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Abstract

We analyze and evaluate a generative process for multiple-
instance learning (MIL) in which bags are distributions over
instances. We show that our generative process contains as
special cases generative models explored in prior work, while
excluding scenarios known to be hard for MIL. Further, un-
der the mild assumption that every negative instance is ob-
served with nonzero probability in some negative bag, we
show that it is possible to learn concepts that accurately la-
bel instances from MI data in this setting. Finally, we show
that standard supervised approaches can learn concepts with
low area-under-ROC error from MI data in this setting. We
validate this surprising result with experiments using several
synthetic and real-world MI datasets that have been annotated
with instance labels.

Introduction
In the multiple-instance (MI) setting (Dietterich, Lathrop,
and Lozano-Pérez 1997), an algorithm is given a training set
of labeled bags, where each bag is a set of instances, de-
scribed by feature vectors. Instances are presumed to have
unobserved labels that obey a constraint: if a bag is labeled
positive, then at least one instance in that bag is labeled pos-
itive; otherwise, all instances in the bag are labeled nega-
tive. An example of such a task is 3-Dimensional Quan-
titative Structure–Activity Relationship (3D-QSAR), where
a positively labeled bag is a molecule that strongly binds
to some target protein, while a negatively labeled molecule
does not bind. Instances in this domain are conformations of
the molecule. Given such data, there are two related learn-
ing tasks: learn a concept that can predict the labels of new
bags (a “bag concept”), and/or learn a concept that can pre-
dict the labels of individual instances within bags (an “in-
stance concept”). In 3D-QSAR, a bag concept would iden-
tify whether a new molecule binds to the target. An instance
concept would identify whether a specific conformation of a
new molecule binds.

In this work, we study a generative model for MIL in
which bags are distributions over instances. To motivate
our generative model, consider 3D-QSAR. In nature, a
molecule exists in a dynamic equilibrium over its possible
conformations. Conformations of a molecule are distributed
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according to their Gibbs free energy such that low-energy
conformations are preferred. Thus, constructing a bag from
low-energy conformations can be thought of as sampling in-
stances from this distribution. We could ask of every confor-
mation whether or not it is a binding conformation that acti-
vates the target, so there is a labeling function for instances
corresponding to the instance concept. Similar arguments
can be made for other MI problem domains as well.

Not only is this generative process more realistic, it is also
less restrictive than other models proposed in the literature.
For example, prior work has proposed a model where in-
stances in all bags are drawn independently from the same
distribution (Blum and Kalai 1998). However, in 3D-QSAR,
this assumption obviously does not hold, since it requires
that different molecules share the same conformations. A re-
laxation of this model assumes that bags are arbitrary tuples
of some maximum size (Sabato and Tishby 2012). How-
ever, a molecule can transform dynamically from conforma-
tion to conformation, producing an infinite set of conforma-
tions. Other models attempt to cast bags as manifolds in
the instance space (Babenko et al. 2011), but these models
do not capture the distributional nature of bags in examples
such as the one above in which low-energy conformations
are more relevant to the prediction problem. Related gen-
erative models have been studied in prior work (Xu 2003;
Behmardi et al. 2012), but learnability under these models
is not explored. While some prior work assumes that bags
can be modeled as parametric distributions (Xu 2003), we
do not assume any specific parametric form for our data to
prove our results. In a later section we describe how our
model generalizes some of these alternatives, and the conse-
quences for the theoretical results we derive.

Our analysis of this generative process yields two new
theoretical results in MIL (under a mild assumption, de-
scribed later). First, we affirmatively answer the question of
whether instance concepts can be learned from MI data gen-
erated according to our model. Second, and more surpris-
ingly, we show that by labeling all instances with their bags’
labels (thus constructing a supervised dataset) and apply-
ing standard supervised learning approaches, we can learn
a good ranking over instances (i.e., a high-area-under-ROC
concept). In many applications, such a ranking of the data
suffices as output. For example, in 3D-QSAR, the output of
the computational affinity-prediction module is typically a
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ranked list for further testing by chemists. Our theoretical
analysis suggests that a supervised approach applied to MI
data will be successful at solving such problems. We sup-
port this theoretical result with an empirical evaluation using
a number of synthetic and real-world MI datasets annotated
with instance labels (Settles, Craven, and Ray 2008). The
experiments reveal that although an instance concept learned
with a supervised approach performs poorly with respect to
accuracy, the same approach can often find a very good so-
lution when evaluated using area under ROC (AUC)! We
then discuss the implications of this counterintuitive result
for future empirical work in MIL.

Bags as Distributions
We start by formalizing our proposed generative model. Let
X be a space of instances, then the space of bags B is the
set of probability distributions over X. For each bag B ∈ B,
we refer to the corresponding bag-specific distribution over
instances using the notation Pr(x | B). Let DB be a distri-
bution over bags. The labeling function F : B → {0, 1}
in this generative model operates at the level of bags so
that Y = F (B). Thus, we generate an MI dataset by first
sampling from DB a set of labeled bags {(Bi, Yi)}ni=1. In
special cases, we might directly observe Bi (e.g., we might
sample the parameters of Bi when it is a parametric distri-
bution). In the typical case, we only have access to samples,
Xi = {xij}mi

j=1, each drawn according to the distribution

corresponding to the bag Bi so that
{(
{xij}mi

j=1 , Yi

)}n
i=1

is the observed MI dataset.
Unlike previous models (e.g., Blum and Kalai 1998), our

generative model allows for each bag to have its own dis-
tribution, which allows for bag-specific relationships (in a
probabilistic sense) between instances. One key observa-
tion of our work is that, similar to previous work (Blum and
Kalai 1998), we can still obtain a single bag-independent in-
stance distribution DX by marginalizing out individual bag-
specific distributions. That is, given a probability measure
PrB over bags corresponding to DB , we can define a mea-
sure PrX corresponding to DX using: PrX(x) =

∫
B Pr(x |

B) dPrB(B). In our generative model, DX is the distribu-
tion of the random variable observed if we first sample a bag
B from DB , then sample a single instance from Pr(x | B).

Now, in addition to the bag-labeling function F , in a
proper MI generative model there also exists an instance-
labeling function f : X → {0, 1}. Traditionally, the MI
assumption is stated with respect to a particular dataset so
that F (Bi) = maxj f(xij) for real-valued labels. That is,
a bag is positive if at least one instance in it is positive, and
negative if all instances are negative. Since we assume that
F is defined a priori for bags, which are no longer finite
sets of instances, we encode a relationship between F and
f at the level of the generative process by enforcing that the
probability of sampling a positive instance in any negative
bag is zero. To formalize this relationship between labeling
functions, suppose we sample instances from DX accord-
ing to the two-level sampling procedure described above,
but we record the bag labels to obtain labeled singletons

{({xi} , Yi)}ni=1. The probability that Y = 1 is:

Pr(Y = 1 | x) =
∫
B+

Pr(x | B) dPr(B)∫
B Pr(x | B) dPr(B)

, c(x), (1)

where B+ is the set of positive bags and c is a probabilistic
concept (p-concept) (Kearns and Schapire 1994). This is the
probability of observing x within a positive bag. In the next
section, we formally relate f and c and show that instance
concepts are learnable in our generative model. Later, we
explain the relationship between our generative process and
those studied in prior work.

Learning Accurate Instance Concepts
We first extend the definition of PAC-learnability to instance
concepts in the MI setting. Since we are interested in in-
stance concepts, similar to the supervised case, we wish to
place no restrictions on the instance distribution DX . How-
ever, in our case, the bag and instance distributions and la-
beling functions must jointly satisfy the relationships de-
scribed in the section above. In particular, a bag must be
negative only if there is a zero chance that it contains a posi-
tive instance. We will also need the following mild assump-
tion: all negative instances appear with nonzero probability
in negative bags.

To understand the intuition behind this condition, con-
sider learning the instance concept in a content-based image
retrieval (CBIR) problem where interesting images contain
spoons and uninteresting images do not. However, suppose
that every image you are shown that has a spoon also con-
tains a fork. Even worse, suppose a fork never appears in an
image that does not also contain a spoon. Clearly, it would
be difficult to learn which of the fork or spoon was the actual
object of interest. In the language of MI learning, since ev-
ery positive instance appears only in positive bags, if some
negative instance also appears only in positive bags, then it is
impossible to know (in general) that this negative instance is
not also positive. Although still weaker assumptions might
be sufficient for learnability, we argue that this condition lies
close to the boundary between “easy” and “hard” instance-
concept learning scenarios in that it allows us to prove pos-
itive results in a more general setting than some prior work
(Blum and Kalai 1998), while still excluding scenarios used
to show the hardness of general MIL, as we describe later.

To formalize this condition, we assume that there is some
constant γ > 0 such that every negative instance appears
with probability at least γ in some negative bag(s). Given an
instance-labeling function, this constraint limits the set of
valid bag-labeling functions. The full set of constraints on
valid MI generative processes (MI-GEN), consisting of bag
distributions and labeling functions, are formalized below:
Definition 1 (MI-GEN). Given an instance distributionDX
(specified by Pr(x)), instance-labeling function f , and 0 <
γ ≤ 1, MI-GEN(DX , f, γ) is the set of all bag distribution
(DB with measure Pr(B)) and bag-labeling function (F )
pairs satisfying the following conditions:

1. Pr(x) =
∫
B Pr(x | B) dPr(B)

2. ∀x,B : f(x) = 1 ∧ F (B) = 0 =⇒ Pr(x | B) = 0
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3. ∀x : f(x) = 0 =⇒ c(x) ≤ 1− γ.1

We could think of bag-labeled instances {(xi, Yi)} sam-
pled from such a generative process as being generated from
the true instance concept f(x) with one-sided label noise on
negative instances (since positive instances will never be ob-
served in negative bags by the second condition, they will al-
ways have the correct label). It is also worth noting that these
conditions are not too restrictive, and MI-GEN(DX , f, γ)
is nonempty for any choice of DX , f , and γ > 0. In
particular, for any DX and f , we can represent supervised
learning within our model if DB is a distribution over Dirac
measures δxi

, each distributed according to its correspond-
ing instance xi, and F (δxi

) = f(xi). This scenario falls
within MI-GEN(DX , f, 1) ⊂ MI-GEN(DX , f, γ) for ev-
ery 0 < γ ≤ 1.

Given such MI generative processes, we can now pre-
cisely state what it means to probably approximately
correctly (PAC) learn accurate instance concepts:
Definition 2 (MI PAC-learning). We say that an algorithm
A MI PAC-learns instance concept class F from MI data
when for any distributionDX over instances, f ∈ F , γ > 0,
(DB , F ) ∈ MI-GEN(DX , f, γ), and ε, δ > 0, A requires
poly( 1γ ,

1
ε ,

1
δ ) bag-labeled instances sampled independently

from the MI generative process (DB , F ) to produce an in-
stance hypothesis h whose risk measured with respect to f
is at most ε with probability at least 1− δ over independent
and identically distributed (IID) samples drawn from DX .

Now we show that instance concepts are MI PAC-
learnable in the sense of Definition 2:
Theorem 1. An instance concept class F with
VC dimension VC(F) is MI PAC-learnable using

O
(

1
εγ

(
VC(F) log 1

εγ + log 1
δ

))
examples.

Proof. By Condition 1 in Definition 1, we can treat
bag-labeled instances as being drawn from the under-
lying instance distribution DX , for any (DB , F ) ∈
MI-GEN(DX , f, γ). Instances are observed with some la-
bel noise with respect to true labels given by f . Since pos-
itive instances never appear in negative bags (by Condition
2 of Definition 1), noise on instances is one-sided. If ev-
ery negative instance appears in negative bags at least some
γ fraction of the time (by Condition 3), then the maximum
one-sided noise rate is η = 1 − γ. Since γ > 0, η < 1,
which is required for learnability. Under our generative as-
sumptions, the noise rate might vary across instances (but
is bounded by η < 1). Recent results show that under this
“semi-random” noise model, when a concept class F has
Vapnik–Chervonenkis (VC) dimension VC(F), F is PAC-
learnable from O

(
1

ε(1−η)

(
VC(F) log 1

ε(1−η) + log 1
δ

))
examples using a “minimum one-sided disagreement” strat-
egy (Simon 2012). This strategy entails choosing a classifier
that minimizes the number of disagreements on positively-
labeled examples while perfectly classifying all negatively-

1Note that the opposite direction of Condition 3 is implied by
Condition 2. Combined, the two directions of Condition 3 describe
the relationship between c and f .

labeled examples. This strategy also works in the case that
all instances and bags are positive (η = 0, or γ = 1, since
there are no negative instances). Substituting 1 − γ for η in
the bound above yields the bound in terms of γ.

We note that MI-GEN and the proof above allow for
noisy positive bags without positive instances, since the ad-
ditional noise is essentially absorbed into η.

Relation to Previous Work
Some of the first work on instance concept learnability in
the MI setting shows that axis-parallel rectangles (APRs)
are learnable from MI data under the assumption that each
bag contains r instances sampled independently from the
same product distribution (Long and Tan 1998). Blum and
Kalai (1998) show that whenever an instance concept is
PAC-learnable in the presence of one-sided noise, it is also
learnable from MI examples, again with every bag consist-
ing of r instances that are identically distributed across bags.

Prior work by Blum and Kalai (1998) is a special case of
Theorem 1. Intuitively, we can simulate their IID r-tuple
model within our model by defining each bag to be a prob-
ability distribution parameterized by an r-tuple of instances
B(x1,...,xr). By appropriately defining the bag distribution,
we can show that the instance distribution Pr(x) as defined
in our generative model is identical to the underlying in-
stance distribution as given in their prior work. Further-
more, we can show that the effective noise rate on negative
instances (1− γ in our generative model) is less than one so
that γ is strictly positive. Thus, Blum and Kalai’s generative
process is contained within MI-GEN.

More recent work by Sabato and Tishby (2012) describes
conditions under which bag concepts are learnable from MI
data by bounding the sample complexity of the bag hypoth-
esis space in terms of the sample complexity of the instance
hypothesis space. One aspect of that work is that it re-
laxes Blum and Kalai’s model to allow for non-IID instances
within bags while still requiring that bags be r-tuples of in-
stances. We can also represent this relaxed generative model
in a similar way as above by again parameterizing bag-
specific distributions by tuples but allowing arbitrary distri-
butions over the resulting bags. We still require that γ > 0
for instance concept learnability, while Sabato and Tishby
analyze bag concept learnability without this assumption.

One might wonder whether separate results are needed for
instance and bag concept learnability. In fact, learning an
accurate concept on the bag-labeling task does not necessar-
ily translate to high accuracy on the instance-labeling task
(Tragante do O, Fierens, and Blockeel 2011). Because there
is only a weak relationship between the bag- and instance-
labeling tasks, using risk minimization strategies for learn-
ing a bag classifier might not guarantee good performance
on the instance-labeling task.

Finally, learning instance concepts from MI data is known
to be hard in the general case. How then does our gen-
eral framework allow for a positive result? Interestingly,
it turns out that our assumption that γ > 0 precludes sce-
narios used to demonstrate the known hardness results. For
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example, Sabato and Tishby (2012) describe the impossi-
bility of learning instance labels from a generative process
that produces only positive bags, which is essentially an un-
supervised learning problem. However, in our setting, if
γ > 0, then the dataset can only contain all positive bags
if all instances are also positive. From the perspective of
computational complexity, Auer et al. reduce learning DNF
formulae to learning APRs from MI data (1998), showing
that efficiently PAC-learning these MI instance concepts is
impossible (unless NP = RP) when arbitrary distributions
over r-tuples are allowed. Similarly, finding classifying hy-
perplanes for MI data has been shown to be NP-complete
(Diochnos, Sloan, and Turán 2012; Kundakcioglu, Seref,
and Pardalos 2010). However, all of these reductions rely
on generating bags such that certain negative instances only
appear in positive bags. Therefore, we conjecture that the
inherent hardness of general MI learning is related to the
cases when there is no γ > 0 for the generative process of
MI data (though performing minimum one-sided disagree-
ment might still be hard for certain concept classes).

Learning High-AUC Instance Concepts
The results above show that the minimum one-sided dis-
agreement approach (Simon 2012) can be used to learn in-
stance concepts from MI data. Below, we show that the
asymmetry of this approach is not required when learning
under other performance metrics. In practice, it is often suf-
ficient to rank instances according to the likelihood of being
positive. In such cases, a metric such as AUC might be a
better indicator of algorithm performance than accuracy. In
order to achieve good performance with respect to AUC, we
show that it suffices to learn a p-concept for c in Equation 1.
Importantly, this can be done with more traditional empirical
risk minimization (ERM) approaches instead of minimum
one-sided disagreement.

The p-concept learning model (Kearns and Schapire
1994) assumes that instead of a function f : X → {0, 1}
assigning a binary label to each instance, a p-concept c :
X → [0, 1] assigns a “probabilistic” label to each instance.
Then for each instance x, the label 1 is observed with prob-
ability c(x), and 0 is observed with probability 1 − c(x).
A p-concept class C is said to be learnable with a model of
probability (analogous to PAC-learnability) when for c ∈ C,
we can find with probability 1 − δ a hypothesis h such
that E

(
|h(x)− c(x)|2

)
≤ ε, where the expectation is

taken with respect to the instance distribution. Since p-
concepts produce a continuous-valued label, to characterize
the capacity of a p-concept hypothesis class, the pseudo-
dimension is used (Kearns and Schapire 1994). Similar to
VC dimension, pseudo-dimension characterizes a class of
functions by the maximal size of a set of points that can
be labeled arbitrarily above and below some threshold by a
function in the class. Kearns et al. show that standard ERM
approaches (i.e., choosing a hypothesis from C that mini-
mizes the quadratic loss on the {0, 1}-labeled training sam-
ple) can learn p-concept classes with a bound on the num-
ber of examples in terms of the pseudo-dimension. Further,
some relationships exist between the pseudo-dimension of

a p-concept class and the VC dimension of concept classes
obtained by thresholding to produce a {0, 1} label. For ex-
ample, for the class of hyperplanes (producing a real-valued
output), the pseudo-dimension is equal to the VC dimension
of the corresponding class of separating hyperplanes.

We first define the notion of learnability of an instance
concept with respect to AUC rather than accuracy. The
AUC of a p-concept hypothesis h is the probability that a
randomly chosen negative instance will be ranked lower by
h than a randomly chosen positive example. We express
this as: AUCf (h) = Pr(h(x−) < h(x+) | f(x−) =
0, f(x+) = 1). So that this quantity is well-defined, we con-
sider only nondegenerate cases when min{pneg, 1−pneg} =
p > 0, where pneg = Pr(f(x) = 0). The “error” with re-
spect to AUC, written errAUCf

(h), is Pr(h(x−) > h(x+) |
f(x−) = 0, f(x+) = 1).

Definition 3 (MI AUC-learnability). For a p-concept class
C, let Fγ = {1 [c(·) > 1− γ] | c ∈ C} be an instance con-
cept class for some γ > 0. An algorithm A MI AUC-learns
Fγ with C when for any instance distribution DX , c ∈ C,
f(·) = 1 [c(·) > 1− γ], and ε, δ > 0, given poly( 1γ ,

1
ε ,

1
δ )

examples labeled by c, A returns a hypothesis h ∈ C such
that errAUCf

(h) ≤ ε with probability at least 1− δ over IID
samples drawn from DX .

We now show that instance concepts are MI AUC-
learnable using an ERM approach. Intuitively, given the p-
concept for bag-labeled instances, we know that positive in-
stances have a positive label with probability 1 and negative
instances have a positive label with probability at most 1−γ.
Learning an accurate labeling function from the p-concept
requires knowing a threshold based on γ to distinguish pos-
itive and negative instances. On the other hand, if we only
care about ranking instances from the two classes, then be-
cause 1 − γ < 1 even if 1 − γ is close to 1, an accurate
p-concept can be used to rank instances.

Theorem 2. Let C be a p-concept class with pseudo di-
mension PD(C) corresponding to p-concepts of bag-labeled
instances, and Fγ as defined above for some γ > 0
containing the corresponding MI instance-labeling func-
tions. Then standard ERM can MI AUC-learn Fγ using

O
(

1
(εγp)4

(
PD(C) log 1

εγp + log 1
δ

))
examples, where p =

min{pneg, 1−pneg}, from bag-labeled instances labeled ac-
cording to some c ∈ C.

Proof. For any underlying p-concept c corresponding to
bag-labeled instances, and hypothesis h ∈ C, suppose that
|h(x)− c(x)| < γ

2 . Then for a positive (with respect to
labels given by f ) instance x+ ∈ X+, c(x+) = 1 since pos-
itive instances must appear in positive bags by Definition 1,
condition 2. Thus, |h(x+)− c(x+)| = 1 − h(x+) <

γ
2 ,

so h(x+) > 1 − γ
2 . For a negative instance x− ∈ X−, if

h(x−) ≤ c(x−), then h(x−) ≤ c(x−) ≤ 1− γ < 1− γ
2 <

h(x+). If h(x−) > c(x−):

|h(x−)− c(x−)| = h(x−)− c(x−) < γ
2

h(x−) <
γ
2 + c(x−) ≤ γ

2 + (1− γ) = 1− γ
2 .
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So when |h(x)− c(x)| < γ
2 , h(x−) < h(x+). Given this,

AUC error can only occur when |h(x)− c(x)| ≥ γ
2 for ei-

ther x+ or x−:

Pr (h(x−) > h(x+) | f(x−) = 0, f(x+) = 1)

≤ Pr
(
|h(x−)− c(x−)| ≥ γ

2

∨ |h(x+)− c(x+)| ≥ γ
2 | f(x−) = 0, f(x+) = 1

)
≤ Pr

(
|h(x−)− c(x−)| ≥ γ

2 | f(x−) = 0
)

+ Pr
(
|h(x+)− c(x+)| ≥ γ

2 | f(x+) = 1
)

≤ Pr
(
|h(x−)− c(x−)| ≥ γ

2

)/
Pr(f(x−) = 0)

+ Pr
(
|h(x+)− c(x+)| ≥ γ

2

)/
Pr(f(x+) = 1)

By Markov’s inequality Pr
(
|h(x)− c(x)| ≥ γ

2

)
≤

2E(|h(x)−c(x)|)
γ , and by Jensen’s inequality,

E (|h(x)− c(x)|) ≤
√
E
(
|h(x)− c(x)|2

)
. If

we use an ERM strategy to learn h so that
E
(
|h(x)− c(x)|2

)
≤ ε′ with probability 1 − δ, then

we have: errAUCf
≤ 2

√
ε′

γp + 2
√
ε′

γp = 4
√
ε′

γp . There-
fore, if we want errAUCf

≤ ε, it is sufficient to choose

ε′ ≤ ε2γ2p2

16 . Substituting this ε′ into existing bounds
(Kearns and Schapire 1994) gives us learnability of h with
O
(

1
(εγp)4

(
PD(C) log 1

εγp + log 1
δ

))
examples.

A surprising consequence of this result is that a naı̈ve
supervised learning strategy can be expected to learn in-
stance concepts that have low AUC error from bag-labeled
instances, given enough data.

Empirical Evaluation
Our theoretical results indicate that a supervised approach
might learn concepts that perform well with respect to AUC
from data generated according to our generative process. We
empirically evaluate this hypothesis with experiments using
both synthetic and real datasets.

For our synthetic experiments, we generate two-
dimensional data from a mixture of Gaussians centered at
(0, 0) and (1, 1) with covariance matrices both 1

2I, where
I is a two-by-two identity matrix. The true instance con-
cept is given by the hyperplane h(x) = 〈(1, 1),x〉 − 1, with
f(x) = 1 [h(x) > 0]. Instances are drawn independently
from this generative process and the labels of negative in-
stances are flipped with probability η(x). In one scenario,
η(x) = 1 − γ for all negative instances, which corresponds
to the IID r-tuple model (Blum and Kalai 1998) with the
appropriate choice of r. In the other scenario, we allow the
noise level η(x) to vary linearly (as a function of h(x)) be-
tween 1 − γ and 1 − √γ. Here, the noise is bounded by
η(x) ≤ 1− γ, but is less for most instances. Each case cor-
responds to an entire family of two-level sampling processes
that are subsets of MI-GEN(DX , f, γ), but for simplicity
we simulate draws directly from the instance distribution la-
beled according to the p-concept c(x) = Pr(F (B) = 1 | x).
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103
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Figure 1: Training set size needed to obtain a test set per-
formance of errAUC = 0.05 with probability at least 0.5
across 100 training samples from two synthetic datasets cor-
responding to different two-level sampling procedures.

For each selected value of γ, binary search is used to find
the smallest training set size such that AUC performance of a
standard linear support vector machine (SVM) on a held-out
test set of 104 examples is at least 0.95 across at least half of
100 independent training sets. In terms of Theorem 2, this
corresponds to a fixed ε = 0.05 and δ = 0.5. Figure 1 shows
a log-log plot of the number of training samples needed to
accomplish this accuracy for increasingly smaller values of
γ. As Theorem 2 suggests, the required number of samples
appears to grow polylogarithmically with γ−1 in the worst
case (constant noise) scenario (Pearson’s r = 0.999 for a
linear fit of the log-transformed data), and even more slowly
when the noise only achieves a rate of 1 − γ on some in-
stances.

This result is specific to AUC. If we take the classi-
fiers learned here and measure their accuracy, we observe
that they never achieve 95% accuracy when γ is sufficiently
small (e.g., when γ = 10−1 in the uniform noise scenario,
the accuracy is always less than 50.2% as sample size in-
creases). It is possible to learn accurate classifiers in this
setting by using the algorithm described in Blum and Kalai’s
work for the IID case or minimum one-sided disagreement
in our more general scenario. However, the counterintuitive
result we observe here is that a standard SVM can learn ar-
bitrarily well w.r.t. AUC in our setting even though the same
classifier has poor performance w.r.t. accuracy.

To evaluate whether our theoretical results apply to real-
world MI datasets, we compare a “supervised” approach to
standard MI SVMs and measure both accuracy and AUC.
We call the supervised approach single-instance learning
(SIL). This approach applies a bag’s label to each of its
instances, then learns a concept from the resulting super-
vised dataset. Using all instances within each bag (rather
than sampling a single instance from every bag) might intro-
duce correlation in the dataset. However, we observe below
that this seems to have little effect in practice.

We hypothesize that, given our theoretical results, SIL
will perform well for instance-labeling under the AUC met-
ric. To test this hypothesis, we use the Spatially Indepen-
dent, Variable Area, and Lighting (SIVAL) dataset from the
CBIR domain, which has been annotated with both bag and
instance labels (Settles, Craven, and Ray 2008). We cre-
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Figure 2: Critical difference diagrams comparing the average ranks (lower is better) of the MI SVM approaches across datasets
with respect to instance-labeling accuracy and AUC. Horizontal lines connect approaches that do not differ with α = 0.1
significance using the Nemenyi test.

ate 12 one-vs-one datasets by randomly pairing up image
classes from the 25 original classes. The SIVAL images
contain objects of each class taken on the same set of back-
grounds. Therefore, each negative background segment ap-
pears both in positive and negative bags under the generative
process corresponding to one-vs-one class pairing, so we ex-
pect that γ > 0 for this task.

We compare SIL used with a standard supervised SVM
to four other MI SVM approaches: mi-SVM, MI-SVM (An-
drews, Tsochantaridis, and Hofmann 2003), MICA (Man-
gasarian and Wild 2008), and the “instance” variant of KI-
SVM (Li et al. 2009), which are specifically designed to
learn instance concepts from MI data. We evaluate al-
gorithms using 10-fold cross-validation, with 5-fold inner-
validation used to select parameters using random search
(Bergstra and Bengio 2012). We use the radial basis
function (RBF) kernel in all cases, with scale parameter
γ ∈ [10−6, 101], and regularization–loss trade-off parameter
C ∈ [10−2, 105]. We implement KI-SVM using published
code2 and the other approaches using Python with NumPy
(Ascher et al. 2001) for general matrix computations, and
the CVXOPT library (Dahl and Vandenberghe 2009) for op-
timization. We use L2 regularization with MICA for a more
direct comparison with the other approaches. We use only
bag labels during training and parameter selection. We use
the instance labels to evaluate the accuracy and AUC of pre-
dictions pooled across the 10 outer folds.

We compare algorithms using critical difference dia-
grams (Demšar 2006). We rank algorithms according to
performance (with “1” being the best rank) and average the
ranks across the 12 datasets. Then we use the Friedman test
to reject the null hypothesis that the algorithms perform sim-
ilarly at an α = 0.1 significance level. We construct a criti-
cal difference diagram using the Nemenyi test to determine
when algorithms differ with α = 0.1 significance. We con-
nect algorithms that are not significantly different under this
test with a horizontal line. Figure 2 shows the results with
ranks computed with respect to accuracy and AUC.3

The results show that under the accuracy metric, the per-
formance of SIL is poor with respect to “proper” MI ap-
proaches. This may be because in some cases, γ is small
and the SIL classifier will falsely classify many negative in-
stances as positive. On the other hand, when AUC is used to

2http://lamda.nju.edu.cn/code KISVM.ashx
3Tables of numerical results are available at http://engr.case.

edu/doran gary/publications.html.

measure performance, SIL is as effective as the top MI al-
gorithms on the instance-labeling task, as suggested by our
theoretical results. There is some change in the relative rank-
ings of the other MI SVM approaches, but they remain sta-
tistically indistinguishable from each other in either case.

Early work on MIL used accuracy as a performance mea-
sure, and found the SIL approach to be inaccurate in the MI
setting for labeling bags (Dietterich, Lathrop, and Lozano-
Pérez 1997). As a result, subsequent studies rarely used it
as a baseline when evaluating new MI techniques. However,
our results suggest that SIL can learn high-AUC instance
concepts, which in turn suggests that (at least for some do-
mains) it can also learn bag concepts that are good in this
sense. The fact that SIL appears to perform well at bag-
labeling with respect to AUC has also been observed in prior
work (Ray and Craven 2005), and we believe our work pro-
vides further support for this observation. Thus we recom-
mend that future work should not only compare proposed MI
techniques to their supervised counterparts, but also evaluate
using multiple performance metrics (including AUC).

Though SIL clearly works well for the tasks we have in-
vestigated here, we conjecture that there may be other do-
mains for which γ 6> 0, requiring stronger generative as-
sumptions to be made for instance concept learnability. Fur-
ther, although our results show that SIL works given enough
data, the inductive bias of specialized MI algorithms might
be useful when limited data is available. To test such conjec-
tures, we suggest obtaining instance-labeled datasets from
other domains as an important direction for MIL.

Conclusion
We have presented a new generative process for MI data
that requires every negative instance to appear in a nega-
tive bag with some probability. This generative process is
more general than previously studied models, included as
special cases, and still excludes scenarios currently used to
show hardness results for MIL. Even under our more gen-
eral assumptions, we are able to show that instance concepts
are PAC-learnable from MI data generated according to our
model. Further, we show that supervised approaches can
be employed to learn concepts with low AUC error from
MI data. Our empirical results support the theory, and may
partly explain previously reported behavior of supervised
approaches on MI tasks. In future work, we plan to extend
our analysis to learning bag concepts under our generative
model, extending the work of Sabato and Tishby (2012).
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