
Natural Temporal Difference Learning

William Dabney and Philip S. Thomas
School of Computer Science

University of Massachusetts Amherst
140 Governors Dr., Amherst, MA 01003
{wdabney,pthomas}@cs.umass.edu

Abstract

In this paper we investigate the application of natural gra-
dient descent to Bellman error based reinforcement learning
algorithms. This combination is interesting because natural
gradient descent is invariant to the parameterization of the
value function. This invariance property means that natural
gradient descent adapts its update directions to correct for
poorly conditioned representations. We present and analyze
quadratic and linear time natural temporal difference learning
algorithms, and prove that they are covariant. We conclude
with experiments which suggest that the natural algorithms
can match or outperform their non-natural counterparts using
linear function approximation, and drastically improve upon
their non-natural counterparts when using non-linear function
approximation.

Introduction
Much recent research has focused on problems with continu-
ous actions. For these problems, a significant leap in perfor-
mance occurred when Kakade (2002) suggested the appli-
cation of natural gradients (Amari 1998) to policy gradient
algorithms. This suggestion has resulted in many successful
natural gradient based policy search algorithms (Morimura,
Uchibe, and Doya 2005; Peters and Schaal 2008; Bhatnagar
et al. 2009; Degris, Pilarski, and Sutton 2012).

Despite the successful applications of natural gradients
to reinforcement learning in the context of policy search, it
has not been applied to Bellman-error based algorithms like
residual gradient and Sarsa(λ), which are the de facto al-
gorithms for problems with discrete action sets. A common
complaint is that these Bellman-error based algorithms learn
slowly when using function approximation. Natural gradi-
ents are a quasi-Newton approach that is known to speed
up gradient descent, and thus the synthesis of natural gra-
dients with TD has the potential to improve upon this draw-
back of reinforcement learning. Additionally, we show in the
appendix that the natural TD methods are covariant, which
makes them more robust to the choice of representation than
ordinary TD methods.

In this paper we provide a simple quadratic-time natu-
ral temporal difference learning algorithm, show how the
idea of compatible function approximation can be leveraged

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to achieve linear time complexity, and prove that our al-
gorithms are covariant. We conclude with empirical com-
parisons on three canonical domains (mountain car, cart-
pole balancing, and acrobot) and one novel challenging do-
main (playing Tic-tac-toe using handwritten letters as input).
When not otherwise specified, we assume the notation of
Sutton and Barto (1998).

Residual Gradient
The residual gradient (RG) algorithm is the direct applica-
tion of stochastic gradient descent to the problem of min-
imizing the mean squared Bellman error (MSBE) (Baird
1995). It is given by the following update equations:

δt = rt + γQθt(st+1, at+1)−Qθt(st, at), (1)

θt+1 = θt − αtδt
∂δt
∂θ

, (2)

where Qθt : S × A → R is a function approximator with
parameter vector θt. Residual gradient only follows unbi-
ased estimates of the gradient of the MSBE if it uses double
sampling or when the domain has deterministic state tran-
sitions (Sutton and Barto 1998). In this paper we evaluate
using standard reinforcement learning domains with deter-
ministic transitions, so the above formulation of RG is unbi-
ased.

One significant drawback of residual gradient is that it is
not covariant. Consider the algorithm at two different lev-
els, as depicted in Figure 1. At one level we can consider
how it moves through the space of possible Q functions. At
another level, we can consider how it moves through two
different parameter spaces, each corresponding to a differ-
ent representation of Q. Although these two representations
may produce different update directions in parameter space,
we would expect a good algorithm to result in both repre-
sentations producing the same update direction in the space
of Q functions.1

Such an algorithm would be called covariant. Because
residual gradient is not covariant, the choice of how to repre-
sent Qθ influences the direction that RG moves in the space
of Q functions. Other temporal difference (TD) learning al-
gorithms like Sarsa(λ) and TDC (Sutton et al. 2009) are also

1For technical correctness, we must assume that both represen-
tations can represent the same set of Q functions.

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1767

Q - space

()Q s a ()Q

θ - space h - space

(,)Q s a





(,)hQ s a
h




Figure 1:Q-space denotes the space of possibleQ functions,
while θ and h-space denote two different parameter spaces.
The circles denote different locations in θ and h-space that
correspond to the same Q function. The blue and red ar-
rows denote possible directions that a non-covariant algo-
rithm might attempt to change the parameters, which cor-
respond to different directions in Q-space. The purple arrow
denotes the update direction that a covariant algorithm might
produce, regardless of the parameterization of Q.

not covariant. Natural gradients can be viewed as a way to
correct the direction of an update to account for a particular
parameterization. Although natural gradients do not always
result in covariant updates, they frequently do (Bagnell and
Schneider 2003).

Formally, consider the direction of steepest ascent of a
function , L(θ), where L : Rn → R. If we assume that θ re-
sides in Euclidean space, then the gradient,∇L(θ), gives the
direction of steepest ascent. However, if we assume that θ re-
sides in a Riemannian space with metric tensor G(θ), then
the direction of steepest ascent is given by G(θ)−1∇L(θ)
(Amari 1998).

Natural Residual Gradient
In this section we describe how natural gradient descent can
be applied to the residual gradient algorithm. The natural RG
update is

θt+1 = θt + αtG(θt)
−1δtgt, (3)

whereG(θt) is the metric tensor for the parameter space and

gt =
∂Qθt(st, at)

∂θ
− γ ∂Qθt(st+1, at+1)

∂θ
.

In most reinforcement learning applications of natural
gradients, the metric tensor is used to correct for the param-
eterization of a probability distribution. In these cases the
Fisher information matrix is a natural choice for the met-
ric tensor (Amari and Douglas 1998). However, we are us-
ing natural gradients to correct for the parameterization of
a value function, which is not a distribution. For a related
application, Amari (1998) suggests a transformation of a
parameterized function to a parameterized probability dis-
tribution. Using this transformation, the Fisher information
matrix is

G(θt) = E
[
δ2
t gtg

ᵀ
t

]
. (4)

In the appendix we prove that the class of metric tensors
to which Equation 4 belongs all result in covariant gradient
algorithms.

Algorithms
Quadratic Computational Complexity
A straightforward implementation of the natural residual
gradient algorithm would maintain an estimate of G(θ) and
compute G(θ)−1 at each time step. Due to the matrix in-
version, this naı̈ve algorithm has per time step computa-
tional complexity O(|θ|3), where we ignore the complexity
of differentiating Qθ. This can be improved to O(|θ|2) us-
ing the Sherman-Morrison formula to maintain an estimate
of G(θt)

−1 directly. The resulting quadratic time natural al-
gorithm is given by Algorithm 1, where {αt} is a step size
schedule satisfying

∑∞
t=0 αt =∞ and

∑∞
t=0 α

2
t <∞.

Algorithm 1 Natural Residual Gradient

Initialize G−1
0 = I , θ0 = 0

δt = rt + γQθt(st+1, at+1)−Qθt(st, at)
gt =

(
∂Qθt (st,at)

∂θ − γ ∂Qθt (st+1,at+1)

∂θ

)
G−1
t = G−1

t−1 −
δ2tG

−1
t−1gtg

ᵀ
t G

−1
t−1

1+δ2t g
ᵀ
t G

−1
t−1gt

θt+1 = θt + αtδtG
−1
t gt

Linear Computational Complexity
To achieve linear computational complexity, we leverage the
idea of compatible function approximation.2 We begin by
estimating the TD-error, δt, with a linear function approxi-
mator wᵀ(δtgt), where w are the tunable parameters of the
linear function approximator and δtgt are the compatible
features. Specifically, we search for a w that is a local mini-
mum of the loss function L:

L(w) = E
[
(1− δtwᵀgt)

2
]
. (5)

At a local minimum of L, ∂L(w)/∂w = 0, so

E [(1− δtwᵀgt) δtgt] =0, (6)

E [δtgt] =E
[
δ2
t gtg

ᵀ
t

]
w. (7)

Notice that the left hand side of Eq. 7 is the expected update
to θt in the non-natural algorithms. We can therefore write
the expected update to θt as

θt+1 = θt + αtE [δtgt] = θt + αtE
[
δ2
t gtg

ᵀ
t

]
w. (8)

Therefore the expected natural residual gradient update is

θt+1 =θt + αtG(θ)−1E [δtgt] , (9)
=θt + αtw. (10)

The challenge remains that locally optimal w must be at-
tained. For this we propose a two-timescale approach iden-
tical to that of Bhatnagar et al. (2009). That is, we per-
form stochastic gradient descent on L(w) using a step size
schedule {βt} that decays faster than the step size sched-
ule {αt} for updates to θt. The resulting linear-complexity
two-timescale natural algorithm is given by Algorithm 2.

2The compatible features that we present are compatible with
Qθ , whereas the compatible features originally defined by Sutton
et al. (2000) are compatible with a parameterized policy. Although
related, these two types of compatible features are not the same.

1768

Algorithm 2 Natural Linear-Time Residual Gradient
Initialize w0 = 0, θ0 = 0
δt = rt + γQθt(st+1, at+1)−Qθt(st, at)
gt =

∂Qθt (st,at)

∂θ − γ ∂Qθt (st+1,at+1)

∂θ

wt+1 = wt + βt (1− δtwᵀ
t gt) δtgt

θt+1 = θt + αtwt+1

The convergence properties of these two-timescale al-
gorithms have been well studied and been shown to con-
verge under appropriate assumptions (Bhatnagar et al. 2009;
Kushner and Yin 2003). To summarize, with certain smooth-
ness assumptions, if

∞∑
t=0

αt =
∞∑
t=0

βt =∞;
∞∑
t=0

α2
t ,
∞∑
t=0

β2
t <∞; βt = o(αt),

then, since βt → 0 faster than αt, θt converges as though it
was following the true expected natural gradient. As a result,
the linear complexity algorithms maintain the convergence
guarantees of their non-natural counterparts.

Unfortunately, unlike compatible function approximation
for natural policy gradient algorithms (Bhatnagar et al.
2009), it is not clear how a useful baseline could be added to
the stochastic gradient descent updates of w. The baseline,
b, would have to satisfy E [bδtgt] = 0, which is not even
satisfied by a constant non-zero b.

Extensions

The metric tensor that we derived for RG can be applied to
other similar algorithms. For example, Sarsa(λ) is not a gra-
dient method, however in many ways it is similar to resid-
ual gradient. We therefore propose the use of G(θ), derived
for RG, with Sarsa(λ). Although not as principled as its use
with RG, in both cases it corrects for the curvature of the
squared Bellman error and the parameterization of Q. This
straightforward extension gives us the algorithm for Natural
Sarsa(λ) (Algorithm 3), and a linear time Natural Sarsa(λ)
algorithm can be defined similar to Algorithm 2.

Algorithm 3 Natural Sarsa(λ)

Initialize G−1
0 = I , e0 = 0, θ0 = 0

δt = rt + γQθt(st+1, at+1)−Qθt(st, at)
gt =

∂Qθt (st,at)

∂θ
et = γλet−1 + gt

G−1
t = G−1

t−1 −
δ2tG

−1
t−1gtg

ᵀ
t G

−1
t−1

1+δ2t g
ᵀ
t G

−1
t−1gt

θt+1 = θt + αtδtG
−1
t et

Another temporal difference learning algorithm which is
closely related to residual gradient is the TDC algorithm
(Sutton et al. 2009). TDC is a linear time gradient descent
algorithm for TD-learning with linear function approxima-
tion, and supports off-policy learning.

The TDC algorithm is given by,

θt+1 = θt + αtδtφt − αtγφt+1(φᵀtwt), (11)

wt+1 = wt + βt(δt − φᵀtwt)φt, (12)

where φt =
∂Qθt (st,at)

∂θ are basis functions of the linear
function approximation. TDC minimizes the mean squared
projected Bellman error (MSPBE) using a projection oper-
ator that minimizes the value function approximation error.
With a different projection operator the same derivation re-
sults in the standard residual gradient algorithm. Applying
the TD metric tensor we get Natural TDC (Algorithm 4).

Algorithm 4 Natural TDC

Initialize G−1
0 = I , θ0 = 0, w0 = 0

δt = rt + γQθt(st+1, at+1)−Qθt(st, at)
gt = φt − γφt+1

G−1
t = G−1

t−1 −
δ2tG

−1
t−1gtg

ᵀ
t G

−1
t−1

1+δ2t g
ᵀ
t G

−1
t−1gt

θt+1 = θt + αtG
−1
t (δtφt − γφt+1(φᵀtwt))

wt+1 = wt + βt(δt − φᵀtwt)φt

Experimental Results
Our goal is to show that natural TD methods improve
upon their non-natural counterparts, not to promote one TD
method over another. So, we focus our experiments on com-
paring the quadratic and linear time natural variants of tem-
poral different learning algorithms with the original TD al-
gorithms they build upon. To evaluate the performance of
natural residual gradient and natural Sarsa(λ), we performed
experiments on two canonical domains: mountain car and
cart-pole balancing, as well as one new challenging domain
that we call visual Tic-tac-toe. We used an ε-greedy policy
for all TD-learning algorithms. TDC is not a control algo-
rithm, and thus to evaluate the performance of natural TDC
we generate experience from a fixed policy in the acrobot
domain and measure the mean squared error (MSE) of the
learned value function compared with monte carlo rollouts
of the fixed policy.

For mountain car, cart-pole balancing, and acrobot we
used linear function approximation with a third-order
Fourier basis (Konidaris et al. 2012). On visual Tic-tac-toe
we used a fully-connected feed-forward artificial neural net-
work with one hidden layer of 20 nodes. This allows us
to show the benefits of natural gradients when the value
function parameterization is non-linear and more complex.
We optimized the algorithm parameters for all experiments
using a randomized search as suggested by Bergstra and
Bengio (2012). We selected the hyper-parameters that re-
sulted in the largest mean discounted return over 20 episodes
for mountain car, 50 episodes for cart-pole balancing, and
100, 000 episodes for visual tic-tac-toe. Each parameter set
was tested 10 times and the performance averaged.

For mountain car and cart pole each algorithm’s perfor-
mance is an average over 50 and 30 trials respectively, with
standard deviations shown in the shaded regions. For visual
tic-tac-toe and acrobot, algorithm performance is averaged

1769

Figure 2: Mountain Car (Residual Gradient)

Figure 3: Mountain Car (Sarsa(λ))

over 10 trials, again with standard deviations shown by the
shaded regions. For the Sarsa(λ) experiments we include re-
sults for Natural Actor-Critic (Peters and Schaal 2008), to
provide a comparison with another approach to applying
natural gradients to reinforcement learning. However, for
these experiments we do not include the standard deviations
because they make the figures much harder to read. We used
a soft-max policy with Natural Actor-Critic (NAC).

Mountain Car
Mountain car is a simple simulation of an underpowered car
stuck in a valley; full details of the domain can be found in
the work of Sutton and Barto (1998). Figures 2 and 3 give
the results for each algorithm on mountain car. The linear
time natural residual gradient and Sarsa(λ) algorithms take
longer to learn good policies than the quadratic time natu-
ral algorithms. One reason for the slower initial learning of
the linear algorithms is that they must first build up an esti-
mate of the w vector before updates to the value function

Figure 4: Cart Pole (Residual Gradient). Same legend as Fig-
ure 2

parameters become meaningful. Out of all the algorithms
we found that the quadratic time Natural Sarsa(λ) algorithm
performed the best in mountain car, reaching the best policy
after just two episodes.

Cart Pole Balancing
Cart pole balancing simulates a cart on a short one dimen-
sional track with a pole attached with a rotational hinge, and
is also referred to as the inverted pendulum problem. There
are many varieties of the cart pole balancing domain, and we
refer the reader to Barto, Sutton, and Anderson (1983) for
complete details. Figures 4 and 5 give the results for each
algorithm on cart pole balancing. In the cart pole balancing
domain the two quadratic algorithms, Natural Sarsa(λ) and
Natural RG perform the best. Again, the linear algorithm,
takes a slower start as it builds up an estimate of w, but
converges well above the non-natural algorithms and very
close to the quadratic ones. Natural Sarsa(λ) reaches a near
optimal policy within the first couple of episodes, and com-
pares favorably with the heavily optimized Sarsa(λ), which
does not even reach the same level of performance after 100
episodes.

Visual Tic-Tac-Toe
Visual Tic-Tac-Toe is a novel challenging decision problem
in which the agent plays Tic-tac-toe (Noughts and crosses)
against an opponent that makes random legal moves. The
game board is a 3×3 grid of handwritten letters (X, O, and B
for blank) from the UCI Letter Recognition Data Set (Slate
1991), examples of which are shown in Figure 8. At every
step of the episode, each letter of the game board is drawn
randomly with replacement from the set of available hand-
written letters (787 X’s, 753 O’s, and 766 B’s). Thus, it is
easily possible for the agent to never see the same handwrit-
ten “X”, “O”, or “B” letter in a given episode. The agent’s
state features are the 16 integer valued attributes for each
of the letters on the board. Details of the data set and the
attributes can be found in the UCI repository.

1770

Figure 5: Cart Pole (Sarsa(λ))

Figure 6: Visual Tic-Tac-Toe Experiments

There are nine possible actions available to the agent, but
attempting to play on a non-blank square is considered an il-
legal move and results in the agent losing its turn. This is par-
ticularly challenging because blank squares are marked by a
“B”, making recognizing legal moves challenging in and of
itself. The opponent only plays legal moves, but chooses ran-
domly among them. The reward for winning is 100, −100
for losing, and 0 otherwise.

Figure 6 gives the results comparing Natural-LT Sarsa and
Sarsa(λ) on the visual Tic-tac-toe domain using the artificial
neural network described previously. These results show lin-
ear natural Sarsa(λ) in a setting where it is able to account
for the shape of a more complex value function parame-
terization, and thus confer greater improvement in conver-
gence speed over non-natural algorithms. We do not com-
pare quadratic time algorithms due to computational limits.

Figure 7: Acrobot Experiments (TDC)

Figure 8: Visual Tic-Tac-Toe example letters

Acrobot
Acrobot is another commonly studied reinforcement learn-
ing task in which the agent controls a two-link under actu-
ated robot by applying torque to the lower joint with the goal
of raising the top of the lower link above a certain point. See
Sutton and Barto (1998) for a full specification of the do-
main and its equations of motion. To evaluate the off-policy
Natural TDC algorithm we first generated a fixed policy
by online training of a hand tuned Sarsa(λ) agent for 200
episodes. We then trained TDC and Natural TDC for 10000
episodes in acrobot following the previously learned fixed
policy. We evaluated an algorithm’s learned value function
every 100 episodes by sampling states and actions randomly
and computing the true expected undiscounted return using
Monte Carlo rollouts following the fixed policy. Figure 7
shows the MSE between the learned values and the true ex-
pected return.

Natural TDC clearly out performs TDC, and in this ex-
periment converged to much lower MSE. Additionally, we
found TDC to be sensitive to the step-sizes used, and saw
that Natural TDC was much less sensitive to these parame-
ters. These results show that the benefits of natural temporal
difference learning, already observed in the context of con-
trol learning, extend to TD-learning for value function esti-
mation as well.

Discussion and Conclusion
We have presented the natural residual gradient algorithm
and proved that it is covariant. We suggested that the tem-
poral difference learning metric tensor, derived for natural
residual gradient, can be used to create other natural tempo-

1771

ral difference learning algorithms like natural Sarsa(λ) and
natural TDC. The resulting algorithms begin with the iden-
tity matrix as their estimate of the (inverse) metric tensor.
This means that before an estimate of the (inverse) met-
ric tensor has been formed, they still provide meaningful
updates—they follow estimates of the non-natural gradient.

We showed how the concept of compatible function ap-
proximation can be leveraged to create linear-time natural
residual gradient and natural Sarsa(λ) algorithms. However,
unlike the quadratic-time variants, these linear-time variants
do not provide meaningful updates until the natural gradient
has been estimated. As a result, learning is initially slower
using the linear-time algorithms.

In our empirical studies, the natural variants of all three
algorithms outperformed their non-natural counterparts on
all three domains. Additionally, the quadratic-time variants
learn faster initially, as expected. Lastly, we showed empiri-
cally that the benefits of natural gradients are amplified when
using non-linear function approximation.

Appendix A
Proof of Covariant Theorem: The following theorem
and its proof closely follow and extend the foundations laid
by Bagnell and Schneider (2003) and later clarified by Pe-
ters and Schaal (2008) when proving that the natural policy
gradient is covariant.

No algorithm can be covariant for all parameterizations.
Thus, constraints on the parameterized functions that we
consider are required.
Property 1. Functions g : Φ×X → R, and h : Θ×X → R
are two instantaneous loss functions parameterized by φ ∈
Φ and θ ∈ Θ respectively. These correspond to the loss func-
tions ĝ(φ) = Ex∈X [g(φ, x)] and ĥ(θ) = Ex∈X [h(θ, x)].
For brevity, hereafter, we suppress the x inputs to g and h.
There exists a differentiable function, Ψ : Φ→ Θ, such that
for some φ ∈ Φ, we have g(φ) = h(Ψ(φ)) and the Jacobian
of Ψ is full rank.

Definition 1. Algorithm A is covariant if, for all g, h, Ψ,
and φ satisfying Property 1,

g(φ+ ∆φ) = h(Ψ(φ) + ∆θ), (13)

where φ+ ∆φ and Ψ(φ) + ∆θ are the parameters after an
update of algorithm A.

Lemma 1. An algorithm A is covariant for sufficiently
small step-sizes if

∆θ =
∂Ψ(φ)

∂φ
∆φ. (14)

Proof. Let JΨ(φ) be the Jacobian of Ψ(φ), i.e., JΨ(φ) =
∂Ψ(φ)
∂φ . As such, it maps tangent vectors of h to tangent vec-

tors of g, such that

∂g(φ)

∂φ
= JΨ(φ)

∂h(Ψ(φ))

∂Ψ(φ)
, (15)

when g(φ) = h(Ψ(φ)), as JΨ(φ) is a tangent map (Lee 2003,
p. 63).

Taking the first order Taylor expansion of both sides of
(13), we obtain

h(Ψ(φ)) +∂h(Ψ(φ))ᵀ

∂Ψ(φ) ∆θ

+ O(‖∆θ‖2)
=

g(φ) +∂g(φ)ᵀ

∂φ ∆φ

+O(‖∆φ‖2).

For small step-sizes, α > 0, the squared norms become neg-
ligible, and because g(φ) = h(Ψ(φ)), this simplifies to

∂h(Ψ(φ))ᵀ

∂Ψ(φ)
∆θ =

∂g(φ)ᵀ

∂φ
∆φ,

=

(
JΨ(φ)

∂h(Ψ(φ))

∂Ψ(φ)

)ᵀ

∆φ,

=
∂h(Ψ(φ))ᵀ

∂Ψ(φ)
Jᵀ

Ψ(φ)∆φ. (16)

Notice that (16) is satisfied by ∆θ = Jᵀ
Ψ(φ)∆φ, and thus if

this equality holds then A is covariant.

Theorem 1. The natural gradient update ∆θ =
−G−1

θ ∇h(θ) is covariant when the metric tensor Gθ is
given by

Gθ = E
x∈X

[
∂h(θ)

∂θ

∂h(θ)ᵀ

∂θ

]
. (17)

Proof. First, notice that the metric tensor Gφ is equivalent
to Gθ with JΨ(φ) twice as a factor,

Gφ = E
x∈X

[
∂g(φ)

∂φ

∂g(φ)ᵀ

∂φ

]
,

= E
x∈X

[
(JΨ(φ)

∂h(Ψ(φ))

∂θ
)(JΨ(φ)

∂h(Ψ(φ))

∂θ
)ᵀ
]
,

= E
x∈X

[
JΨ(φ)

∂h(Ψ(φ))

∂θ

∂h(Ψ(φ))

∂θ

ᵀ

Jᵀ
Ψ(φ)

]
,

= JΨ(φ) E
x∈X

[
∂h(Ψ(φ))

∂θ

∂h(Ψ(φ))

∂θ

ᵀ]
Jᵀ

Ψ(φ),

= JΨ(φ)GθJ
ᵀ
Ψ(φ). (18)

We show that the right hand side of (14) is equal to the
left, which, by Lemma 1, implies that the natural gradient
update is covariant.

Jᵀ
Ψ(φ)∆φ = Jᵀ

Ψ(φ)αG
−1
φ ∇g(φ),

= Jᵀ
Ψ(φ)αG

+
φ∇g(φ), (19)

= αJᵀ
Ψ(φ)

(
JΨ(φ)GθJ

ᵀ
Ψ(φ)

)+

JΨ(φ)∇h(Ψ(φ)),

= αJᵀ
Ψ(φ)(J

ᵀ
Ψ(φ))

+G+
θ J

+
Ψ(φ)JΨ(φ)∇h(Ψ(φ)).

Since JΨ(φ) is full rank, J+
Ψ(φ) is a left inverse, and thus

Jᵀ
Ψ(φ)∆φ = αG−1

θ ∇h(Ψ(φ)),

= ∆θ.

Notice that, unlike the proof that the natural actor-critic
using LSTD is covariant (Peters and Schaal 2008), our proof
does not assume that JΨ(φ) is invertible. Our proof is there-
fore more general, since it allows |φ| ≥ |θ|.

1772

References
Amari, S., and Douglas, S. 1998. Why natural gradient?
In Proceedings of the 1998 IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP ’98),
volume 2, 1213–1216.
Amari, S. 1998. Natural gradient works efficiently in learn-
ing. Neural Computation 10:251–276.
Bagnell, J. A., and Schneider, J. 2003. Covariant policy
search. In Proceedings of the International Joint Conference
on Artificial Intelligence, 1019–1024.
Baird, L. 1995. Residual algorithms: reinforcement learning
with function approximation. In Proceedings of the Twelfth
International Conference on Machine Learning.
Barto, A. G.; Sutton, R. S.; and Anderson, C. W. 1983. Neu-
ronlike adaptive elements that can solve difficult learning
control problems. IEEE Transactions on Systems, Man, and
Cybernetics 13(5):834–846.
Bergstra, J., and Bengio, Y. 2012. Random search for hyper-
parameter optimization. In Journal of Machine Learning
Research.
Bhatnagar, S.; Sutton, R. S.; Ghavamzadeh, M.; and Lee,
M. 2009. Natural actor-critic algorithms. Automatica
45(11):2471–2482.
Degris, T.; Pilarski, P. M.; and Sutton, R. S. 2012. Model-
free reinforcement learning with continuous action in prac-
tice. In Proceedings of the 2012 American Control Confer-
ence.
Kakade, S. 2002. A natural policy gradient. In Advances in
Neural Information Processing Systems, volume 14, 1531–
1538.
Konidaris, G. D.; Kuindersma, S. R.; Grupen, R. A.; and
Barto, A. G. 2012. Robot learning from demonstration by
constructing skill trees. volume 31, 360–375.
Kushner, H. J., and Yin, G. 2003. Stochastic Approximation
and Recursive Algorithms and Applications. Springer.
Lee, J. M. 2003. Introduction to Smooth Manifolds.
Springer.
Morimura, T.; Uchibe, E.; and Doya, K. 2005. Utilizing the
natural gradient in temporal difference reinforcement learn-
ing with eligibility traces. In International Symposium on
Information Geometry and its Application, 256–263.
Peters, J., and Schaal, S. 2008. Natural actor-critic. Neuro-
computing 71:1180–1190.
Slate, D. 1991. UCI machine learning repository.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, MA: MIT Press.
Sutton, R. S.; McAllester, D.; Singh, S.; and Mansour, Y.
2000. Policy gradient methods for reinforcement learning
with function approximation. In Advances in Neural Infor-
mation Processing Systems 12, 1057–1063.
Sutton, R. S.; Maei, H. R.; Precup, D.; Bhatnagar, S.; Silver,
D.; Szepesvári, C.; and Wiewiora, E. 2009. Fast gradient-
descent methods for temporal-difference learning with lin-
ear function approximation. In Proceedings of the 26th An-

nual International Conference on Machine Learning, 993–
1000. ACM.

1773

