcLDA. Let xi ! �(xi) or X ! �(X) =
(�(x1), · · · ,�(xn). For 2-class LDA, the projection vec-
tor is g =

Pn
i=1 ↵i�(xi) = �(X)↵, where ↵ =

(↵1 · · ·↵n)T . For K-class LDA, the projection vector gk =Pn
i=1 ↵ik�(xi) = �(X)↵k, thus, G = (g1 · · ·gK�1) =

�(X)A, where A = (↵1 · · ·↵K�1).
Under the transformation X ! �(X) , G ! �(X)A, it

is easy to see that the LDA objective of Eq.(1) transforms
into

Tr(GT
S

�
bG)(G

T
S

�
wG)

�1 ! Tr(AT
S

�
bA)(A

T
S

�
wA)

�1 (17)

where the kernel within-class scatter matrix is:

(⌃

�
k)ij = �(xi)

T
[

1

nk

X

s2Ck

�(xs)�(xs)
T ⇤�(xj)

=

1

nk

X

s2Ck

KisKsj , S
�
w =

1

n

KX

k=1

nk(⌃
�
k) =

1

n
K2,(18)

and the kernel between-class scatter matrix is:

(S

�
b )ij = �(xi)

T ⇥ 1
n

KX

k=1

nk(
¯�k � ¯�)(¯�k � ¯�)T

⇤
�(xj)

=

1

n

KX

k=1

nk

�
Kik̄ �Ki·

��
Kk̄j �K·j

�
, (19)

where we use the shorthand notations:

¯� =

1

n

nX

s=1

�(xs), ¯�k =

1

nk

X

s2Ck

�(xs),

Ki· = K·i =
1

n

nX

s=1

Kis, Kk̄i = Kik̄ =

1

nk

X

s2Ck

Kis.(20)

The solution of kernel LDA is given by the largest k eigen-
vectors of the eigen-equation S

�
b v = �S�

wv. When K = 2,
this reduces to the familiar 2-class kernel LDA (Tao et al.
2004). Efficient computation of S

�
b is given in the end of

§5.1.
We are now ready to present the pairwise-covariance ker-

nel LDA. We apply the same transformation to the pairwise-
covariance LDA. We have
Theorem 2. Under the transformation X ! �(X) , G !
�(X)A, the pairwise-covariance LDA of J2(G) becomes
J2(A):

min

A

X

k<l

nknl

[Tr(AT
B

�
klA)(A

T
⌃

�
klA)

�1
]

q
, s.t. AT

A = I. (21)
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where

(B

�
kl)ij = �(xi)

T
(

¯�k � ¯�l)(
¯�k � ¯�l)

T�(xj)

=

�
Kik̄ �Kil̄

��
Kk̄j �Kl̄j

�
(22)

where shorthand notations are defined in Eq.(20), ⌃�
k is

defined in Eq.(18), and

⌃

�
kl = �

nk⌃
�
k + nl⌃

�
l

nk + nl
+ (1� �)⌃�. (23)

Algorithm for Kernel PC-LDA
We solve J2(A) of Eq.(21) using the same algorithm in
computing pcLDA using J2(G) of Eq.(10). The derivative
is the same as Eqs.(19,20) except Bkl is replaced by B

�
kl,

⌃kl replaced by ⌃�
kl, G by A. The constraint AT

A = I is
handled in same way as GT

G = I in Eqs.(20,21). The step
size is given in Eq.(22). The remaining part is the efficient
computation of the gradient rJ2(A). First, we note that
{B

�
kl}, {⌃

�
k} of Eqs.(22,23) can be efficiently computed.

Let Vk be a n-by-nk matrix consisting of nk columns of
K belonging to class k. It is ready to see that in Eq.(21),

⌃

�
k =

1

nk
VkV

T
k , uk =

1

nk
Vke, (24)

where e = (1 · · · 1)T . Here for clarity, we use uk to rep-
resent the vector Ki,k̄, i = 1 · · ·n. Clearly, B�

kl = (uk �

ul)(uk �ul)T . NowrJ2(A) is computed using Algorithm
1, with the replacement

µk  uk, ⌃k  ⌃

�
k . (25)

S

�
b can be efficiently computed as S�

b = (1/n)
P

k nk(uk�

v)(uk � v)T , v = (1/n)�(X)e.

Related Work
A detailed survey of recent LDA works can be found in (Ye
and Ji 2008).

Other LDA formulation There exist earlier works (Li,
Jiang, and Zhang 2003), (Yan et al. 2004) which maxi-
mize the difference of traces, a.k.a maximum margin cri-
teria (MMC). Several LDA formulations with different con-
straints and overfit analysis are given in (Luo, Ding, and
Huang 2011), (Yan et al. 2004). To solve the well-known
singularity or under-sampled problem, there are many ex-
tensions of LDA methods proposed, such as Regularized
LDA (RLDA) (Hastie, Tibshirani, and Friedman 2001),
uncorrelated LDA (ULDA) (Ye 2005b), orthogonal LDA
(OLDA) (Ye 2005a) and orthogonal centroid method (OCM)
(Park, Jeon, and Z 2003), etc. Among these, ULDA extracts
the feature vectors which are mutually uncorrelated in low-
dimensional space.

Connection with metric learning David et.al. (Ali-
panahi, Biggs, and Ghodsi 2008) showed a strong rela-
tionship between distance metric learning methods and
the Fisher Discriminant Analysis. Our pairwise-covariance
LDA formulation of Eq.(10) and kernel pcLDA of Eq.(21)
can serve for distance metric learning purpose, which can
be used for many applications (e.g., (Kong and Yan
2013), (Kong et al. 2012), etc).

Table 1: Characteristics of datasets
Dataset # data #dimension #Class
MSRCv1 210 432 7
Umist 360 644 20
Mnist 150 784 10
Binalpha 1014 320 36

There are also works discussing local discriminative
Gaussian (LDG) dimensionality reduction (Parrish and
Gupta 2012), local fisher discriminant analysis (Sugiyama
2006). Sparsity in the LDA solution (Clemmensen et al.
2011), (Zhang and Chu 2013) is also desirable for interpre-
tation purpose, because it is robustness to the noise and will
lead to efficient computation in prediction. However, to our
knowledge, none of the above works consider the pairwise
covariance by computing distance of the projection in a pair-
wise way, which is the focus of this paper.

Experiment results
Dataset We evaluate the proposed pairwise-covariance LDA
using four data sets (see Table 1) for multi-class classifi-
cation experiments, including one face dataset umist, two
digit datasets mnist (Lecun et al. 1998), binalpha, one
image scene dataset MSRCv1 (Lee and Grauman 2009)2 .
Due to space limit, we omit more details of datasets. Table 1
summarizes the datasets.

Methods & Parameter Settings In our experiment, we
use 5-round 5-fold cross validation to evaluate the classifi-
cation performance. Each dataset is evenly partitioned into
5 parts. Only one part is used as testing and the other 4 parts
are used for training. We report the average results for 5
rounds. Next, we give an overview of the dimension reduc-
tion and classification methods used in our experiment. The
compared methods can be divided into several groups.

(1) LDA and MMC (Li, Jiang, and Zhang 2003;
Yan et al. 2004), kernel LDA (KLDA) For LDA, maxi-
mum margin criterion(MMC) ((Li, Jiang, and Zhang 2003;
Yan et al. 2004)), kernel-LDA of Eq.(17) method, we project
original data into LDA-subspace, and k(k=3) nearest neigh-
bor classifier is used for classification. For kernel LDA, we
use RBF kernel to construct the pairwise similarity Wij =

e

��kxi�xjk2

, where bandwidth � is searched in the grid
{10�4, 10�3, · · · , 103, 104}.

(2) Regularized LDA (RLDA) (Hastie, Tibshirani, and
Friedman 2001), uncorrelated LDA (ULDA) (Ye 2005b),
orthogonal LDA (OLDA) (Ye 2005a) and orthogonal cen-
troid method (OCM) (Park, Jeon, and Z 2003). We com-
pare our method against four methods of generalized LDA.
It has been shown (Ye and Ji 2008) that these four LDA-
extensions can be described in a unified framework for gen-
eralized LDA. However, there still exist subtle differences
among them. The parameter µ in regularized LDA is deter-
mined by cross validation.

(3) Proposed pairwise-covariance LDA model of
2http://research.microsoft.com/en-

us/projects/ObjectClassRecognition/
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Table 2: Multi-class Classification Accuracy on 4 datasets using 9 different dimension reduction methods: LDA, kernel LDA(KLDA),
pcLDA, kernel pcLDA (pcKLDA), and 5 other methods: MMC, RLDA, ULDA, OLDA, OCM.

Data LDA MMC RLDA ULDA OLDA OCM pcLDA (�=1) KLDA pcKLDA(�=1)
MSRC 68.57 67.45 68.54 69.11 67.34 68.91 71.32 68.78 72.39

Binalpha 76.37 72.38 77.66 77.95 72.30 78.89 81.38 79.23 80.12
Mnist 84.37 85.29 84.14 85.01 86.69 84.45 87.10 83.09 86.26
Umist 94.16 93.45 94.44 94.24 91.94 93.61 95.35 91.41 92.07
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(b) Classification results on mnist, umist

Figure 4: Classification results comparisons on 4 datasets, including our methods: pcLDA, pcKLDA at � = {0.1, 0.5, 1} and seven other
methods: LDA, KLDA, MMC, RLDA, ULDA, OLDA, OCM.
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(a) pcLDA result on MSRC
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(b) pcLDA result on mnist
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(c) pcLDA result on umist

Figure 5: Classification accuracy w.r.t different parameter � for our model of Eq.(10) on dataset MSRC, mnist, umist. Red line gives
LDA results, and blue line draws pcLDA results at � = {0, 0.1, · · · , 0.9, 1.0}.

Eq.(10)(pcLDA) and kernel pairwise-covariance LDA
model (pcKLDA) of Eq.(21) We set q = 1 for Eq.(10),
Eq.(21) in our experiments. The parameter � is set to be
{0.1, 0.5, 1}. To make a fair comparison, we project all orig-
inal data to (C-1) dimension, and k(k=3) nearest neighbor
classifier is used for classification purpose.

Classification Performance Analysis Table 2 and Fig.4
present the classification performance using different di-
mension reduction methods. We make several important ob-
servations from experiment results.

(1) As compared to standard LDA, MMC and other di-
mension reduction methods, pcLDA consistently provides
better classification performance at different � values (e.g.,
� = {0.1, 0.5, 1}). For example, there is nearly 5% per-
formance improvement on binalpha dataset when compared
with standard LDA method. Note binalpha dataset is com-
posed of data from K=36 classes, this indicates that the
proposed pairwise pairwise-covariance LDA method gives
much performance improvement at large class numbers.

(2) In kernel space, kernel version of LDA and pcLDA
do not improve the classification performance quite a bit
(sometimes even worse). However, pcKLDA still outper-
forms standard KLDA in kernel space.

(3) � controls the complexity of our model, i.e., when �
approaches 1, pcLDA uses local pairwise covariance ma-
trix, and when � approaches 0, pcLDA uses global covari-
ance matrix which is equivalent to standard LDA. Fig.(5)
shows the classification results on three datasets: MSRC,
mnist and umist. The experiment results suggest that, gen-
erally, we tend to get better classification results for larger
values of �. This further confirms our intuition, the pairwise
covariance really helps to capture the data distribution as
compared to globally averaged variance, and thus the projec-
tion and classification results are improved. Moreover, rather
than maximizing the sum of inter-class distances, we mini-
mize the sum of inverse inter-class distances. This choice
makes classes that are close together have more influence on
the LDA fit than those classes that are well-separated.

Conclusion
We present a pairwise-covariance model for linear discrimi-
nant analysis. The proposed model computes the projection
by utilizing the pairwise class information. An efficient al-
gorithm is present to solve the proposed model. Proposed
method can be easily extended in kernel space. Experiment
results indicate the good performance of proposed method.
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