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Abstract
We present a feature selection method for solving sparse reg-
ularization problem, which has a composite regularization of
`p norm and `∞ norm. We use proximal gradient method to
solve this `p,∞ operator problem, where a simple but effi-
cient algorithm is designed to minimize a relatively simple
objective function, which contains a vector of `2 norm and
`∞ norm. Proposed method brings some insight for solving
sparsity-favoring norm, and extensive experiments are con-
ducted to characterize the effect of varying p and to compare
with other approaches on real world multi-class and multi-
label datasets.

Introduction
Feature selection is a process of selecting a subset of relevant
features from all the original features for robust classifica-
tion, clustering and other learning tasks. Feature selection
plays an important role in machine learning. A large number
of feature selection approaches have been developed in lit-
erature. In general, they can be divided into two categories.
(C1) Filter methods (Langley 1994), (C2) Wrapper meth-
ods(Kohavi and John 1997), etc.

In recent years, sparsity regularization has been widely
investigated and applied into multi-task learning and feature
selection studies, where `1,∞ variable selection/projection
have been proposed and well investigated in (Masaeli,
Fung, and Dy 2010), (Turlach, Venablesy, and Wright
2005),(Tropp et al. 2006), (Quattoni, Collins, and Darrell
2008), (Schmidt et al. 2008) and (Liu, Palatucci, and Zhang
2009). One general conclusion (Masaeli, Fung, and Dy
2010) is that `1,∞ regularization usually performs signifi-
cant better for classification tasks than both independent `1
and independent `2 regularizations. In other words, `1,∞ re-
lated optimization is a well behaved algorithm.

We note regularization with non-convex `p penalty has
gained increasing interest (e.g., smoothly clipped absolute
deviation method (Fan and Li 2001), bridge regularization
(Hastie, Tibshirani, and Friedman 2001)). As considering
`p-norm with p smaller than 1, the penalty is not differen-
tiable as soon as its argument vanishes. To deal with this
issue, (Huang, Horowitz, and Ma 2008) considered a pa-
rameterized differentiable approximation of the `p penalty
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and use gradient descent to solve it; (Chartrand and Staneva
2008), (Kong and Ding 2013) use an iteratively re-weighted
least square algorithm.

Above observations motivate us to combine `∞ with `p
penalty. In this paper, we consider more general `p,∞ type
operator where p < 1. This model is a generalization of the
`1,∞ group lasso with enforced sparsity of the solution. The
attractive property of `p,∞ operator is that, at different p (al-
though it is not convex at p < 1), it gives interesting property
to approach the real number of non-zero features/variables,
which is the desired goal in feature/variable selection tasks.

The algorithms designed for `p penalty (e.g., (Chartrand
and Staneva 2008), (Kong, Zhang, and Ding 2013)) can-
not be simply modified to deal with `∞ problem because
`∞ is discontinuous, which is harder to deal with than `1-
norm which is continuous (although its derivative is non-
continuous). The challenge of our problem is to solve the
projection for `p,∞ operator. Another contribution of this pa-
per is that, a very simple and efficient algorithm is derived
to solve `p,∞ operator with rigorous analysis. We give the
structure of the optimal solution for `p,∞ projection, to our
knowledge, which has not been emphasized before. Our al-
gorithm also has very clear differences with the other meth-
ods used for `1,∞ computation, like blockwise coordinate
descent method in (Liu, Palatucci, and Zhang 2009), double
coordinate descent method in (Zhang 2011) and the interior-
point method in (Berwin A. Turlach 2005).

We note (Vogt and Roth 2012) studied convex group lasso
with p ≥ 1 for coupling multiple regression tasks. They
studied loss function f(B) w.r.t coefficient B = (β1, · ·
·, βJ) =

∑J
j=1 ||βj ||p for J tasks. The p in their model

is very different from our model. It also seems their paper
is not on feature selection: they set the parameter k so that
sparsity of B is a fixed value (this is flat sparsity, different
from the structured sparsity) and give the prediction error.
In our feature selection of Eq.(2), we set λ such that entire
rows of W to be zero (structured sparsity).

To summarize, the main contributions of our paper are in
three-fold. (1) We propose to use `p,∞ operator (i.e., a com-
posite regularization of `p-norm and `∞ norm) for feature
selection. (2) An efficient algorithm is presented to solve
`p,∞ proximal operator (i.e., a simple function containing a
vector of `2 norm and `∞ norm) with rigorous analysis. (3)
The experiment results suggest that our algorithm is well-
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Figure 1: The behaviors of y = xp when p =
{1, 0.75, 0.5, 0.2, 0}.

behaved for smaller p values on real-world multi-class and
multi-label classification tasks.

Feature Selection via `p,∞ operator
Notations Let X ∈ <d×n = (x1,x2, · · ·,xn) denote the
matrix of input data of d-dimension over n samples, and
Y ∈ <c×n = (y1,y2, · · ·,yn) denote the matrix of out-
put data for c outputs. In a general multi-class learning task,
we use a linear model for the k-th class: yk = WTxk + εk,
1 ≤ k ≤ c, where W ∈ <d×c is the regression coefficient
for all the c classes, and εk is the Gaussian noise.

Proposed feature selection using `p,∞
In this paper, we consider the following multi-class sparse
regression problem by using `p,∞ operator penalization,

min
W∈<d×c

J(W) = f(W) + φλ(W), (1)

where f(W) is a smooth/non-smooth convex loss function,
e.g., least square loss, and

φλ(W) = λ(||W||p,∞)p = λ

d∑
j=1

( max
16k6c

|Wjk|)p, (2)

is `p,∞ penalty, and λ ≥ 0 is regularization parameters.
Note `p,∞-norm of W is defined as,

||W||p,∞ =
( d∑
j=1

( max
16k6c

|Wjk|)p
) 1

p

.

In (||W||p,∞)
p of Eq.(2), p-th root is dropped and it is not

a norm any more. The penalty of Eq.(2) is a more general
case of `1,∞ penalty (Boyd and Vandenberghe 2004). When
p = 1, it is `1,∞-norm penalty. `p,∞ operator is a convex
relaxation of a pseudo-norm which counts the number of
non-zero row in W. When p = 0, it counts the number of
non-zero rows if we assume 00 = 0. Usually p is set to
0 ≤ p ≤ 1.

Motivation of our method
Let f(Wj) = max

16k6c
|Wjk|. Thus the behaviors of∑

j

f(Wj)p is determined by the behaviors of |x|p, where

|x| = f(Wj) is a scalar. One can say the different behaviors
of function xp when p is set to different values in Fig.(1).

p→ 0, |x|p → 1.

Thus, when p is small, the behaviors of
∑
j f(W

j)p →∑
j δ(f(W

j)), where δ is a 0-1 function, δ(a) = 1 if a 6= 0,
else δ(a) = 0. It is the desired goal for feature/variable se-
lection because the number of non-zero rows can be more
accurately estimated by

∑
j f(W

j)p when p is small. Note
W = (w1,w2, · · ·,wd)T , where wd ∈ <c×1 is regression
coefficient for feature d across all classes. The mixed `p/`∞
penalty in Eq.(2) is used to set all the coefficient in each di-
mension (i.e., wd) to zeros or non-zero values, for variable
selection purpose.

Overview of computational algorithm
Proximal gradient method (a.k.a FISTA method)(Nesterov
2004; Beck and Teboulle 2009b) is widely used to solve
minW f(W)+φλ(W) problem. Here we adopt this method
to solve Eq.(1) due to its fast convergence. The key idea of
proximal gradient method is to solve the following objective
at each iteration t,

Wt+1 = argmin
U

f(Wt) +∇f(Wt)T (U−Wt)

+
Lt
2
‖U−Wt‖2F + φλ(U) (3)

= argmin
U

1

2
‖U−A‖2F + φρ(U), (4)

where A = Wt − 1
Lt
∇f(Wt), and ρ = λ

Lt
, Lt is a pa-

rameter chosen at each iteration using some search strategy.
Thus the problem is transformed to minimization problem
of Eq.(3).

Their major computation efforts in each iteration is to
compute the gradient of∇f(Wt), which costsO(dnK) for
a generic dense matrix W, where d is feature dimension, n is
number of data points, K is number of classes. With appro-
priate choice of step size Lt, the proximal gradient method
(Beck and Teboulle 2009a) will achieve ε-optimal solution
in O( 1√

ε
) iterations. Then the key step is to solve the asso-

ciated proximal operator:

min
U

1

2
‖U−A‖2F + φρ(U). (5)

One main contribution of our paper is for the computation
of proximal operator of Eq.(5).

Main contribution: An effective algorithm for
associated proximal operator computation

In this section, we present an efficient algorithm to solve the
proximal operator in Eq.(5), Lots of previous works (Yuan,
Liu, and Ye 2011; Beck and Teboulle 2009b) have shown
the efficient computation of proximal operator is the key to
many sparse learning problems.

First, we note
1

2
||W −A||2F + ρ||W||p,∞

=

d∑
i=1

(
1

2
||wi − ai||2 + ρ(||wi||∞)p

)
, (6)

where wi, ai is the i-th row of matrix W,A; ||wi||∞ =
max
j
|Wij | is infinity norm for vector wi.
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The problem of Eq.(5) is therefore decomposed into d in-
dependent sub-problems, and each one optimizing wi. Each
sub-problem has the following general formulation,

u = argmin
u

J1(u) = argmin
u

( 1

2
||u− a||2 + ρ(||u||∞)

p
)

= argmin
u

( 1

2
||u− a||2 + ρ max

16i6d
|ui|p

)
, (7)

where u = [u1, u2, ..., ud] is a row vector to be optimized.
We call this optimization problem as `p,∞ proximal projec-
tion problem. Fortunately, we have very efficient algorithm
to solve Eq.(7).

Simplify the problem
First, we present Lemmas 1 and 2 to simplify this optimiza-
tion problem.
Lemma 1. (A) The optimal solution u∗ for Eq.(7) satisfies
sign(u∗i ) = sign(ai). (B) Let v∗ be the optimal solution for
objective function J2,

J2 = min
vi>0

1

2
||v − b||2 + ρ( max

16i6d
vi)

p

where bi = |ai|. The optimal solution u∗ in Eq.(7) is given
by

u∗i = sign(ai)v
∗
i .

Proof (A) We prove it by contradiction. Suppose in the
optimal solution u∗, there exists i0 where sign(u∗i0) 6=
sign(ai0), i.e., sign(u∗i0) = −sign(ai0). Then we can con-
struct another solution u∗∗, where

u∗∗i =

{
−u∗i if i = i0
u∗i if i 6= i0

.

Note that max
16i6d

|u∗i | = max
16i6d

|u∗∗i |, we have

J1(u
∗∗)− J1(u∗) =

1

2

∑
i

(u∗∗i − ai)
2 − 1

2

∑
i

(u∗i − ai)
2

= 2u∗i0ai0 6 0.

Thus, J1(u∗∗) 6 J1(u
∗), which contradicts the assumption

that u∗ is the optimal solution.
(B) For the optimal solution u∗, we have

1

2

∑
i

(u∗i − ai)
2
+ ρ( max

16i6d
|u∗i |)

p

=
1

2

∑
i

(sign(u∗i )|u∗i | − sign(ai)|ai|)
2

+ρ( max
16i6d

|u∗i |)
p (8)

=
1

2

∑
i

(|u∗i | − |ai|)
2
+ ρ( max

16i6d
|u∗i |)

p
. (9)

The deduction from Eq.(8) to Eq.(9) holds because
sign(u∗i ) = sign(ai), which is proved in Lemma 1(A). Let
bi = |ai|, vi = |u∗i |, Eq.(9) recovers the objective function
in J2. u– .

Remark From Eq.(7) to objective function of J2, the ab-
solute value operation |.| is removed. Clearly, to optimize J2
is much easier than to optimize Eq.(7).

Lemma 2. If elements of b is sorted in descending order,
i.e., b1 > b2 > ... > bd, the optimal solution v∗ for J2 must
satisfy v∗1 > v∗2 > ... > v∗d .

It is straightforward to verify Lemma 2. For the conve-
nience of computing max(vi), first we sort b in descending
order. Next we show how to solve J2.

Optimal solution at p = 0 Note when p = 0, for ob-
jective function J2, the minimal function value is given by
min (ρ, 12 ||b||

2), where optimal v = b or0. 1 Next we dis-
cuss about the optimal solution when 0 < p ≤ 1.

The structure of optimal solution when 0 < p ≤ 1

The key observation is that the optimal solution for objective
function of J2, there may be more than one element achiev-
ing the maximum value at the same time even if the elements
of b are distinct. For example, if we set

b = (5, 4, 3, 2, 1), ρ = 1.5, p = 1,

the optimal solution for v∗ = (3.75, 3.75, 3, 2, 1) instead of
v = (3.5, 4, 3, 2, 1). Thus, we introduce the maximum set S
defined as,

S = {i|v∗i = vm},
where vm is the maximum value in the optimal solution v∗
because more than one element may reach to the same max-
imum value.

The next problem is to decide the set S. It is natural to
split the elements of v∗ into two parts based on whether they
fall into set S or not. To determine the values of optimal
solution v after separation, we have Theorem 3 to outline
the structure of an optimal solution. To determine the ele-
ments falling into set S, we have Lemma 4 to characterize
the property of set S and give the cardinality of set S.
Theorem 3. Assume maximum set S is known, the optimal
solution v∗i for objective function J2 is

v∗i =

{
bi if i /∈ S
vm if i ∈ S

where vm is a constant and can be obtained through New-
ton’s method.
Proof According to the definition of set S, object function
J2 can be written as J3,

J3 =
1

2

∑
i∈S

(vm − bi)2 +
1

2

∑
i/∈S

(vi − bi)2 + ρ(vm)p (10)

Clearly, the optimal solution v∗i can be split into two parts
based on i ∈ S or i /∈ S, and these two parts are independent
in the optimal function J3.

First, consider v∗i (i /∈ S). The solution for minimization
of 1

2

∑
i/∈S

(vi − bi)2 of Eq.(10) is given by v∗i = bi.

Next, consider v∗i (i ∈ S). Note

argmin
vm

(J3) = argmin
vm

1

2

∑
i∈S

(vm − bi)2 + ρ(vm)
p
,

1To our knowledge, there is no well-defined value for 00. Here
we assume 00 = 0.
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thus
J ′3(vm) =

∑
i∈S

(vm − bi) + ρp(vm)
p−1

,

J ′′3 (vm) = |S|+ ρp(p− 1)(vm)
p−2

.
Note at p = 1, vm has closed form solution, and is given by

vm0 =
1

|S|
(
∑
j∈S

bj − ρ).

When 0 < p < 1, using standard Newton’s method, we can
iteratively compute vm using

vmt+1 = vmt −
J ′3(v

m
t )

J ′′3 (v
m
t )

.

Starting from an initial guess for vm0 , e.g.,

vm0 =
1

|S|
(
∑
j∈S

bj − ρ),

in our experiment, we obtain the optimal vm after 20 itera-
tions to machine precision. u–
Lemma 4. The optimal solution v∗ of Eq.(10) is character-

ized by { v
m > bi if i /∈ S
vm 6 bi if i ∈ S .

Proof. We prove it by contradiction.
(A) We first prove the case i /∈ S. Suppose for those el-

ements of v∗i , vm 6 bi(i /∈ S). From Theorem 3, we have
v∗i = bi(i /∈ S), and therefore, vm 6 bi = v∗i (i /∈ S). This
contradicts the definition of the set S where vm = max

16i6d
v∗i .

Thus the assumption vm 6 bi(i /∈ S) does not hold.
(B) Now we prove the case i ∈ S. Suppose for those ele-

ments of v∗i , vm > bi (i ∈ S).
It is easy to see there exists ε = vm − max

i∈S
{bi} > 0.

Thus, for ∀i ∈ S,
vm−bi−ε = (vm−bi)−(vm−max

i∈S
{bi)) = (max

i∈S
{bi)−bi) > 0.

Then (2vm − 2bi − ε) = (vm − bi) + (vm − bi − ε) > 0.
We can construct another solution v∗∗, such that

{ v
∗∗
i = v∗i if i /∈ S
v∗∗i = vm − ε if i ∈ S ,

and we have

J2(v
∗∗)− J2(v∗) = [

1

2

∑
i∈S

(vm − ε− bi)2

−1

2

∑
i∈S

(vm − bi)2] + ρ[( max
16i6d

v∗∗i )
p − ( max

16i6d
v∗i )

p
]

=
1

2

∑
i∈S

−ε(2vm − 2bi − ε) + ρ[(vm − ε)p − (vm)p)]

< 0. (11)

The second term in above Equation is less than 0 because
vm ≥ 0, vm − ε ≥ 0, and function f(x) = xp is monotoni-
cally increasing at x > 0 (see Fig.1). Thus

J2(v
∗∗)− J2(v∗) < 0.

This implies v∗∗ is the optimal solution, which contradicts
that v∗ is the optimal solution. Thus the assumption does not
hold, vm ≤ bi (i ∈ S).

Algorithm 1 Proximal operator solution for Eq.(7) when
0 < p ≤ 1
Input: v, ρ
Output: v
1: b ← sort(b) to ensure b1 > b2 > ... > bd, record the map-

ping order before and after sorting
2: k ← d, let S = {1, 2, · · ·k}, solve for vm according to Theo-

rem 1.
3: while vm > bk and k > 1 do
4: k ← (k − 1)
5: let S = {1, 2, · · ·, k}, solve for vm according to Theorem

1.
6: end while
7: v′ ← b, v′i ← vm(1 ≤ i ≤ k)
8: map v′ back into v according to mapping order

Complete algorithm
Above we have discussed the structure of optimal solution
when 0 < p ≤ 1. Next we complete the whole algorithm and
give the optimal solution v for Eq.(7). Based on Lemma 4,
we can use a linear search algorithm to determine the max-
imum set S by making comparisons in the boundary con-
ditions (e.g., vm > bi). The time cost for linear search al-
gorithm is O(d), which is proportional to the dimension of
b.

In summary, we present the detailed algorithm in Algo-
rithm 1. Actually, in order to further improve the efficiency,
we can use a binary search to determine set S with time cost
O(logd). Since we can first arrange b in descending order,
i.e, b1 > b2 > ... > bd. Another interesting observation is
that vm 6 b1 according to Lemma 4. These properties help
to obtain a better understanding of the structure of optimal
solution.

Experiments
We perform extensive experiment on both single-label
multi-class and multi-label datasets to validate the effective-
ness of proposed `p,∞ algorithm. For multi-class datasets,
we use four widely used biology datasets: ALLAML1,
GLIOMAML2, LUNGML3 and CARML4, which all have
high-dimensional features (more than 3000) and very few
samples (less than 250). We use three widely used multi-
label datasets, Barcelona5, MSRCv26, TRECVID20057. We
extract 384-dimensional color moment feature on datasets
Barcelona and MSRCv2, and 512-dimensional GIST (Oliva
and Torralba 2001) features on TRECVID (e.g., (Chang et
al. 2014)). A summary of both multi-class and multi-label
datasets is shown in Table.1.

1http://www.sciencemag.org/content/277/5324/393.full
2http://cancerres.aacrjournals.org/content/63/7/1602.long
3http://www.ncbi.nlm.nih.gov/pubmed/11707567
4http://www.ncbi.nlm.nih.gov/pubmed/11606367
5http://mlg.ucd.ie/content/view/61
6http://research.microsoft.com/en-us/projects/

objectclassrecognition/
7http://www-nlpir.nist.gov/projects/tv2005/
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(b) GLIOMAML-kNN
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(c) LUNGML-kNN
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(d) ALLAML-SVM
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(e) GLIOMAML-SVM
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(f) LUNGML-SVM

Figure 2: Classification accuracy using selected features on kNN and SVM classifier on three datasets. p = 0.25, p = 0.5, p = 1 are our
methods at different p. Four other methods: `2,1 feature selection of Eq.(12), F-statistic, reliefF and mRmR.
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(a) Barcelona
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(b) MSRC
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(c) Trevid

Figure 3: Multi-label feature selection results using SVM classifier on three datasets. p = 0.25, p = 0.5, p = 1 are our methods at different
p. Four other methods: `2,1 feature selection of Eq.(12), F-statistic, reliefF and mRmR.

Numerical experiments with two initializations
It is worth noting that for p < 1, it is not a convex optimiza-
tion problem to solve Eq.(2). We are interested to see the
influences of different initializations. We used two initial-
izations: (a) initialize W using ridge regression, i.e., replace
the `p,∞ in Eq.(2) with simple Frobenius norm, which gives
closed form solution; (b) experiment with another scheme,
i.e., start with p = 1 global solution, then use this solution as
initialization for p = 0.75, 0.5, and so on. The results shown
for p < 1 are the best of these two initializations.

The results obtained from `p,∞ model can be used for fea-
ture selection. We adjust the parameter λ in Eq.(1), and se-
lect the non-zeros rows in the results of W as the selected
features. After selecting top r < d features, we obtain the
new data X̃ ∈ <r×n, which is composed of only top r fea-

tures across all data samples. We use standard least square
loss for the error function f(W) of Eq.(1). The same least
square function is also used for multi-label experiments.
More formally, we define the residue R = ||Y −BT X̃||F ,
where Y ∈ <k×n is class labels, and B is obtained by min-
imizing: minB ||Y − BT X̃||2F on the selected features X̃.
The smaller the residue R, the better the selected features
obtained from X. we show the residues R, obtained using
top 20 features with different initializations, i.e., (a) ridge
regression; (b) p = 1 result on 4 datasets.

We make several important observations from the results
shown in Table 1. (1) Generally, smaller p values give much
smaller residues, which indicates better feature selection re-
sults; but it is not always consistent. We believe that if we
could find the true global solution at p < 1, the residues will
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Table 1: Multi-class dataset and multi-label dataset descriptions.

Single-label multi-class datasets Multi-label multi-class datasets
dataset #data #dimension # class dataset #data #dimension # class

ALLAML 72 7129 2 Trevid 3721 512 39
GLIOMAML 50 4434 4 MSRC 591 384 23

LUNGML 203 3312 5 Barcelona 139 384 4
CARML 174 9182 11

Table 2: Residue R on selected top 20 features on 4 datasets

Dataset initialization p = 0.1 p = 0.25 p = 0.5 p = 0.75 p = 1 `2,1

ALLAML
p = 1 6.4217 6.3647 6.4314 6.3892

6.4487 6.4257
ridge regression 6.4141 6.3841 6.4054 6.3672

GLIOMAML
p = 1 4.5208 4.7877 4.7935 4.7832

4.9421 4.8324
ridge regression 4.5145 4.7182 4.7877 4.7968

LUNGML
p = 1 7.6889 7.5701 7.7916 8.3251

8.3572 8.3612
ridge regression 7.6762 7.5534 7.8216 8.2851

CARML
p = 1 8.3947 8.3837 8.3687 8.8135

8.9578 8.9321
ridge regression 8.3747 8.3921 8.3723 8.7335

be more consistent. However, because at p < 1, the problem
is non-convex, we cannot guarantee the global minima, and
the solution is not unique and depends on initialization. (2)
Ridge regression initialization gives slightly better results as
compared to p = 1 initialization. (3) At p < 1, the selected
features are slightly different (usually several different fea-
tures depending on how many features to select) for different
initialization because we cannot get the global optimization
now. (4) We also compare the proposed `p,∞(p = 1) against
`2,1 (Liu, Ji, and Ye 2009) feature selection method. To be
exact, we follow (Liu, Ji, and Ye 2009), (Kong, Ding, and
Huang 2011), use `2,1 regularization term for feature selec-
tion, i.e.,

min
W∈<d×c

J(W) = f(W) + λ||W||2,1, (12)

where f(W) is a smooth/non-smooth convex loss
function,e.g., least square loss, and ||W||2,1 =
d∑
j=1

√∑c
k=1 W

2
jk, and λ ≥ 0 is regularization param-

eters. Residues obtained from `p,∞ feature selection results
are generally better than those from `2,1 results of Eq.(12).

Application for multi-class feature selection tasks
To further validate our feature selection results, we use

another two widely used classifiers: SVM, kNN to compute
the classification accuracy after using `p,∞ feature selec-
tion methods. We did 5-fold cross-validation on both classi-
fiers on 3 datasets: ALLAML, GLIOMAML and LUNGML.
We compare the proposed feature selection method `p,∞ at
differen p against several popularly used feature selection
methods, such as F-statistic (Liu and Motoda 1998), reliefF
(Kononenko 1994), (Kong et al. 2012) and mRmR (Ding
and Peng 2003).

Fig. 2 shows the classification accuracy comparisons of
different feature selection methods on three data sets. In our
methods, p is set to p = 0.25, p = 0.5, p = 1. The shown
results are the average accuracy over 5 runs. From the results

shown in Fig.2, we observe that, (1) `p,∞ feature selection
produces better results as compared to F-statistics, ReliefF
and mRmR in terms of classification accuracy; (2) the clas-
sification accuracy is slightly better when p is small (say
p = 0.25, 0.5) on both kNN and SVM classifiers; (3) the
classification accuracy obtained from `p,∞ feature selection
at smaller p values are also generally better than `2,1 method,
which again verifies the effectiveness of our method.

Application for multi-label feature selection tasks
`p,∞ feature selection is naturally extended for multi-

label feature selection tasks. In multi-label classification
problems, a data point can be attributed to multiple classes
simultaneously. For the other multi-label feature selection
algorithms, we extend the general F-statistic (Liu and Mo-
toda 1998), reliefF (Kononenko 1994) and mRmR (Ding
and Peng 2003) for multi-label classification using binary
relevance (Tsoumakas, Katakis, and Vlahavas 2010). We
adopt the macro-F1 score defined in (Yang 1999) to eval-
uate the multi-label classification performance. The higher
the macro-F1 score, the better classification accuracy.

We use standard SVM classifier (linear kernel, C = 1) to
validate the feature selection results. We report the macro-
F1 score by using 5 round 5-fold cross validation in Fig.3.
Fig.3 indicate `p,∞ method performs much better than the
other three feature selection methods (e.g., ReliefF, mRmR,
etc). Moreover, when p is small, the feature selection results
are generally better than p = 1.

Conclusion
In this paper, we propose to use `p,∞ operator for feature
selection. An efficient algorithm is presented to solve `p,∞
regularization problem with rigorous analysis. Extensive ex-
periments on multi-class and multi-label datasets indicate
the well behaviors of our algorithm at smaller p values.
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