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Abstract

Policy gradient reinforcement learning (PGRL) has
been receiving substantial attention as a mean for seek-
ing stochastic policies that maximize cumulative re-
ward. However, the learning speed of PGRL is known
to decrease substantially when PGRL explores the poli-
cies that give the Markov chains having long mixing
time. We study a new approach of regularizing how the
PGRL explores the policies by the use of the hitting
time of the Markov chains. The hitting time gives an
upper bound on the mixing time, and the proposed ap-
proach improves the learning efficiency by keeping the
mixing time of the Markov chains short. In particular,
we propose a method of temporal-difference learning
for estimating the gradient of the hitting time. Numeri-
cal experiments show that the proposed method outper-
forms conventional methods of PGRL.

1 Introduction
Policy Gradient Reinforcement Learning (PGRL) attempts
to find a policy that maximizes the average reward, based
on gradient ascent in the policy parameter space (Gulla-
palli 1990; Williams 1992; Baxter and Bartlett 2001). Since
PGRLs can optimize the parameters controlling the mea-
sure of randomness of the policy, PGRLs, as compared
with value-function-based approaches (Sutton and Barto
1998), can find appropriate stochastic policies. Meanwhile,
PGRL methods often require an excessively large num-
ber of learning steps to construct a good stochastic pol-
icy. The number of learning steps depends on the mixing
time of the Markov chains that are given by intermediate
policies that the PGRL explores (Bartlett and Baxter 2000;
Baxter and Bartlett 2000; 2001; Kakade 2003). Roughly
speaking the mixing time of a Markov chain represents the
number of steps needed for the Markov chain to approach
sufficiently close to its stationary distribution. In this pa-
per, we give a new PGRL method that regularizes the hitting
time as a bound of a mixing time, where hitting-time regres-
sions based on temporal-difference learning are proposed.
This will keep the Markov chain compact and can improve
the learning efficiency.
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The organization and the contributions of this paper are
summarized as follows. In Section 2, we briefly review the
PGRL and also present a motivation and outline of our
mixing-time regularization. The relation among a bias and
variance of an estimator for an arbitrary linear sum of the
stationary distribution on a Markov chain, a mixing time,
and a hitting time is described in Section 3. It is proved as
our first theoretical contribution that the bias and variance
of the estimator are bounded via the Cesàro mixing time,
which in turn is bounded via the worst-case expected hitting
time. In Section 4, we derive a new framework of PGRL
with mixing-time regularization, where, as the second con-
tribution, the sufficient condition for the convergence to a
local optimum is also provided in terms of the strength of
the regularization term. The estimating method of this reg-
ularization term is proposed in Section 5. Numerical exper-
iments in Section 6 show that the proposed method outper-
forms conventional PGRL methods.

2 Background of Policy Gradient
Reinforcement Learning

Problems of PGRL are usually modeled on a Markov de-
cision process (MDP) (Bertsekas 1995; Sutton and Barto
1998). It is defined by the quintuplet (S,A, pT, R, π), where
S = {1, . . . , |S|} and A = {1, . . . , |A|} are finite sets of
states and actions, respectively. Also, pT : S×A×S → [0, 1]
is a state transition probability function of a state st, an ac-
tion at, and the following state st+1 at time t ∈ N, i.e.,1

pT(st+1|st, at) , Pr(st+1|st, at). The R : S ×A×S → R
is a bounded reward function of st, at, and st+1, which
defines an immediate reward rt+1 = R(st, at, st+1) ob-
served by a learning agent at each time step. The action
probability function π : A × S × Rd → [0, 1] defines the
decision-making rule of the learning agent, which is also
called a policy, i.e., π(a|s;θ) , Pr(a|s,θ), where θ ∈ Rd
is a policy parameter. The policy is parametrized by users
and is controlled by tuning θ. Here, we make the following
usual assumptions for the MDP (Bartlett and Baxter 2000;
Baxter and Bartlett 2001; Kakade 2002).

1Although it should be Pr(St+1 = st+1|St = st, At = at)
for the random variables St+1, St, and At to be precise, we write
Pr(st+1|st, at) for brevity. The same rule is applied to the other
distributions.
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Assumption 1 The Markov chain on S prescribed by
M(θ) , {S,A, pT, R, π,θ} is always ergodic (irreducible
and aperiodic).

Under Assumption 1, there exists a unique stationary dis-
tribution, dθ(s), which satisfies the balance equations:

dθ(st+1) =
∑
st∈S

∑
at∈A

pT(st+1|st, at)π(at|st;θ)dθ(st).

This stationary distribution is equal to the limit-
ing distribution and independent of the initial state,
dθ(s

′) = limt→∞ Pr(St=s′|S0 =s,M(θ)), ∀s ∈ S.
The goal of PGRL is to find the policy parameter θ∗ that

maximizes the average immediate reward in the infinitely
long run, so called the average reward,

η(θ) , lim
T→∞

1

T
Eθ

[
T−1∑
t=0

R(St, At, St+1)

]
=
∑
st∈S

∑
at∈A

∑
st+1∈S

dθ(st)π(at|st;θ)

× pT(st+1|st, at)R(st, at, st+1),

where Eθ[·] denotes the expectation operator over random
variables in the Markov chain M(θ), e.g., St, At, etc.

The derivative of the average reward with respect to the
policy parameter,∇η(θ) , [∂η(θ)/∂θ1, ..., ∂η(θ)/∂θd]

>,
is referred to as the Policy Gradient (PG). The average re-
ward η is increased by updating the policy parameter θt at
time t as

θt+1 = θt + αtGθt
∇η(θt), (1)

where αt is a learning rate. The matrix Gθ ∈ Rd×d is an
arbitrary uniformly-bounded positive definite matrix, which
often consists of the Fisher information matrix of the pol-
icy (Kakade 2002) and/or the stationary state distribution
(Morimura et al. 2008). This framework is called the PGRL
(Baxter and Bartlett 2001). In the normal setting of rein-
forcement learning, the state transition probability or the re-
ward function is unknown. Thus the PG ∇η(θ) cannot be
computed analytically and thus needs to be estimated. How-
ever, as is described in the next section, the number of time
steps needed to make the estimated∇η(θ) almost unbiased
will increase as the mixing time of the Markov chain M(θ)
gets larger.

To control the magnitude of the mixing time, we consider
adding a regularization term, l(θ), into the policy update of
Eq. (1) as

θt+1 = θt + αtGθt
∇η(θt)− λtl(θt), (2)

where λt is a regularization parameter.

3 Mixing time and hitting time for PGRL
We introduce a mixing time and analyze its effect on biases
and variances of estimators required for the policy update,
such as ∇η(θ) or Gθ in Eq. (1), in a finite-time Markov
chain. Then, as a bound of the mixing time, a hitting time is
also introduced.

Cesàro mixing time
In PGRL, a standard mixing time2, which is the time to be
close to the stationary state distribution dθ(s), is often used
for connection with the policy gradient estimator with dis-
count factor (Bartlett and Baxter 2000; Baxter and Bartlett
2000; 2001). Here we consider an alternative formula of a
mixing time which will be useful for discussing effects on
an estimation problem in a finite-time Markov chain as fol-
lows. That is the Cesàro mixing time m(ε,θ) (Lovász and
Winkler 1998; Levin, Peres, and Wilmer 2008), which is de-
fined as

m(ε,θ) , min
t

{
t

∣∣∣∣ max
s0∈S

1

2

∑
s∈S
|νθ(t, s0, s)−dθ(s)| ≤ ε

}
,

(3)

where νθ(t, s0, s) is the time-average probability of visiting
s within t time-steps given an initial state S0 = s0,

νθ(t, s0, s) ,
1

t

t−1∑
k=0

{
e|S|(s0)P k

θ

}
s
.

The matrix Pθ is a matrix representation of the state transi-
tion probability given the policy π(a|s;θ), i.e., {Pθ}s,s′ ,∑
a∈A π(a|s;θ)pT(s′|s, a), where {X}i,j or {x}i denotes

the (i, j)-th or i-th element of a matrix X or a vector x,
respectively. The vector en(k) denotes the n-dimensional
column vector whose k-th element is 1 and otherwise zero.

Cesàro mixing time for a bound of estimation bias
or variance on finite-time Markov chain
Let us consider a prediction problem of a general class of a
linear combination of an arbitrary function f(s) ∈ [−C,C]
and the stationary state distribution dθ(s),

gθ =
∑
s∈S

f(s)dθ(s), (4)

which relates to many sufficient statistics computed in RE-
INFORCE (Williams 1992), GPOMDP (Baxter and Bartlett
2001), and other PGRL methods (Kakade 2002; Peters and
Schaal 2008; Morimura et al. 2009). A natural unbiased es-
timator of gθ on a finite-time Markov chain of a time length
t is

ĝt(s0) =
1

t

t−1∑
k=0

f(Sk). (5)

We show a connection between bias/variance of the esti-
mator and the mixing time in the following propositions as
part of the main contribution.

Proposition 1 The Cesàro mixing time m(ε,θ) of Eq. (3)
is an upper bound of the number of time steps required to

2The only difference between this standard mixing time and the
Cesàro mixing time of Eq. (3) is the definition of νθ(t, s0, s). In
the case of the standard mixing time,

{
e|S|(s0)P

k
θ

}
s′

is used for
νθ(t, s0, s) in Eq. (3).

1998



decrease the maximum of the absolute expected bias of the
estimator ĝt(s0) of Eq. (5) for gθ of Eq. (4),

Biasθ(t) , max
s0∈S

∣∣Eθ[gθ − ĝt(s0)]
∣∣

below 2Cε, i.e., the inequality, Biasθ(m(ε,θ)) ≤ 2Cε,
holds.

Proof. Because of |f(s)| ≤ C, this bias is bounded as

Biasθ(t) = max
s0∈S

∣∣gθ − Eθ[ĝt(s0)]
∣∣

= max
s0∈S

∣∣∣∣∣∑
s∈S

f(s) dθ(s)−
∑
s∈S

f(s) νθ(t, s0, s)

∣∣∣∣∣
≤ max

s0∈S

∑
s∈S

∣∣f(s)
∣∣ ∣∣dθ(s)− νθ(t, s0, s)

∣∣
≤ C max

s0∈S

∑
s∈S

∣∣dθ(s)− νθ(t, s0, s)
∣∣ (6)

If t∗ is equal to or more than m(ε,θ), the inequality∑
s∈S |dθ(s) − νθ(t∗, s0, s)|≤ 2ε holds from the definition

of the Cesàro mixing time (Eq. (3)) and thus the proposition,
Biasθ(t∗) ≤ 2Cε, is proved. �

Proposition 2 The Cesàro mixing time m(ε,θ) of Eq. (3)
is an upper bound of the number of time steps required to
decrease the maximum of the expected (pseudo) variance of
the estimator ĝt(s0) of Eq. (5) for gθ of Eq. (4),

Varθ(t) , max
s0∈S

Eθ

[
{gθ − ĝt(s0)}2

]
below 4C2ε, i.e., the inequality, Varθ(m(ε,θ)) ≤ 4C2ε,
holds.

Proof. Because of |gθ − ĝt(s0)| ≤ 2C, this variance is
bounded as

Varθ(t) ≤ 2C Biasθ(t).

With Proposition 1, if t∗ ≥ m(ε,θ), then Varθ(t∗) ≤ 4C2ε
holds. �

Propositions 1 and 2 mean

min
t

{
t ≥ 0

∣∣ Biasθ(t) ≤ 2Cε
}
≤ m (ε,θ) ,

min
t

{
t ≥ 0

∣∣ Varθ(t) ≤ 4C2ε
}
≤ m (ε,θ) .

and indicate that the magnitude of the Cesàro mixing time
m(ε,θ) can have a great effect on bias and variance for es-
timating a linear combination of the stationary state distri-
bution on a finite-time MDP. The bias and variance can in-
crease as m(ε,θ) gets larger. Thus, in order to learn a policy
in PGRL efficiently, it is required to keep m(ε,θ) low.

Hitting time for a bound of Cesàro mixing time
The hitting time is the first time at which a Markov chain
M(θ) hits a state s′ ∈ S from an initial state s ∈ S, which
is defined as

τθ(s, s′) , min {t ≥ 0 |S0 = s, St = s′, M(θ)} .

The expected hitting time is given as

hθ(s, s′) , E[τθ(s, s′)] ,

where E[·] is the expectation with respect to the distribution
of τθ(s0, s). Also the worst-case (expected) hitting time is

h∗(θ) , max
s,s′∈S

{hθ(s, s′)} . (7)

We use the following proposition for a bound of Cesàro mix-
ing time with the hitting time.

Proposition 3 (Levin, Peres, and Wilmer 2008) The
Cesàro mixing time is bounded by using the worst-case
hitting time,

m(ε,θ) ≤ 1

ε
h∗(θ) + 1.

4 Mixing-time regularized policy gradient
We derive a framework of policy gradient with mixing-time-
bound regularization. The results in the previous section in-
dicate that, in order to compute some statistics for the policy
update efficiently, a learner should keep magnitude of the
Cesàro mixing time low3. Thus we want to directly control
the Cesàro mixing time during in learning process. However,
according to the best of our knowledge, there is no practical
method in RL to estimate and control it. On the other hand,
as shown in Proposition 3, the worst-case hitting time is an
upper bound of the Cesàro mixing time, and its derivative
with respect to the policy parameter can be easily estimated
as described in Section 5. Accordingly, we consider a natural
approach for keeping the Cesàro mixing time low, in which
the derivative of the worst-case hitting time is used for the
regularization term l(θ) in Eq. (2), such as

θt+1 = θt + αtGθt
∇η(θt)− λt∇h∗(θt), (8)

or θt+1 = θt+αtGθt∇η(θt)−λtGθt∇h∗(θt). The update
of the policy tries to increase the average reward and also to
decrease the worst-case hitting time or an upper bound of
the Cesàro mixing time. However, the intended objective of
the proposed approach is not to decrease excessively long
Cesàro mixing time but rather tries to prevent the Cesàro
mixing time from increasing. This suppression of the Cesàro
mixing time can be understood with an analogy to the natu-
ral gradient (Amari 1998) or natural policy gradient (Kakade
2002), which tries to prevent the learning parameter from
falling into the region that causes learning plateau. One can-
not expect the natural gradient to perform well in the regions
with heavy learning plateau.

In practice, it is important to balance the effects of the last
two terms in Eq. (8). Conceivably, the mixing time might be
huge or diverge with the optimal policy. Thus it would be
needed to decrease the regularization parameter depending
on time t, such as λt := x/(y+ t2), where x > 0 and y ≥ 0
are constants. We give a proposition for setting of αt and λt
to guarantee a convergence to a local optimum.

3Note that it is also known that keeping magnitude of a mix-
ing time low encourages the exploration (Kearns and Singh 2002;
Kakade 2003).
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Proposition 4 Let a Lipschitz continuity condition on ∇η
hold, i.e., there is some constant L > 0 satisfying
‖∇η(θ)−∇η(θ′)‖ ≤ L ‖θ − θ′‖ , ∀θ, θ′ ∈ Rd, where
‖·‖ denotes the Euclidean norm, and ∇h∗ be uniformly
bounded, i.e., there is a constant M satisfying ‖∇h∗(θ)‖ <
M, ∀θ ∈ Rd. Assume that the learning rate αt ≥ 0 and the
regularization parameter λt ≥ 0 satisfy

∞∑
t=0

αt =∞,
∞∑
t=0

α2
t <∞,

and, for some positive constant c,
λt ≤ cα2

t ,

respectively. Then, with the update manner of Eq. (8), the
η(θt) converges to a finite value and limt→∞∇η(θt) = 0.
Furthermore, every limit point of θt is a stationary point of
η.
Proof. See the associated technical report (Morimura,
Osogami, and Shirai 2014).

Alternatively, the regularization term can be decreased in
consideration of the achieved objective value. For example,
the following heuristic for the update can be used,
θ := θ + α∇η(θ)− λmax(0, η∗ − η̂(θ))∇h∗(θ), (9)

where η∗ is a targeted average reward set manually, which
does not have to be the maximum average reward. Also,
η̂(θ) is an estimator of the current average reward, which
will be simply updated at time t as

η̂(θ) := (1− α)η̂(θ) + αRt+1,

where Rt+1 = R(St, At, St+1) is a random variable of re-
ward. Hereinafter, the update rule of the mixing-time regu-
larized PG with Eq. (8) will be called as Option 1, and also
that with Eq. (9) as Option 2.

For the implementation, we need to estimate ∇η(θ) and
∇h∗(θ). Since there are several existing methods for esti-
mating ∇η(θ), it remains to provide a method for estimat-
ing∇h∗(θ), which is described in the following section.

5 Estimation of Mixing-time-Bound
Derivative∇h∗(θ)

We derive an estimation method for the derivative of the
worst-case hitting time, ∇h∗(θ), as the mixing-time regu-
larization term. Since a direct estimation of ∇h∗(θ) is dif-
ficult due to non-linearity of h∗(θ) resulting from its maxi-
mizing operation (see Eq. (7)), we have the following step-
wise approach. First the expected hitting time and its deriva-
tive are estimated as ĥ(s, s′) and ∇̂h(s, s′), respectively.
Second the state pair (s∗, s′∗) that maximizes ĥ(s, s′) is
searched. Then we compute ∇̂h(s∗, s′∗) as an estimate of
∇h∗(θ). An estimation method for the expected hitting time
or its derivative is described in subsequent subsections.

Note that we derive those estimation methods “under a
fixed policy,” but this is standard in the literature of PGRL.
In particular, there is a policy evaluation step that evaluates
the performance of a current (fixed) policy. Then the pol-
icy is updated based on the results of evaluation. A concrete
algorithm for the mixing-time regularized PG is shown in
Algorithm 1.

Estimation of hitting time
The hitting time estimation problem of hθ(s, s′) can be re-
duced to that of the value function (Sutton and Barto 1998)
on a finite-time-horizon MDP with an absorbing state s′,
where the reward is always 1. This observation leads to the
following recursive formula, which we call the hitting-time
Bellman equation,

hθ(s, s′) =

{
0 if s = s′,

1 + Eθ

[
hθ(St+1, s

′) |St=s
]

otherwise.

Let us consider an estimator of the expected hitting time,
ĥ : S × S → R+. From the hitting-time Bellman equa-
tion, ĥ at time t can be updated on the basis of the temporal-
difference learning of the value function (Sutton and Barto
1998): if st 6= st+1,

ĥ(st, i) := ĥ(st, i) + αtδ
(h)
t (i), i ∈ {s | s 6= st, s ∈ S},

(10)

where δ(h) is a temporal-difference function for the hitting
time,

δ
(h)
t (i) , 1 + ĥ(st+1, i)− ĥ(st, i).

Throughout, we keep ĥ(s, s) = 0,∀s ∈ S.
We also derive an alternative approach for estimating hθ

on the basis of the least-square temporal-difference learn-
ing (Bradtke and Barto 1996; Boyan 2002). The sufficient
statistics for this estimation are defined asA ∈ R|S|×|S| and
b ∈ R|S|. The update rule at time t is given as, if st 6= st+1,

A := βA+ e|S|(st){e|S|(st)− e|S|(st+1)}>,
b := βb+ e|S|(st),

where β ∈ [0, 1] is a forgetting rate. The estimated value
with the sufficient statistics is given as

ĥ(i, j) :=


{
A−1/j b/j

}
i

if i < j,

0, if i = j,{
A−1/j b/j

}
i−1, otherwise,

where X/y denotes a partitioned matrix in which the y-th
column and row are removed from a matrix X , and x/y a
partitioned vector where the y-th element is removed from a
vector x. It is empirically shown that the efficiency of the es-
timation with the least-square temporal-difference learning
is higher than that with temporal-difference learning. How-
ever, the computational cost with the least-square temporal-
difference is also much higher and will be O(|S|3) due to
the matrix inversion at each time step in our scenario.

Note that the eligibility-trace technique (Sutton and Barto
1998) will be applied to those estimation analogously to
TD(λ) in (Sutton and Barto 1998) or LSTD(λ) (Boyan
2002). However, we skip it due to lack of space.

Estimation of hitting-time derivative
We consider an estimator of the hitting-time derivative with
respect to the policy parameter θ, ∇̂h : S×S → Rd. By tak-
ing partial differentiation of the hitting-time Bellman equa-
tion of Eq. (10), the following recursive formula, called the
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Algorithm 1: An implementation of the mixing-time regu-
larized policy gradient reinforcement learning
A mixing time bound regularized PGRL algorithm with
temporal-difference learning (Option 1)

Given:
• a policy π(a|s;θ) with an policy parameter θ ∈ Rd

• hyper-parameters: α(h)
t , α

(∇)
t , α

(π)
t , λt ≥ 0

Set:
• an initial hitting time function:
ĥ : S × S → R+ s.t. ĥ(s, s) = 0,∀ s ∈ S
• an initial hitting time derivative function:
∇̂h : S × S → Rd s.t. ∇̂h(s, s) = 0,∀ s ∈ S

• an initial state: s0 ∈ {s, . . . , |S|} (∼ Pr(s0))
For t = 0 to T − 1 do
(Interaction with environment)
• chose and execute action at ∼ π(a|s;θ)
• observe following state st+1 and reward rt+1

(Update ĥ and ∇̂h for all i ∈ {s | s 6= st, s ∈ S})
• ĥ(st, i) := ĥ(st, i) + α

(h)
t

(
1+ĥ(st+1, i)−ĥ(st, i)

)
• ∇̂h(st, i) := ∇̂h(st, i) + α

(∇)
t

{
− ∇̂h(st, i)

+ĥ(st+1, i)∇ log π(at|st;θ) + ∇̂h(st+1, i)
}

(Compute the worst-case hitting time estimate ∇̂h∗
as the mixing-time regularization term)

• find (s∗, s′∗) := arg maxs,s′∈S ĥ(s, s′)

• compute ∇̂h∗ := ∇̂h(s∗, s′∗)
(Compute ∆θ as update direction for the parameter θ)
• do an arbitrary PG algorithm, such as GPOMDP
(Baxter and Bartlett 2001) or NPG (Kakade 2002)

(Update the policy parameter θ)
• θ := θ + α

(π)
t ∆θ − λt∇̂h∗

End
Return: the policy π(a|s;θ).

hitting-time-derivative Bellman equation, is derived,

∇hθ(s, s′)

=


0, if s = s′,

Eθ

[
hθ(St+1, s

′)∇ log π(At|s;θ)

+∇hθ(St+1, s
′) | St=s

]
, otherwise.

(11)

The lower part comes from the derivative of

Eθ[hθ(St+1, s
′)|St=s]

=
∑

at,st+1

hθ(st+1, s
′)pT(st+1|s, at)π(at|st;θ).

From the Bellman equation of Eq. (11), an update rule of
∇̂h, on the basis of the temporal-difference learning (Sutton
and Barto 1998), is given at time t as, if st 6= st+1,

∇̂h(st, i) := ∇̂h(st, i) + αtδ
(∇)
t (i),

i ∈ {s | s 6= st, s ∈ S},

where δ(∇) ∈ Rd is a temporal-difference-vector function
for the hitting time derivative,

δ
(∇)
t (i)

, ĥ(st+1, i)∇ log π(at|st;θ) + ∇̂h(st+1, i)− ∇̂h(st, i).

We also give a least-squares based estimation of ∇hθ,
where the sufficient statistics are defined as A ∈ R|S|×|S|
and C(i) ∈ R|S|×|S|, ∀i ∈ {1, . . . , |S|}. These are updated
at time t as, if st 6= st+1,

A := βA+ e|S|(st){e|S|(st)− e|S|(st+1)}>,

C := βC +∇ log π(at−1|st−1;θ)ĥ(st, :)
>,

where β ∈ [0, 1] is a forgetting rate and ĥ(s, :) denotes
[ĥ(s, 1), . . . , ĥ(s, |S|)]>.

The estimated value with the sufficient statistics is given
as

∇̂h(i, j) :=


{
A−1/j C/j

}
i,:

if i < j,

0 if i = j,{
A−1/j C/j

}
i−1,: otherwise,

where {X}i,: is the i-th column of a matrixX .

6 Experiments
We look into the effect of the mixing-time-bound regulariza-
tion through numerical experiments. To simply evaluate this
effect, all of the applied methods here use a simple, stan-
dard policy gradient method in (Baxter and Bartlett 2001) to
estimate ∇η. In particular, the baseline methods compared
with the proposed methods are the GPOMDPs with the or-
dinary policy gradient (Baxter and Bartlett 2001) and with
the natural policy gradient (Kakade 2002). In the case of our
proposed methods of Option 1 and Option 2, GPOMDP for
∇η and the temporal-difference learning for hθ and ∇hθ
are used.

The task is a simple two-state MDP in (Kakade 2002),
where each state s ∈ {1, 2} has self- and cross-transition
actions A = {self, cross} and each state transition is de-
terministic. The reward function is set as R(1, self, 1) = 1,
R(2, self, 2) = 2, and R(i, cross, j) = 0 for every feasi-
ble pair of (i, j). The policy with θ ∈ R2 is represented by
the sigmoidal function: π(self|s;θ) = 1/(1 + exp(−θs))
and π(cross|s;θ) = 1− π(self|s;θ). The hyper-parameters
of those methods were tuned. The targeted average reward
η∗, which is a hyper-parameter in the proposed method of
Option 2, was set as η∗ := 0.75 maxθ∈R2 η(θ) = 1.5.4

Figure 1 shows performance comparison when the initial
policy parameter θ0 = [2.2,−2.2]>, which corresponds to
π(self|1;θ0) = π(cross|2;θ0) ' 0.9 and severe plateau oc-
curs with the baseline methods during the first 104 steps due
to a large magnitude of the mixing time. From this result, we
confirm that the proposed approach of the mixing-time reg-
ularization can improve the performance of the conventional
PGRL methods.

4Although not shown in the paper, we also tested other values
for η∗. The results was that the performances differed only little
when η∗ is in [0.6maxθ η(θ), 0.9maxθ η(θ)].
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Figure 1: Performance comparison at the initial policy pa-
rameter θ0 = [2.2,−2.2]> on 2-state MDP

Since it is known that performance of the PGRL methods
are severely affected by the initialization of the policy, we
also looked into the dependence on the initial policy param-
eter in Figure 2. The results indicate that our approach can
largely soften the dependence. The comparison between the
proposed methods of Option 1 and 2 indicates that, if a good
targeted average reward η∗ is set, Option 2 will be a good
heuristic.

7 Conclusion
In this paper, we proved in Propositions 1 and 2 that the
Cesàro mixing time is an upper bound of bias and variance
of an estimate in a finite-time Markov chain. Then we pro-
posed an approach for regularizing the Cesàro mixing time
via the hitting time on policy gradient reinforcement learn-
ing, which keeps the Markov chain compact and improves
the learning efficiency. That is to say, the proposed methods
for suppressing the hitting time can prevent the mixing time
from heavily increasing and thus can avoid large estimation
errors of policy-gradient and hitting-time. A sufficient con-
dition of a convergence for the proposed approach was also
presented in Proposition 4. For the implementation of this
approach, several methods for estimating the hitting time
and its derivative were presented based on the temporal-
difference learning or the least-squares temporal-difference
learning. Finally we demonstrated the effectiveness of the
proposed methods through numerical experiments.

Further theoretical analysis, especially for the case that
the policy-gradient and regularization terms are estimated
with samples rather than known exactly, will be necessary to
more deeply understand the properties and efficiency, specif-
ically in term of their convergence and sample complexities.
For the scalability in the number of states, while the paper
considers all of the state-pairs in the calculation of the hit-
ting time, one can focus only on particular state-pairs, if one
knows which states are desirable, undesirable, etc. There are
several interesting directions on theoretical analysis as well
as algorithmic studies. Also, empirical studies with some
more challenging domains is important for our future work.
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(A) Proposed methods with Option 1

(B) Proposed methods with Option 2
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Figure 2: Success rates for achieving a targeted average re-
ward 1.9 (= 0.95 maxθ η(θ)) in 104 time steps by using the
various initial policy parameters θ0.
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