
Active Learning with Model Selection

Alnur Ali
Machine Learning Department

Carnegie Mellon University
alnurali@cmu.edu

Rich Caruana
Microsoft Research

rcaruana@microsoft.com

Ashish Kapoor
Microsoft Research

akapoor@microsoft.com

Abstract

Most active learning methods avoid model selection by
training models of one type (SVMs, boosted trees, etc.)
using one pre-defined set of model hyperparameters.
We propose an algorithm that actively samples data to
simultaneously train a set of candidate models (different
model types and/or different hyperparameters) and also
select the best model from this set. The algorithm ac-
tively samples points for training that are most likely to
improve the accuracy of the more promising candidate
models, and also samples points for model selection—
all samples count against the same labeling budget. This
exposes a natural trade-off between the focused active
sampling that is most effective for training models, and
the unbiased sampling that is better for model selection.
We empirically demonstrate on six test problems that
this algorithm is nearly as effective as an active learning
oracle that knows the optimal model in advance.

1 Introduction
In active learning, the goal is to learn a model that has high
accuracy on test data by requesting the labels of as few care-
fully chosen training points as possible. When applying ma-
chine learning to a new problem one usually does not know
in advance the model type or model complexity that is best
for the problem. Unfortunately, most active learning algo-
rithms side-step the important issue of model selection and
instead actively sample labels to train a single predefined
model. In active learning you only get one chance so this
risks training models not well optimized for the task at hand.

Combining model selection with active learning is non-
trivial:
• if multiple candidate models are actively trained at the

same time, different models will likely benefit from la-
beling different training points

• actively sampled data is not representative of the natu-
ral distribution and thus would yield biased estimates of
model accuracy if used for model selection

• if an unbiased sample will be used for model selection, the
labels for this validation set should come from the same
labeling budget as the training data

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The need to collect both an unbiased validation set for
model selection and a biased training set for active learning
from the same labeling budget exposes a trade-off between
sampling more training data to improve model accuracy ver-
sus having more data to reliably select the best model.

We present an algorithm for Active Learning and Model
Selection (ALMS) that actively trains a set of models and
selects the best model from this set. The algorithm works by
requesting the labels of selected points to efficiently train the
models, while also requesting the labels of unbiased points
to accurately select among the models, with all queries
counted against a fixed labeling budget. The allocation of
points to the training and validation sets is made dynami-
cally by the algorithm during active learning. The unbiased
validation data is also used to guide active learning to prefer-
entially select training data for the better performing models.
Furthermore, to make maximum use of the labeling budget,
the algorithm also uses the labels collected for the unbiased
validation set as additional training data and to estimate the
value of information of candiate points. We experimentally
evaluate ALMS against several baselines on real and syn-
thetic data, and show that it is able to train and select models
of higher accuracy than traditional active learning on a sin-
gle model—and performs almost as well as an oracle that
knows the optimal regularization parameters in advance.

The rest of this paper is structured as follows. In Section 2,
we review related work, outline several potential solutions to
the problem of joint active learning and model selection, and
describe why they are insufficient. In Section 3, we present
our algorithm. In Section 4, we present an empirical evalua-
tion on six test problems. Finally, in Section 5, we conclude.

2 Related Work and Potential Approaches
Active learning can drastically reduce the number of labeled
examples required by machine learning algorithms in a va-
riety of real-world scenarios (Dasgupta, Kalai, and Mon-
teleoni 2009), (Yan et al. 2012), (Greiner, Grove, and Roth
2002), (Mazzoni, Wagstaff, and Burl 2006), (Roy and Mc-
callum 2001), (Tong and Koller 2000), (Beygelzimer et al.
2010). Most work on active learning, however, side-steps
the issue of model selection and actively samples labels to
train a single model of one type (SVMs, neural nets, boosted
trees, etc.) with a single set of hyperparameters (soft margin

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1673

parameter, kernel type/width, number of hidden units/layers,
tree size, etc.). Unfortunately, failure to select the best model
and optimize the model hyperparameters risks training mod-
els that are not well suited to the task at hand and that will
under or over-fit to the small, biased samples available in ac-
tive learning. In the real world, once the labeling budget is
used, there is no budget left to actively train more models.

Select On Biased Training Data One potential approach
to the joint active learning and model selection problem is
to use the same biased labeled data queried by the active
learning procedure for both training and model selection;
unfortunately, (Baram, El-Yaniv, and Luz 2003) empirically
demonstrate that leave-one-out cross-validation (LOOCV)
estimates of the generalization error computed on data la-
beled by Uncertainty Sampling (Lewis and Gale 1994), are
highly biased compared to using a random sample from the
underlying data distribution—nonetheless, in our empirical
evaluation, we compare against the Query by Committee al-
gorithm (Seung, Opper, and Sompolinsky 1992) modified to
use K-fold cross-validation on the actively sampled data for
both model training and selection.

Sample Bias Correction (Sugiyama and Rubens 2008)
propose an algorithm for joint active learning and model se-
lection for regression, which relies on a closed-form expres-
sion for the LOOCV estimate of a linear regression model
that has been “debiased” by means of importance weight-
ing (IW) (Sugiyama, Krauledat, and Müller 2007). In IW, a
correction factor of P (x)/Q(x), where P (x) is an estimate
of the underlying distribution, Q(x) is the biased distribu-
tion, and x ∈ Rd is a biased data point, is used (Cortes
et al. 2008). Unfortunately, there are issues with this ap-
proach. First, a closed-form expression for the LOOCV es-
timate may not be available for other model types; theoret-
ical bounds on this quantity can exist (Vapnik and Chapelle
2000), but may be too loose to work well in practice. Second,
estimates obtained via IW can have high variance, especially
when the number of samples is small (Dudı́k, Langford,
and Li 2011; Cortes, Mansour, and Mohri 2010), as in the
early stages of active learning. Third, using IW with K-fold
CV can introduce additional variance and additional hyper-
parameters (Huang et al. 2006) that are difficult to deal with
in the active learning setting.

Use Unlabeled Pool of Data Another possibility is to use
all of the actively learned models to label an unlabeled
pool of examples, and then use this pseudo-labeled pool
for model selection; this strategy was originally proposed
by (Roy and Mccallum 2001) in the single model setting to
estimate the value of querying for the label of a new point.
Unfortunately, these estimates of model generalization error
are highly biased and not well suited for model selection.

Related Work (Sawade et al. 2010) and (Madani, Lizotte,
and Greiner 2004) tackle the related problem of actively
querying for labels in order to efficiently estimate the gen-
eralization error of already trained models; in this paper, we
consider the more general problem of actively querying la-
bels to both train and select from multiple models. (Kapoor

and Horvitz 2009) tackle the related, but distinct, problem
of budgeted feature vs. label acquisition.

3 Our Approach: ALMS
At a high-level, our algorithm for joint active learning and
model selection (ALMS) works as follows:

1. ALMS takes as inputs a set of candidate models M =
{M1, . . . ,Mm}, and a pool of unlabeled examples P =
{xi ∈ Rd}pi=1; for instance, M could comprise `2-
regularized logistic regression models with different reg-
ularization parameters λ, RBF kernel SVMs with differ-
ent regularization parameters C and kernel bandwidths
γ, neural networks with different numbers of hidden lay-
ers/units, or even a set containing all of these models.

2. On each round t ∈ {1, . . . , T} of active learning, ALMS
samples the point and its label (x∗, y∗) from the pool
that will increase the expected accuracy of the full system
most. System accuracy can be increased either by increas-
ing the expected accuracy of the models inM by adding
the sampled point (x∗, y∗) to the actively sampled train-
ing set1 Tt, or by increasing the probability of selecting
the best model M∗ ∈ M by adding the sampled point to
the unbiased validation set Vt.

3. At the end of active learning, ALMS outputs the model
M∗ ∈ M it expects will perform best on future test data
after re-training that model on all data in the union of the
train and validation sets.

The heart of ALMS (step 2) computes the value of infor-
mation for training VOIT ,M (x), and the value of informa-
tion for model selection VOIV,M (x) for each point x ∈ P ,
in order to decide which point x∗ ∈ P to sample, and
whether to place it in the training set Tt or the validation
set Vt: unlike traditional approaches to active learning where
only the value of information for training a single model is
needed, in active learning with model selection, the value
of information for training must be computed separately for
each model inM, and then combined so that lower accuracy
models have less influence over data selection—this intro-
duces a cooperation/competition trade-off, as different mod-
els may benefit from training on different points in P .

The overall value of training VOIT and value of model se-
lection VOIV are computed by taking the max over all points
x ∈ P; if VOIT is larger than VOIV then the maximizer x∗
is sampled and placed in the training set Tt, otherwise a point
is sampled at random (to maintain the unbiasedness of the
validation set2) from P and placed in the validation set Vt.
ALMS reduces to the traditional active learning algorithm
of (Roy and Mccallum 2001) when M contains only one
model and P is used in place of Vt.

1Tt and Vt are indexed by t because they can grow on each
round of active learning.

2Placing the maximizer x∗ in Vt would make Vt biased because
x∗ is selectively sampled, something we observed in preliminary
experiments.

1674

In symbols:

VOIT (value of training) = max
x∈P

E[VOIT ,M (x)] (1)

VOIV (value of model sel.) = max
x∈P

E[VOIV,M (x)] (2)

if VOIT > VOIV

x∗ = arg max
x∈P

VOIT (x)

else draw x∗ ∼ P.

The expectations in Equations 1 and 2 are taken using a
distribution over the model spaceM: we discuss computing
this distribution in Section 3.1. The methods for computing
the value of information for training and model selection are
described in Sections 3.2 and 3.3.

3.1 Computing a Distribution over Models
Intuitively, the probability that a model M ∈ M is the best
model is proportional to its accuracy on unseen test data;
fortunately, ALMS has access to a validation set Vt it can
use to obtain unbiased estimates of a model’s accuracy.

On each round t of active learning, ALMS computes the
probability of each model Pt(M) being the best by applying
a softmax (Miller and Yan 1999), (Sutton and Barto 1998),
to each model’s error rate as measured on Vt:

Pt(M) = 1− exp(error(M))∑
M ′∈M exp(error(M ′))

, (3)

where error(M) = 1
|Vt|

∑|Vt|
(x,y)∈Vt loss(M,x, y), and

loss(M,x, y) computes the loss between M ’s output on x
and its true label y (e.g., the 0/1 loss, log loss, or squared
loss)3; here, M is trained on Tt.

3.2 Computing VOI for Training
The value of information for training VOIT ,M (x) measures
the improvement in model M ’s accuracy after training on a
point x ∈ P . Because ALMS does not have access to x’s
true label y before sampling it, ALMS estimates ỹ by aver-
aging the output of each model M ∈M at x and threshold-
ing:

ỹ = I(ȳ > t) ȳ = E[E[y|x,M]] (4)

where t is a threshold4, the outer expectation is taken w.r.t.
M (Section 3.1), and the inner expectation is taken w.r.t. the
output space Y .

ALMS could then estimate the improvement in the entire
system’s accuracy by training each model on Tt ∪ (x, ỹ),
estimating each model’s accuracy on the unbiased validation
set Vt, and then taking a weighted average of these estimates
using Pt(M). Unfortunately, because ALMS already uses
Vt to compute the model probabilities Pt(M) (Section 3.1),

3In our experiments, we use the lower endpoint of a 95% con-
fidence interval instead of the raw error(M), which compensates
for small sample size early in active learning.

4When Y = {0, 1} : t = 1/2 and ȳ =
∑

M∈M Pt(M)P (y =
1|x,M).

using the same data to estimate the model probabilities and
to also estimate the model accuracies would introduce bias.

Instead, we employ leave-2-out cross-validation
(L2OCV) to simultaneously estimate Pt(M) and
VOIT ,M (x) without bias from Vt, while also enabling
ALMS to make maximal use of the small sample sizes
that arise in active learning5. To do this, ALMS first
trains all models on the train set plus the candidate
point plus all validation data except two held-out points:
{Tt ∪ (x, ỹ)} \ {(xi, yi), (xj , yj)}. Next, ALMS computes
a distribution over models using only the single left-out
validation point (xi, yi): denote this P i

t (M). Then, ALMS
computes the loss of all models on the other left-out
validation point (xj , yj). ALMS repeats these steps for all
(xi, yi) and (xj , yj) ∈ Vt; the final estimate of Pt(M) is
the average P i

t (M) over all (xi, yi) ∈ Vt, and the final
estimate for VOIT ,M (x) for each M is the average loss of
M over all (xj , yj). This process is depicted in Figure 1.

Figure 1: The steps involved in computing the value of in-
formation for training VOIT ,M (x).

ALMS computes E[VOIT ,M (x)] (Equation 1) by taking
a weighted average of the estimates of VOIT ,M (x) using
the estimates of Pt(M)—which can be written concisely as
a quadratic form:

E[VOIT ,M (x)] = s>PLs, (5)

where v = |Vt|,m = |M|, s ∈ Rv = (1/v, . . . , 1/v),P ∈
Rv×m has Pij set to P i

t (Mj) the probability of model Mj

computed on only the left-out point (xi, yi) ∈ Vt, and L ∈
Rm×v has Lij set to the loss of model Mi on the other left-
out point (xj , yj) ∈ Vt.

3.3 Computing VOI for Model Selection
Computing the value of information for model selection
VOIV,M (x) proceeds almost exactly as in Section 3.2—the
two differences are: (a) models are not trained on the two
left-out validation points or the candidate point (b) L2OCV
is executed with Vt ∪ (x, ỹ) (without using the candidate
point for training), making s ∈ Rv+1 = (1

v+1 , . . . ,
1

v+1),
P ∈ R(v+1)×m, and L ∈ Rm×(v+1).

ALMS is specified in Algorithm 1. To summarize infor-
mally: a candidate point in the pool has high value for train-
ing if it increases the expected accuracy (the entries in L in
Equation 5) of the most promising models (high values in P

5L2OCV is a form of nested cross validation: hold one point
out, cycle through holding out each of the remaining points, then
repeat with a new held-out point at the 1st level until all pairs of
points have been held out.

1675

Algorithm 1 ALMS.
1: function ALMS(set of candidate models M, pool of

unlabeled examples P)
2: initialize P0(M) (e.g., uniformly)
3: for t = 1, . . . , T rounds do
4: train all models on Tt, compute Pt(M) (Eq. 3)
5: for all (x, y) ∈ P do
6: compute x’s estimated label ỹ (Eq. 4)
7: E[VOIT ,M (x)] = COMPUTEVOI(Tt ∪

(x, ỹ),Vt) (Eq. 1)
8: E[VOIV,M (x)] = COMPUTEVOI(Tt,Vt ∪

(x, ỹ)) (Eq. 2)
9: end for

10: VOIT = max
x∈P

E[VOIT ,M (x)]

11: VOIV = max
x∈P

E[VOIV,M (x)]

12: if VOIT > VOIV then
13: x∗ = arg max

x∈P
VOIT (x)

14: Tt = Tt ∪ (x∗, y∗)
15: else
16: draw x∗ ∼ P
17: Vt = Vt ∪ (x∗, y∗)
18: end if
19: end for
20: select the best model M∗ ∈M on VT
21: train M∗ on all sampled data TT ∪ VT
22: Return M∗
23: end function
24: function COMPUTEVOI(Tt,Vt)
25: for all (xi, yi), (xj , yj) ∈ Vt do
26: train all models on {Tt∪Vt}\{(xi, yi), (xj , yj)}
27: compute Pi: (i.e., a distribution over models us-

ing (xi, yi))
28: compute L:j (i.e., loss(M,xj , yj), ∀M ∈M)
29: end for
30: Return s>PLs (Eq. 5)
31: end function

in Equation 5), while a point has high value for model selec-
tion if it increases the probability of selecting models with
high expected accuracy. Where computational cost is an is-
sue, ALMS can be sped up without noticeable degradation
in accuracy by incrementally retraining models (e.g., logis-
tic regression, SVMs, or naive Bayes) and by subsampling
from the O(|Vt|2) L2OCV iterations or from the pool P .

4 Results
We compare ALMS to four baselines on six binary clas-
sification problems. Five of the experiments use `2 regu-
larized logistic regression (regularization parameter λ ∈
{2−10, . . . , 210}), and one of the experiments uses RBF
SVMs (C ∈ {10−2, . . . , 102} × γ ∈ {10−2, . . . , 102}). All
results average over 100 trials.

4.1 Baselines
Passive Learning Passive learning labels a point drawn
at random from the pool, and uses K-fold CV on all the

labeled data to train and then select the best model in the
set of candidate models M on each round. This strawman
illustrates the gap between active and random sampling.

Query by Committee We modified the standard Query by
Committee (QBC) (Seung, Opper, and Sompolinsky 1992)
algorithm to carry out both model selection and active learn-
ing on the set of modelsM. K-fold CV is done on the bi-
ased, actively sampled data to choose the best model. The
estimates of model accuracy from K-fold CV are used to
weight votes of committee members on which point to sam-
ple next; no unbiased validation set Vt is used.

Uncertainty Sampling We also compare to Uncertainty
Sampling (Lewis and Gale 1994) applied to a single model,
with λ = 1 for logistic regression, and C = 1 and γ = 1 for
SVMs, common default regularization parameters for nor-
malized data; this baseline illustrates the risk of not optimiz-
ing model complexity parameters to the task at hand.

Oracle In addition to these three baselines, we also ran
an oracle to show the best that could be achieved with Un-
certainty Sampling if one knew the optimal regularization
parameters in advance. For the oracle we run Uncertainty
Sampling to completion with each set of regularization pa-
rameters and then pick the model with the best AUC.

4.2 Probabilities and Calibration
As with (Roy and Mccallum 2001), the algorithms we ex-
plore use log loss to avoid the coarseness of 0/1 loss mea-
sured on small sample sizes. Log loss requires models to pre-
dict probabilities. Logistic regression yields well-calibrated
probabilities, but SVMs do not. For the experiment with
SVMs, we calibrate models with Platt’s method (Platt 1999):
in the SVM experiment, QBC and Uncertainty Sampling
must use the biased actively sampled training set for cali-
bration, whereas ALMS can use its unbiased validation set.

4.3 Empirical Results
We experimented with six data sets. The 1st column in Fig-
ure 2 shows learning curves for ALMS and the four baseline
methods vs. the number of sampled labels (rounds of ac-
tive learning). With both logistic regression and RBF SVMs,
ALMS dominates passive learning with cross validation,
Uncertainty Sampling on a single model, and QBC on the
set of models M. ALMS has comparable accuracy to the
other methods when there are very few labels (< 10), but
pulls away from the other methods when there are 20 or
more labels. On most problems ALMS is competitive with
the oracle, and, surprisingly, on two problems ALMS out-
performs the oracle. It is possible for ALMS to outperform
the oracle because (a) Uncertainty Sampling may not always
be the best active learning strategy; (b) ALMS has access to
an unbiased validation set for calibration; and (c) by main-
taining a set of models, ALMS represents a different balance
between exploration and exploitation.

The 2nd column in Figure 2 shows the allocation of la-
bels by ALMS to the train and validation sets. ALMS be-
gins by allocating similar numbers of labels to the train and
validation sets because train data is needed to train good

1676

(a)
USPS

(b)
IONO-
SPHERE

(c)
MUSH-
ROOM

(d)
VOT-
ING

(e)
HEART

(e)
PIMA

Figure 2: Learning curves (left), allocation of points to the train and validation sets (middle), and final model probabilities
(right) for ALMS on six data sets. Error bars omitted to reduce clutter; all results average over 100 trials.

1677

Table 1: Average area under the learning curves for the
six data sets. Statistically significant differences between
ALMS and all other algorithms (except Oracle) according
to a Student’s t-test (α = 0.05, Bonferroni correction) are
indicated in bold.

DATA PASSIVE UNCERT QBC ALMS Oracle

USPS 0.69 0.51 0.66 0.80 0.83
HEART 0.62 0.56 0.56 0.66 0.59
IONO 0.44 0.41 0.42 0.59 0.46
MUSH 0.27 0.36 0.46 0.60 0.84
VOTE 0.78 0.76 0.78 0.83 0.86
PIMA 0.67 0.63 0.63 0.69 0.73

MEAN 0.58 0.54 0.59 0.70 0.72

models, and validation data is needed to select the better
models. This behavior is not hard coded but arises naturally
from the algorithm. As active learning progresses, however,
ALMS allocates different amounts of data to the train and
validation sets on each problem. On VOTING, ALMS allo-
cates roughly equal amounts of data to the train and valida-
tion sets, but on MUSHROOM, ALMS allocates far more data
to the train set than to the validation set. On average, across
the six problems, ALMS allocates about one third of labels
to validation and about two thirds of labels to training. Once
again, this behavior is not hard coded and emerges natu-
rally from the values of information computed by ALMS for
adding labels to the train and validation sets.

On some problems such as USPS and IONOSPHERE, the
fraction of data allocated to the validation set changes in
interesting ways during learning. On USPS, allocation to
the validation set begins to fall off after about 50 rounds of
learning. On IONOSPHERE, allocation to the validation set
initially is high, then tapers off after about 30 rounds, but
then begins to pick up again after 60 rounds. We do not yet
fully understand the cause of these changes but suspect it
has to do with abrupt changes in the (estimated) quality of
different models during learning.

The 3rd column in Figure 2 shows the probabilities as-
signed to the different models (different hyperparameters) at
the end of active learning. Models in the left side (logistic
regression) or lower left hand corner (RBF SVMs) of each
graph are more complex (less regularized), with regulariza-
tion increasing (complexity decreasing) as we move to the
right (or up). By looking at the graphs across problems it is
evident that no one model complexity is appropriate for all
problems: IONOSPHERE and HEART favor models with high
regularization, USPS and VOTING work well with models
of intermediate regularization, and MUSHROOM strongly fa-
vors more complex models with little regularization.6 The
RBF SVM results on PIMA are interesting because learn-

6The graph of model probabilities for MUSHROOM suggests
that we probably did not consider a wide enough range of regu-
larization parameters and should have included models with even
less regularization.

ing clearly favors models in the lower right-hand corner that
have high `2 regularization, but combined with small kernel
width. The results on the six problems clearly demonstrate
the value of combining model selection with active learning.

Table 1 shows the area under the curve for three baselines,
ALMS, and the Oracle on the six test problems. ALMS has
statistically significantly higher area under the curve on all
six problems compared to the three baseline methods and
yields almost 20% larger AUC than the next best method
(QBC). Not only is ALMS the best method on average, it
also is the best method on each problem. Compared to the
oracle which knows the best regularization parameters prior
to active learning, on average ALMS is only 4% worse, and
on two of the problems outperforms the oracle. On four of
the six test problems ALMS converged to the same models
as the Oracle. We do not expect ALMS to always converge to
the oracle model with 100 samples because earlier in train-
ing it must hedge its bets across multiple models.

4.4 Mushroom Data Set
The results for MUSHROOM are particularly interesting.
On MUSHROOM, the most complex model with the least
regularization is strongly favored. Presumably because it
takes more data to train complex models, on MUSHROOM,
ALMS allocates the majority of its labels to the active learn-
ing training set and expends relatively few labels on the vali-
dation set. The allocation of labels to the train and validation
sets on MUSHROOM are the largest skew we have seen.

4.5 Pima Data Set
With RBF SVMs on the PIMA dataset, ALMS (Figure 2(e))
allocates more points to the validation set than to the train set
than it does on the other problems. We suspect ALMS se-
lects more validation data on this problem because the
SVMs require data for an explicit calibration step and the
value of information calculated by ALMS reflects this.

4.6 USPS Data Set
The task in USPS is to distinguish hand-written digits 5
from 8. Figure 3 shows the entropy of the distribution over
models. As active learning progresses, entropy continues to
decrease indicating that ALMS is converging on a subset of
the models.

Figure 3: USPS data set. The entropy of the distribution over
models, maintained by ALMS, as a function of time.

1678

5 Conclusion
In this paper we proposed an algorithm that requests labels
for training points actively selected from an unlabeled pool,
and also requests labels for randomly sampled points from
the pool for model selection. The algorithm outputs a sin-
gle model, from a set of candidate models, that has high ac-
curacy on test data, while requesting fewer total labels than
several baselines. Moreover, it performs almost as well as an
active learning oracle that knows the optimal regularization
parameters in advance. An interesting direction for future
research is to investigate how to mitigate the downsides of
importance weighting with small samples so that the need to
sample an unbiased validation set for model selection can be
reduced or eliminated.

References
Baram, Y.; El-Yaniv, R.; and Luz, K. 2003. Online choice
of active learning algorithms. In ICML, 19–26.
Beygelzimer, A.; Hsu, D.; Langford, J.; and Tong, Z. 2010.
Agnostic active learning without constraints. In Lafferty,
J.; Williams, C. K. I.; Shawe-Taylor, J.; Zemel, R.; and Cu-
lotta, A., eds., Advances in Neural Information Processing
Systems 23. 199–207.
Cortes, C.; Mohri, M.; Riley, M.; and Rostamizadeh, A.
2008. Sample selection bias correction theory. In Pro-
ceedings of the 19th international conference on Algorith-
mic Learning Theory, ALT ’08, 38–53. Berlin, Heidelberg:
Springer-Verlag.
Cortes, C.; Mansour, Y.; and Mohri, M. 2010. Learning
bounds for importance weighting. In Lafferty, J.; Williams,
C. K. I.; Shawe-Taylor, J.; Zemel, R.; and Culotta, A., eds.,
Advances in Neural Information Processing Systems 23.
442–450.
Dasgupta, S.; Kalai, A. T.; and Monteleoni, C. 2009. Analy-
sis of perceptron-based active learning. J. Mach. Learn. Res.
10:281–299.
Dudı́k, M.; Langford, J.; and Li, L. 2011. Doubly robust
policy evaluation and learning. In ICML, 1097–1104.
Greiner, R.; Grove, A. J.; and Roth, D. 2002. Learning cost-
sensitive active classifiers. Artif. Intell. 139(2):137–174.
Huang, J.; Smola, A. J.; Gretton, A.; Borgwardt, K. M.; and
Schlkopf, B. 2006. Correcting sample selection bias by
unlabeled data. In Schlkopf, B.; Platt, J.; and Hoffman, T.,
eds., NIPS, 601–608. MIT Press.
Kapoor, A., and Horvitz, E. 2009. Breaking boundaries be-
tween induction time and diagnosis time active information
acquisition. In NIPS, 898–906.
Lewis, D. D., and Gale, W. A. 1994. A sequential algorithm
for training text classifiers. In Proceedings of the 17th an-
nual international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’94, 3–12. New
York, NY, USA: Springer-Verlag New York, Inc.
Madani, O.; Lizotte, D. J.; and Greiner, R. 2004. Active
model selection. In Proceedings of the 20th conference on
Uncertainty in artificial intelligence, UAI ’04, 357–365. Ar-
lington, Virginia, United States: AUAI Press.

Mazzoni, D.; Wagstaff, K.; and Burl, M. C. 2006. Active
learning with irrelevant examples. In ECML, 695–702.
Miller, D., and Yan, L. 1999. Critic-driven ensemble classi-
fication. Trans. Sig. Proc. 47(10):2833–2844.
Platt, J. C. 1999. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood meth-
ods. In ADVANCES IN LARGE MARGIN CLASSIFIERS,
61–74. MIT Press.
Roy, N., and Mccallum, A. 2001. Toward optimal ac-
tive learning through sampling estimation of error reduction.
In In Proc. 18th International Conf. on Machine Learning,
441–448. Morgan Kaufmann.
Sawade, C.; Landwehr, N.; Bickel, S.; and Scheffer, T. 2010.
Active risk estimation. In ICML, 951–958.
Seung, H. S.; Opper, M.; and Sompolinsky, H. 1992. Query
by committee. In Proceedings of the fifth annual work-
shop on Computational learning theory, COLT ’92, 287–
294. New York, NY, USA: ACM.
Sugiyama, M., and Rubens, N. 2008. Active learning with
model selection in linear regression.
Sugiyama, M.; Krauledat, M.; and Müller, K.-R. 2007. Co-
variate shift adaptation by importance weighted cross vali-
dation. J. Mach. Learn. Res. 8:985–1005.
Sutton, R., and Barto, A. 1998. Reinforcement Learning: An
Introduction. A Bradford book. Bradford Book.
Tong, S., and Koller, D. 2000. Support vector machine active
learning with applications to text classification. In Journal
of Machine Learning Research, 999–1006.
Vapnik, V., and Chapelle, O. 2000. Bounds on error ex-
pectation for support vector machines. Neural Comput.
12(9):2013–2036.
Yan, Y.; Rosales, R.; Fung, G.; Farooq, F.; Rao, B.; and
Dy, J. G. 2012. Active learning from multiple knowledge
sources. In AISTATS, 1350–1357.

1679

