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Abstract

Multi–agent learning is a challenging open task in ar-
tificial intelligence. It is known an interesting connec-
tion between multi–agent learning algorithms and evo-
lutionary game theory, showing that the learning dy-
namics of some algorithms can be modeled as replicator
dynamics with a mutation term. Inspired by the recent
sequence–form replicator dynamics, we develop a new
version of theQ–learning algorithm working on the se-
quence form of an extensive–form game allowing thus
an exponential reduction of the dynamics length w.r.t.
those of the normal form. The dynamics of the pro-
posed algorithm can be modeled by using the sequence–
form replicator dynamics with a mutation term. We
show that, although sequence–form and normal–form
replicator dynamics are realization equivalent, the Q–
learning algorithm applied to the two forms have non–
realization equivalent dynamics. Originally from the
previous works on evolutionary game theory models
form multi–agent learning, we produce an experimen-
tal evaluation to show the accuracy of the model.

Introduction
The study of games among rational agents is central in ar-
tificial intelligence. Game theory provides the most elegant
models (Fudenberg and Tirole 1991), while theory of algo-
rithms and machine learning (Shoham and Leyton-Brown
2009) provide the tools to design agents playing optimally.
In this paper, we focus on the problem of learning opti-
mal strategies in extensive–form games (Fudenberg and Ti-
role 1991). These games provide a richer representation than
strategic–form games, allowing agents to play sequentially.

The problem of learning when actions are perfectly ob-
servable (aka perfect–information games) is well under-
stood and a number of algorithms converging to the equilib-
rium are known. Instead, learning in imperfect–information
games is a challenging open task. Some algorithms are based
on the minimization of the regret. In particular, counterfac-
tual regret (CFR) minimization (Zinkevich et al. 2007) pro-
duces, in self–play, average strategy profiles that converge to
a Nash equilibrium in two–player zero–sum games. To scale
to very large games (e.g., Poker), several researchers have
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focused on game abstractions and Monte–Carlo sampling
techniques (Ponsen, de Jong, and Lanctot 2011). CFR has
also been studied in games with imperfect recall (Lanctot et
al. 2012) and it has been deeply evaluated in three–player
games (Risk and Szafron 2010). In the case of general–sum
games, it is only known that strictly dominated actions will
be played with probability zero (Gibson 2013), but no result
characterizing its dynamics is known. Some results are in-
stead known about the characterization of the dynamics of
a number of learning algorithms when applied to strategic–
form games. Time-limit dynamics of the Q–learning algo-
rithm in self–play with Boltzmann exploration can be mod-
eled, in expectation, as replicator dynamics with a specific
mutation term (Tuyls, Hoen, and Vanschoenwinkel 2006),
showing that the convergence is possible only to a Nash
equilibrium when the exploration rate goes to zero. In (Wun-
der, Littman, and Babes 2010; Gomes and Kowalczyk 2009),
the dynamics with ε–greedy exploration are studied. Similar
results are provided for other learning algorithms (Kaisers,
Bloembergen, and Tuyls 2012), including cross learning,
regret minimization, and frequency adjusted Q–learning.
Notably, Q–learning achieved consistently excellent results
with strategic–form games, in many senses outperforming
algorithms based on deeper insights about the multi–agent
setting (Zawadzki, Lipson, and Leyton-Brown 2014). Al-
though in principle these results are applicable also to the
normal form of an extensive–form game, in practice they
cannot be applied because the normal form is exponentially
large in the size of the game tree, requiring exponentially
long dynamics (and would suffer from numerical stability
issues). A common alternative is to perform Q–learning in
behavioral strategies, where each information set is consid-
ered as a (partially observable) state. Some works studied the
dynamics of multi–agent learning algorithms for (perfectly
observable) stochastic games, showing that the dynamics are
switching (Vrancx, Tuyls, and Westra 2008). Due to com-
plexity of the dynamics, such results can be applied only to
game instances with a very small number of states and their
extension to imperfect–information games seems to be un-
feasible even in the case of finite horizon.
Recently, in (Gatti, Panozzo, and Restelli 2013), replicator
dynamics have been adapted to the sequence form of the
extensive–form games (von Stengel 1996), allowing an ex-
ponential reduction of the size, but keeping dynamics that
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are realization equivalent (i.e., they induce the same proba-
bility distribution on terminal nodes) to the dynamics with
the normal form. In (Lanctot 2014), the author shows that,
in the case of two–agent zero–sum games, the discrete–time
sequence–form replicator dynamics have a form of counter-
factual regret, converging to the Nash equilibrium.

In this paper, we provide the following contributions.
1) We introduce a novel extension of the Q–learning algo-
rithm that operates on the sequence form.
2) We show that the learning dynamics of the proposed
sequence–form Q–learning algorithm can be modeled by
the sequence–form replicator dynamics (Gatti, Panozzo, and
Restelli 2013), presenting exponentially smaller dynamics
w.r.t. those of (Tuyls, Hoen, and Vanschoenwinkel 2006).
We leave open the problem to extend such an approach to
other learning algorithms, e.g., those in (Kaisers, Bloember-
gen, and Tuyls 2012).
3) We show that, although sequence–form and normal–form
replicator dynamics are realization–equivalent, the dynam-
ics of our Q–learning algorithm are not realization equiv-
alent to the ones of (Tuyls, Hoen, and Vanschoenwinkel
2006), due to the mutation terms, and we analyze the accu-
racy of our model w.r.t. the actual dynamics of the algorithm.

Preliminaries
Extensive–form games. A perfect–information extensive–
form game (Fudenberg and Tirole 1991) is a tuple
(N,A, V, T, ι, ρ, χ,u), where: N is the set of agents (i ∈ N
denotes a generic agent), A is the set of actions (Ai ⊆ A
denotes the set of actions of agent i and a ∈ A denotes a
generic action), V is the set of decision nodes (Vi ⊆ V de-
notes the set of decision nodes of i), T is the set of terminal
nodes (w ∈ V ∪ T denotes a generic node and w0 is root
node), ι : V → N returns the agent that acts at a given
decision node, ρ : V → ℘(A) returns the actions available
to agent ι(w) at w, χ : V × A → V ∪ T assigns the next
(decision or terminal) node to each pair 〈w, a〉 where a is
available at w, and u = (u1, . . . , u|N |) is the set of agents’
utility functions ui : T → R. Games with imperfect infor-
mation extend those with perfect information, allowing one
to capture situations in which some agents cannot observe
some actions undertaken by other agents. We denote by Vi,h
the h–th information set of agent i. An information set is a
set of decision nodes such that when an agent plays at one
of such nodes she cannot distinguish the node in which she
is playing. For the sake of simplicity, we assume that every
information set has a different index h, thus we can univo-
cally identify an information set by h. Furthermore, since
the available actions at all nodes w belonging to the same
information set h are the same, with abuse of notation, we
write ρ(h) in place of ρ(w) with w ∈ Vi,h. An imperfect–
information game is a tuple (N,A, V, T, ι, ρ, χ,u, H) where
(N,A, V, T, ι, ρ, χ,u) is a perfect–information game and
H = (H1, . . . ,H|N |) induces a partition Vi =

⋃
h∈Hi Vi,h

such that for all w,w′ ∈ Vi,h we have ρ(w) = ρ(w′). We fo-
cus on games with perfect recall where each agent recalls all
her own previous actions and the ones of her opponents (Fu-
denberg and Tirole 1991).
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Figure 1: Example of two–agent imperfect–information
extensive–form game, x.y denotes the y–th node of agent x.

Sequence form (von Stengel 1996). It is a representation
composed by a table and a set of constraints. Sequence–
form actions are called sequences. A sequence q ∈ Qi of
agent i is a set of consecutive actions a ∈ Ai where Qi ⊆ Q
is the set of sequences of agent i and Q is the set of all
the sequences. A sequence can be terminal, if, combined
with some sequence of the opponents, it leads to a termi-
nal node, or non–terminal otherwise. In addition, the initial
sequence of every agent, denoted by q∅, is said empty se-
quence and, given sequence q ∈ Qi leading to some infor-
mation set h ∈ Hi, we say that q′ extends q and we denote
by q′ = q|a if the last action of q′ (denoted by a(q′) = a)
is some action a ∈ ρ(h) and q leads to h. We denote by
w = h(q) the node w with a(q) ∈ ρ(w); by q′ ⊆ q a subse-
quence of q; by xi the sequence–form strategy of agent i and
by xi(q) the probability associated with sequence q ∈ Qi.
Finally, condition q → h is true if sequence q crosses infor-
mation set h. Well–defined strategies are such that, for every
information set h ∈ Hi, the probability xi(q) assigned to
the sequence q leading to h is equal to the sum of the proba-
bilities xi(q′)s where q′ extends q at h. Sequence form con-
straints are xi(q∅) = 1 and xi(q) =

∑
a∈ρ(w) xi(q|a) for

every sequence q, action a, node w such that w = h(q|a),
and for every agent i. We denote by xi the strategy pro-
file of agent i and by x̂i the pure strategy profiles such
that x̂i(q) = 1 if q is played and x̂i(q) = 0 otherwise.
Agent i’s utility is represented as a sparse multi–dimensional
array, denoted, with an abuse of notation, by Ui, specifying
the value associated with every combination of terminal se-
quences of all the agents. The size of the sequence form is
linear in the size of the game tree and therefore it is expo-
nentially smaller than the normal form.

Replicator dynamics. The sequence–form replicator dy-
namics have been introduced in (Gatti, Panozzo, and Restelli
2013) and it has been shown to be realization equivalent to
the standard replicator dynamics applied to the normal form.
The sequence–form continuous–time replicator equation is:

ẋ1(q, t) = x1(q, t) · [(gq(x1(t))− x1(t))
T · U1 · x2(t)]

ẋ2(q, t) = x2(q, t) · [xT1 (t) · U2 · (gq(x2(t))− x2(t))],

where gq(xi(t)) is computed by Algorithm 1.
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Algorithm 1 generate gq(xi(t))

1: gq(xi(t)) = 0

2: if xi(q, t) 6= 0 then
3: for q′ ∈ Qi s.t. q′ ⊆ q do
4: gq(q

′,xi(t)) = 1

5: for q′′ ∈ Qi s.t. q′′∩q = q′ and q′′ = q′|a| . . . : a ∈ ρ(h), q 6→ h

do
6: gq(q

′′,xi(t)) =
xi(q
′′,t)

xi(q
′,t)

7: return gq(xi(t))

Q–learning (Watkins and Dayan 1992). It is an algo-
rithm used by learning agents in Markovian domains that
allows them to learn the optimal policy without having prior
knowledge about the domain dynamics and the reward func-
tion. Q–learning is an adaptive model–free value–iteration
method whose aim is to estimate the value Qt+1(s, a) of
each action a in each state s at time t + 1 given the estima-
tions of Qt(s′, a′), where s′ is any state reached by taking
action a in s and a′ is the greedy action in s′, through the
following rule:

Qt+1(s, a) = (1− α)Qt(s, a) + α

(
r(s, a) + γmax

a′
Qt(s′, a′)

)
,

where r(s, a) is the immediate reward received being in state
s by taking action a, α is the learning rate and γ is the dis-
count factor (Sutton and Barto 1998).

Q–learning and sequence form
The application of the Q–learning algorithm to the normal
form of an extensive–form game is a straightforward exten-
sion of (Tuyls, Hoen, and Vanschoenwinkel 2006) as well as
the derivation of its time–limit (standard) replicator dynam-
ics based model. However, the normal form being exponen-
tially large in the size of the game tree, the learning times
are exponentially long (as confirmed in our experimental re-
sults). Here, we propose a variation of the Q–learning al-
gorithm for the sequence form of an extensive–form game,
reducing exponentially the length of the learning times. Dif-
ferently from the works studying evolutionary game theory
models for multi–agent learning algorithms, but consistently
with the online RL literature, we consider the learning rate
α and the exploitation parameter τ as functions of time.

The basic idea behind our algorithm is that each agent,
at each repetition of the game, without any knowledge
about the other agents’ strategies, chooses a sequence–form
pure strategy. Since the set of these strategies is exponen-
tially large in the size of the game (there is one sequence–
form pure strategy per plan of the reduced normal form),
each agent implicitly chooses a strategy by using a pro-
cedure that, given a strategy xi, builds a sequence–form
pure strategy x̂i in polynomial time w.r.t. the size of the
game. The procedure, summarized in Algorithm 2, is iter-
ative and works as follows. In Steps 1–3, the empty se-
quence of an agent is chosen and the information sets di-
rectly reachable by the empty sequence are inserted in the
set inf sets to evaluate. Then, until such set is not empty,
in Step 5 the procedure extracts an information set h, in Step

Algorithm 2 SFpure strategy(xi)

1: x̂i = 0

2: x̂i(q∅) = 1

3: inf sets to evaluate = {h : ∃a ∈ ρ(h), q∅|a ∈ Qi}
4: while inf sets to evaluate 6= ∅ do
5: choose an information set h ∈ inf sets to evaluate
6: choose a sequence q such that a(q) ∈ ρ(h) according xi

7: x̂i(q) = 1

8: inf sets to evaluate = inf sets to evaluate ∪ {h′ : ∃a ∈
ρ(h′), q|a ∈ Qi}

9: inf sets to evaluate = inf sets to evaluate \ {h}
10: return x̂i

6 it randomly draws a sequence q with a(q) ∈ ρ(h) ac-
cording to strategy xi once normalized by the probability
to reach h and assigns probability one to q in x̂i, in Step
8 adds all the information sets directly reachable by q to
inf sets to evaluate and in Step 9 removes h from such
set. Given that each information set is evaluated no more
than once, the complexity of the procedure is linear in the
size of the game tree.

In our learning algorithm, we associate a Q–value with
each sequence and we update theQ–values according to the
observed outcomes. Given that each agent plays a number of
sequences at each repetition of the game (a sequence–form
pure strategy includes multiple sequences), we need to mod-
ify the updating rule ofQt allowing an agent to update mul-
tiple Q–values (those corresponding to the sequences of the
pure–strategy profiles x̂ chosen by Algorithm 2). Formally,
for each q|a such that x̂i(q|a) = 1 we have:

Qt+1(q|a) = (1− αt)Qt(q|a) + αt
(
r(q|a) + γ max

a′∈ρ(h):
a∈ρ(h)

Qt(q|a′)
)
,

(1)

where r(q|a) = x̂Ti (t) · Ui · x̂−i(t) is the immediate reward
obtained by agent i at iteration t.
The action–selection strategy is based on the Boltzmann
distribution. More precisely, given the Q–value of each se-
quence, we derive a sequence–form strategy profile as:

xi(q|a, t) = xi(q, t) ·
eτtQt(q|a)∑

a′∈ρ(h):a∈ρ(h) e
τtQt(q|a′)

. (2)

The learning algorithm is summarized in Algorithm 3.
In Steps 2–3, the algorithm initializes the Q–value asso-

ciated with each sequence of agent i to a random value. In
Steps 4–5, the algorithm derives the strategy profile specify-
ing the probability distribution over the sequences by Boltz-
mann equation on the basis of the Q–values. In Step 6,
the algorithm repeats the following steps until agent i has
learned the optimal policy. In Steps 7–8, agent i draws a
sequence–form pure strategy as prescribed by Algorithm 2.
In Steps 9–10, for each sequence chosen by Algorithm 2, the
algorithm updates the Q–values applying the updating rule
Eq. (1). In Steps 11–12, the algorithm updates the probabil-
ity distribution over the sequences given the new Q–values.
The algorithm is repeated until the maximum variation of
the Q–values is less than a given threshold ε.
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Algorithm 3 SFQ learning
1: t = 0

2: for all q ∈ Qi do

3: Qt(q) drawn uniformly from
[
minx Ui(x)

1− γ
,
maxx Ui(x)

1− γ

]
4: for all q|a ∈ Qi do

5: xi(q|a, t) = xi(q, t) ·
eτtQt(q|a)∑

a′∈ρ(h):a∈ρ(h) e
τtQt(q|a′)

6: repeat
7: x̂i = sequence form pure strategy(xi)

8: play x̂i

9: for all q|a such that x̂i(q|a) == 1 do
10: Qt+1(q|a) = (1 − αt)Qt(q|a) + αt(r(q|a) +

γmaxa′∈ρ(h):a∈ρ(h)Qt(q|a
′))

11: for all q|a ∈ Qi do

12: xi(q|a, t) = xi(q, t) ·
eτtQt(q|a)∑

a′∈ρ(h):a∈ρ(h) e
τtQt(q|a′)

13: t = t+ 1

14: until maxq∈Qi |Qt+1(q)−Qt(q)| < ε

15: return x

Dynamical analysis
We study the dynamics of Algorithm 3 in expectation w.r.t.
its realizations and their relationship with the replicator dy-
namics when there are 2 agents. The generalization with
more agents is straightforward. We assume, as in (Tuyls,
Hoen, and Vanschoenwinkel 2006), that the game is contin-
uously repeated, the time between a repetition and the sub-
sequent one tending to zero. This allows us to calculate (in
expectation) the derivative of Eq. (2) as:

ẋi(q|a, t) = ẋi(q, t) ·
xi(q|a, t)
xi(q, t)

+ xi(q|a, t)
(
τ̇tQt(q|a) + τtQ̇t(q|a)

−
∑

a′∈ρ(h):
a∈ρ(h)

xi(q|a′, t)
xi(q, t)

(
τ̇tQt(q|a′) + τtQ̇t(q|a′)

))
(3)

and the time derivative of Eq. (1) as

Q̇t(q|a) = αt

r(q|a) + γ max
a′∈ρ(h):
a∈ρ(h)

Qt(q|a′)−Qt(q|a)

 . (4)

By replacing Q̇t(q|a) in Eq. (3) with the regret term of
Eq. (4) we obtain

ẋi(q|a, t) = ẋi(q, t) ·
xi(q|a, t)
xi(q, t)

+ xi(q|a, t)αt

(
τ̇tQt(q|a)

+ τt

(
r(q|a) + γ max

a′∈ρ(h):
a∈ρ(h)

Qt(q|a′)−Qt(q|a)
)
−

∑
a′∈ρ(h):
a∈ρ(h)

xi(q|a′, t)
xi(q, t)

·

·
(
τ̇tQt(q|a′) + τt

(
r(q|a′) + γ max

a′′∈ρ(h):
a′∈ρ(h)

Qt(q|a′′)−Qt(q|a′)
)))

.

Given that
∑
a′∈ρ(h):a∈ρ(h) xi(q|a′, t) = xi(q, t) by defini-

tion of sequence form, we have that

max
a′∈ρ(h):
a∈ρ(h)

Qt(q|a′)−
∑

a′∈ρ(h):
a∈ρ(h)

xi(q|a′, t)
xi(q, t)

γ max
a′′∈ρ(h):
a′∈ρ(h)

Qt(q|a′′) = 0

thus, we can rewrite

ẋi(q|a, t) = ẋi(q, t) ·
xi(q|a, t)
xi(q, t)

+ xi(q|a, t)αt

(
τ̇tQt(q|a) + τt

(
r(q|a)−Qt(q|a)

)

−
∑

a′∈ρ(h):
a∈ρ(h)

xi(q|a′, t)
xi(q, t)

(
τ̇tQt(q|a′) + τt

(
r(q|a′)−Qt(q|a′)

)))
. (5)

We can rewrite the reward in expectation of a sequence as its
fitness as

r(q|a) = g
T
q|a(xi(t)) · Ui · x−i(t)

thus Eq. (5) becomes

ẋi(q|a, t) = ẋi(q, t) ·
xi(q|a, t)
xi(q, t)

+ xi(q|a, t)αt (τ̇tQt(q|a)

+τt
(
g
T
q|a(xi(t)) · Ui · x−i(t)−Qt(q|a)

)
−

∑
a′∈ρ(h):
a∈ρ(h)

xi(q|a′, t)
xi(q, t)

·

·
(
τ̇tQt(q|a′) + τt

(
g
T
q|a′

(
xi(t)

)
· Ui · x−i(t)−Qt(q|a′)

))
.

Given that

∑
a′∈ρ(h):
a∈ρ(h)

xi(q|a′, t)
xi(q, t)

g
T
q|a′ (xi(t)) · Ui · x−i(t) = g

T
q (xi(t)) · Ui · x−i(t)

we have

ẋi(q|a, t) = ẋi(q, t) ·
xi(q|a, t)
xi(q, t)

+ xi(q|a, t)αt

·
(
τt

((
gq|a(xi(t))− gq(xi(t))

)T
· Ui · x−i(t)

)
− τtQt(q|a)

+ τ̇tQt(q|a)−
∑

a′∈ρ(h):
a∈ρ(h)

xi(q|a′, t)
xi(q, t)

(
τ̇tQt(q|a′)− τtQt(q|a′)

))
.

By Boltzmann distribution, for every q, a, a′, we have
xi(q|a′, t)
xi(q|a, t)

=
eτtQt(q|a

′)

eτtQt(q|a)
and by sequence form definition

we have
∑
a′∈ρ(h):a∈ρ(h)

xi(q|a′, t)
xi(q, t)

= 1 for every q, so we

obtain:
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− τtQt(q|a) + τt
∑

a′∈ρ(h):
a∈ρ(h)

xi(q|a′, t)
xi(q, t)

Qt(q|a′)

= τt
∑

a′∈ρ(h):
a∈ρ(h)

xi(q|a′, t)
xi(q, t)

(Qt(q|a′)−Qt(q|a))

=
∑

a′∈ρ(h):
a∈ρ(h)

xi(q|a′, t)
xi(q, t)

log

(
xi(q|a′, t)
xi(q|a, t)

)
.

Thus

ẋi(q|a, t) = xi(q|a, t)
[
αtτt

(
(gq|a(xi(t))− xi(t))

T · Ui · x−i(t)
)

+

(
αt +

τ̇t

τt

) ∑
a′∈ρ(h):
a∈ρ(h)

xi(q|a′, t)
xi(q, t)

log

(
xi(q|a′, t)
xi(q|a, t)

)]
+

ẋi(q, t) ·
xi(q|a, t)
xi(q, t)

. (6)

When q = q∅, the time derivative ẋi(q∅, t) = 0 because, by
definition of sequence form, xi(q∅, t) = 1 for every t. Thus,
when q = q∅ Eq. (6) becomes:

ẋi(q∅|a, t) = xi(q∅|a, t)
[
αtτt

(
(gq∅|a(xi(t))− xi(t))

T · Ui · x−i(t)
)

+

(
αt +

τ̇t

τt

) ∑
a′∈ρ(h):
a∈ρ(h)

xi(q|a′, t)
xi(q∅, t)

log

(
xi(q∅|a′, t)
xi(q∅|a, t)

)]
. (7)

By substituting iteratively ẋi(q∅|a, t) in the term ẋi(q, t) ·
xi(q|a, t)
xi(q, t)

of Eq. (6) for every q, we obtain:

ẋ1(q|a, t) = x1(q|a, t)
[
αtτt

(
(gq|a(x1(t))− x1(t))

T · U1 · x2(t)
)

+

(
αt +

τ̇t

τt

) ∑
h:∃a∗∈q|a
a∗∈ρ(h)

∑
a′∈ρ(h)

x1(q|a′, t)
x1(q, t)

log

(
x1(q|a′, t)
x1(q|a∗, t)

)]
(8)

ẋ2(q|a, t) = x2(q|a, t)
[
αtτt

(
x1(t)

T · U2 · (gq|a(x2(t))− x2(t))
)

+

(
αt +

τ̇t

τt

) ∑
h:∃a∗∈q|a
a∗∈ρ(h)

∑
a′∈ρ(h)

x2(q|a′, t)
x2(q, t)

log

(
x2(q|a′, t)
x2(q|a∗, t)

)]
. (9)

The replicator dynamics Eq. (8)–(9) is formed by two terms:
the selection (exploitation) one,

xi(q|a, t)αtτt
((

gq|a(xi(t))− xi(t)
)T · Ui · x−i(t))

and the mutation (exploration) one,

xi(q|a, t)
(
αt +

τ̇t

τt

) ∑
h:∃a∗∈q|a
a∗∈ρ(h)

∑
a′∈ρ(h),
q′⊆q

xi(q
′|a′, t)

xi(q, t)
log

xi(q
′|a′, t)

xi(q′|a∗, t)
,

where q′ ⊆ q is the sequence leading to h. The learning
rate αt (contained in both terms) has the function of chang-
ing the speed of dynamics, but it does not affect the trajec-
tory. More interesting is the exploitation parameter τt whose
function is to increase or decrease the prominence of the se-
lection term w.r.t. the mutation term. When τt increases (de-
creases), Algorithm 3 assigns a greater (smaller) probability
to sequences with high Q–values, preferring the exploita-
tion (exploration) w.r.t. the exploration (exploitation); the
same reflects in the replicator dynamics because a greater
(smaller) τt means that the selection term affects the learn-
ing dynamics more (less) than the mutation one.

By exploiting the same arguments discussed in (Gatti,
Panozzo, and Restelli 2013), it can be observed that the se-
lection term of replicator dynamics in Eq. (8)–(9) is realiza-
tion equivalent to the selection term of the replicator dynam-
ics studied in (Tuyls, Hoen, and Vanschoenwinkel 2006).
That is, the learning dynamics in expectation of our Q–
learning algorithm are realization equivalent to the learning
dynamics of the model proposed in (Tuyls, Hoen, and Van-
schoenwinkel 2006) once applied to the normal form when
the mutation term is zero. When the mutation term tends to
zero, the two replicator dynamics models have the same rest
points, but they can have different trajectories. When instead
the mutation term does not tend to zero, the two replicator
dynamics have different trajectories and rest points. An ex-
ample is reported in Fig. 2(a).

Theorem 1 Given

• a normal–form strategy profile (π1(t),π2(t)) and its evo-
lution (π1(t + ∆t),π2(t + ∆t)) according to (Tuyls,
Hoen, and Vanschoenwinkel 2006),

• a sequence–form strategy profile (x1(t),x2(t)) and its
evolution (x1(t+ ∆t),x2(t+ ∆t)) according to (8)–(9),

if (π1(t),π2(t)) and (x1(t),x2(t)) are realization equiv-
alent, in general (π1(t + ∆t),π2(t + ∆t)) and (x1(t +
∆t),x2(t+ ∆t)) are not realization equivalent.

Since the selection terms are realization equivalent, the
non–equivalence is due to the mutation terms. More pre-
cisely, while the mutation term associated with a normal–
form action depends on all the strategies over all the other
actions (Tuyls, Hoen, and Vanschoenwinkel 2006), the mu-
tation term associated with a sequence q depends on the
strategies over a subset of sequences (i.e., all the sequences
that can be played at every information set crossed by q).

Experimental results
Relationship between replicators dynamics. As shown by
Theorem 1, the replicator dynamics (8)–(9) and the one de-
scribed in (Tuyls, Hoen, and Vanschoenwinkel 2006) are not
realization equivalent, but only their selection terms are. In
particular, when payoffs are normalized in [0, 1] such as in
Fig. 1, we observed that at τ = 5 the two trajectories are
very far, while as τ approaches a value of 15 the two trajec-
tories get close. Examples of trajectories of the two replica-
tors, starting from the same point, for increasing values of τ
are shown in (Panozzo, Gatti, and Restelli 2014).
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Figure 2: (a) Sequence–form (red line) and normal–form
(green line) replicator dynamics in the running example of
Fig. 1 with α = 1 and τ = 5. (b) Example of different limit
points of learning dynamics from the same starting point
with constant but different τ ; red line τ = 10, green line
τ = 20, blue line τ = 30.

Learning dynamics length. We compare the learning dy-
namics length (in terms of iterations) obtained when the Q–
learning is applied to the normal form w.r.t. our sequence
form version when the initial strategies are realization equiv-
alent and with different configurations of the parameters as
the size of the tree (branching factor b and depth d) varies. In
our experimental setting τ is a linear increasing function of
time starting from 0.0001 and ending to 0.5, α is exponential
decreasing starting from 1 and ending to 0.2. The algorithm
stops when the difference of expected utility between itera-
tions n and n − 1 of both agents is smaller than 0.001 for
1000 consecutive iterations. However, the average length is
comparable only for very small game trees: with b = 2 and
d = 2 the normal form requires about 1.5 times the num-
ber of iterations required by the sequence form, while with
b = 2 and d = 3 the ratio is about 2.7; with larger d the
ratio is larger than 1000. This confirms that the dynamics
in normal form are exponentially longer than those in the
sequence form and this is because the normal form is expo-
nentially large w.r.t. the sequence form.

Parameters influence in the learning limit points. Pa-
rameters α and τ affect in different ways the trajectories of
(8)–(9). While α only affects the dynamics speed without
changing the trajectory, τ increases or decreases the promi-
nence of selection term w.r.t. the mutation term. The param-
eter τ can dramatically affect the trajectories of the replica-
tor dynamics changing both the learning limit points (by in-
troducing small perturbations) and their basins of attraction.
An example is shown in Fig. 2(b). Increasing τ from 10 to
20 the learning limit point is slightly perturbed getting close
to the equilibrium with utilities (1, 0.5), while increasing τ
from 20 to 30 makes the basins of attraction change and the
learning trajectory converges to a different limit point.

Variability analysis. The replicator dynamics model pro-
vides an abstract (time–limit) description in expectation of
the learning dynamics. We evaluate here the accuracy of the
model w.r.t. the execution of the algorithm. We executed 100
times our algorithm from the same starting point for each
different combination of parameters α ∈ {0.01, 0.05, 0.1}
and τ ∈ {5, 9}. For each parameter combination, we mea-
sured the distance between each trajectory and the trajectory
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Figure 3: Statistical bounds that represent the distance be-
tween the expected (from replicator dynamics) learning dy-
namics (red line) and the real dynamics of learning agents
that use our algorithm (black line 75%, green line 50%, blue
line 25%) with τ = 9 and α = 0.01.

prescribed by the replicator dynamics model. In Fig. 3 we
reported, with α = 0.01 and τ = 9, the replicator dynamics
trajectory (red curve) and the curves containing the 25 clos-
est dynamics (blue curve), the 50 ones (green curve) and
the 75 ones (black curve) in the utility space (in the strategy
space the graphical representation is not possible). Curves
for different values of α and τ can be found in (Panozzo,
Gatti, and Restelli 2014). Interestingly, the learning trajec-
tories converge in a neighborhood of the limit point of the
replicator dynamics independently of the value of τ . The
specific value of τ affects the possibility to converge to (a
neighborhood of) an equilibrium. Instead, the variance of the
learning process is strictly related to the value of α. If α is
very small, then the variance is small and, as α goes to zero,
the learning process is well approximated by our model.

Conclusion and future works
We developed an efficient Q–learning based algorithm that
works with the sequence form representation of extensive–
form games. We showed that the time–limit learning dy-
namics of our algorithm in expectation can be described by
means of a new sequence–form replicator dynamics with a
mutation term. Finally, we experimentally evaluated our al-
gorithm applied to the sequence form and we showed the
improvement w.r.t. the Q–learning algorithm applied to the
normal form and an analysis about how far the actual trajec-
tories can depart from the replicator dynamic model.

In future, we intend to explore the following problems:
defining a Q–learning based algorithm working with the
agent form representation of extensive–form games, apply-
ing our algorithm to state–action model of extensive–form
games, deriving theoretical bounds in probability (e.g., Ho-
effding’s and Chernoff’s) over the distance between the tra-
jectories predicted by the model and the actual trajectories,
and extend our work to other learning algorithms.
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