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Abstract

In this paper, we present a hybrid grammar formalism
designed to learn structured models of natural iconic
gesture performances that allow for compressed repre-
sentation and robust recognition. We analyze a dataset
of iconic gestures and show how the proposed Feature-
based Stochastic Context-Free Grammar (FSCFG) can
generalize over both structural and feature-based varia-
tions among different gesture performances.

Introduction
Natural gestures are becoming increasingly popular as a
means to interact with technical systems, from tablet de-
vices, to smart TVs, to social robots. However, the ges-
tures that can be used are severely restricted to what can
be recognized robustly. Although there have been advances
in vision-based motion tracking, these have been usually
confined to predefined, reliably discernable movement pat-
terns. Successes in this area include Hidden Markov Models
(HMM) (Yamato, Ohya, and Ishii 1992; Yoon et al. 2001;
Turaga et al. 2008), HMM in combination with the Kalman
filter (Ramamoorthy et al. 2003), or the Ordered Means
Model (OMM) (Großekathöfer et al. 2012). However, al-
though these gestures are often reminiscent of familiar phys-
ical motions, they remain artificially defined gesture com-
mands.

Natural gesturing, on the other hand, has for the most part
resisted attempts at reliable recognition and interpretation.
One reason is the wide variability or apparent lack of struc-
tural patterns that can be tapped by classifiers. For instance,
iconic gestures are naturally performed during communica-
tion to refer to objects or events by depicting aspects of their
visual-spatial properties. However, one can refer to a ball by
drawing a circle with an index finger, with either hand or
both hands simultaneously, clockwise or counter-clockwise,
slow or fast, small or big, once or repeated several times.
Hence, recognizing and interpreting an iconic gesture re-
quires learning discriminative models that can recognize the
different variants without overgeneralization. Furthermore,
it needs to be robust against minor motion deviations or mo-
tion tracking noises.
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A number of researchers have tried to develop linguis-
tically motivated grammar-based approaches that can cap-
ture highly complex hierarchical structures, and recognize
human actions and activities (Bobick and Ivanov 1998;
Pastra and Aloimonos 2012). In this view, there is a gram-
matical structure behind nonverbal behavior that can be used
to recognize or “parse” valid performances. This idea builds
on the strong assumption that human actions and move-
ments consists of primitives (like morphemes or words in
language) that are arranged in compositional structures in
a limited number of ways. However, when looking at ges-
tures or, more generally, human motor actions, it is not clear
what such primitives may be, whether they are stable, and
what they are composed of. Hence, most grammar-based
approaches for activity recognition have used a syntax that
has been predefined by experts (Ivanov and Bobick 2000;
Moore and Essa 2002; Chen, Georganas, and Petriu 2008).

In this paper, we present an approach to learning struc-
tured models of gesture performance that allows for a com-
pressed representation and robust recognition of natural
iconic gestures. We propose a hybrid approach that, at the
same time, strives to extract the structural-syntactic patterns
of gestures while identifying low-level statistical regularities
that constitute primitive building blocks. After reviewing re-
lated work on grammar-based approaches used in computer
vision and behavior recognition, we propose Feature-based
Stochastic Context-Free Grammars (FSCFG) as a hybrid
approach that extends Stochastic Context-Free Grammars
(SCFG; proposed by Stolcke 1994) by using sets of prob-
abilistically defined features as terminal symbols. The pro-
posed hybrid grammar has been applied to learning and rec-
ognizing diverse natural iconic gestures from noisy move-
ment data delivered by standard tracking sensors. Before re-
porting the classification results, we describe our recorded
corpus comprising 1739 iconic gestures performed in refer-
ence to twenty different objects. We also analyze the strate-
gies the participants used to depict an object iconically, as
well as the variations among their gestures.

Related work
Grammar-based formalisms have become increasingly pop-
ular in research on vision-based activity recognition dur-
ing the last 15 years (see Chanda and Dellaert 2004 for a
survey). Decomposing complex behaviors into primitive ac-
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tions (symbols), and given ways of performing a behavior
or an activity are both described as strings of symbols. The
rules of a grammar model determine which combination of
primitive actions comprises a valid performance of a behav-
ior. There are several reasons why a grammar model is ap-
pealing to the representation of complex activity patterns.
Grammar can be elegantly represented, its structure is inter-
pretable, and it can be used to formulate concise descrip-
tions of action patterns. Many studies have applied syntac-
tic approaches to recognizing different types of nonverbal
behavior, i.e. the Finite State Machine (FSM) for hand ges-
ture recognition (Hong, Turk, and Huang 2000) or Context-
Free Grammar when used to represent and recognize hu-
man actions and interactions (Ryoo and Aggarwal 2006;
Kitani, Sato, and Sugimoto 2006).

To address the uncertainty created by noisy sensors or
computer vision, syntactic approaches have been extended
to include probabilities early on. Stochastic Context-Free
Grammar (SCFG) (Stolcke 1994) have been applied to dif-
ferent vision-based applications such as simple hand ges-
ture recognition Ivanov and Bobick (2000) or surveillance
in parking. Most of these approaches have used the Earley-
Stolcke parsing algorithm (Stolcke 1994) for efficient prob-
abilistic parsing. Minnen, Essa, and Starner (2003) use sim-
ilar techniques for activity recognition during the Tower of
Hanoi task, and Moore and Essa (2002) to recognize multi-
agent activities in blackjack card games. All of these sys-
tems define the applied grammar syntax manually and have
applied it only for task recognition at levels of rather com-
plex actions with clear-cut compositionality with respect to
both units and structures. None faced the challenge of learn-
ing a grammar from samples of action performances. There
are two exceptions. They are work by Kitani, Sato, and Sug-
imoto (2006) on very simple activity recognition, and by
Zhang, Tan, and Huang (2011) who learned SCFGs for ap-
plications such as the recognition of gymnastic exercises,
traffic events and multi-agent interactions.

The idea of attributed grammars was originally propose
by Knuth in 1968 for linguistic frameworks. The idea of
combining statistical and syntactic approaches using linguis-
tic frameworks for nonlinguistic applications can be traced
back to the 80’s, when Tsai and Fu (Tsai and Fu 1980;
Fu 1986) proposed attributed grammars as a means to in-
tegrate statistical regularities into syntactic pattern analysis.
However, many of the applied grammar formalisms in be-
havior analysis have not integrated statistical and syntac-
tic aspects within the same approach. That said, they have
processed data at two separate levels. The first is low-level
segmentation and symbolization, where statistical methods
such as HMMs are used (Zhang, Huang, and Tan 2006;
Chen, Georganas, and Petriu 2008; Ivanov and Bobick
2000). The Second involves the high-level recognition of
longer range pattern with the aid of syntactic methods such
as SCFG. Exceptions to this method are studies that have
proposed attributed grammar formalisms in context such as
activity recognition (Damen and Hogg 2009) or the detec-
tion of abnormal events when parking a car (Joo and Chel-
lappa 2006).

Definition of Feature-Based Stochastic
Context-Free Grammar

Our proposed framework, FSCFG, is an extension of the
probabilistic SCFG framework proposed by Stolcke (1994).
An SCFG is defined by the following symbol sets:

• Σ, a finite set of terminal symbols.
• N , a finite set of non-terminal symbols.
• S ∈ N , a start symbol.
• R, a finite set of rules, each of the form X → λ with the

left-hand side X ∈ N and the right-hand side λ ∈ (N ∪
Σ)∗. Each rule is associated with a probability P ∈ [0, 1]
(shown in brackets in front of each rule).

Based on this definition, an FSCFG is defined by the fol-
lowing additions (see Figure 1):

• F , a finite set of n features {f1, . . . , fn}. A feature set is
defined as F={f1=v1, . . . , fn=vn}.
• Each terminal t ∈ Σ is represented by a weighted set of l

feature sets: t={(Fi, wFi
) | i=1, . . . , l; wFi

∈]0, 1[ }.
• Each feature of a terminal is weighted for all its feature

sets equally, given by {(fi, wfi) | i = 1, . . . , n;wfi ∈ R}.

Through the definition of n features used to form l feature
sets, FSCFG allows for feature-based representation of data
samples in an n-dimensional feature space. On this basis, as
illustrated in Figure 1, each terminal is not represented as
an atomic symbol, but as the prototype of a cluster with n
features. The importance of the i-th sample (i.e. feature set)
to the cluster is determined by (Fi, wFi

), and the importance
of the i-th feature within a cluster is determined by (fi, wfi).

Accordingly, a given string of symbols to an FSCFG is
an ordered set of n-dimensional samples. For instance, in
the case of working with movement streams, a symbol cor-
responds to the feature-based representation of a movement
segment. In this way, statistical (feature-based) and syntac-
tic (structure-based) processing are unified within a hybrid
framework that learns not only rule-based syntactic models
of symbols, but also takes into account the statistical rela-
tions in the underlying features spaces.

Parsing with FSCFG
In contrast to SCFG, FSCFG can compute the similarity
between two symbols (or terminals) in an n-dimensional
feature space. Hence, while parsing with an FSCFG, the
match between a terminal against an input symbol is com-
puted probabilistically, depending on the measured sim-
ilarity between the parsing terminal and the parsed in-
put symbol in their n-dimensional feature space. Specif-
ically, parsing the i-th symbol xi = {Fxi} of an
input string x = {x1, . . . ,xm}, through a terminal
t={(F1, wF1), . . . , (Fl, wFl

)} can be measured probabilis-
tically (as opposed to binary true/false matching in SCFG).
The parsing probability is given by

p(xi|t)=
l∑

j=1

wFj
g(xi|Fj), (1)
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Figure 1: Hybrid model of FSCFG, where terminal symbols
in the syntactic structure serve as the interface to the statis-
tical feature-based representations.

where g(xi|Fj) is a multidimensional Gaussian distribu-
tion. In order to keep this computational step simple and
efficient, we make the naı̈ve assumption that the features
are statistically independent of each other. Hence, the co-
variance matrix between n features is diagonal, and in this
way the multidimensional Gaussian is defined as product of
feature-specific Gaussians:

g(xi|Fj)=
n∏

k=1

wfk gauss(fk,xi
|µfk , σfk), (2)

where the mean of Gaussian function µfk is set to the fea-
ture value of fk,Fj ; and the standard deviation σfk can be
set for each feature separately (i.e. equal to the standard de-
viation of each feature in the training data). As a result of
applying this equation, the parsing probability computed in
a “scanning step” indicates how well a symbol is parsed by a
terminal. Thus in FSCFG, the scanning step of xi through t
multiples both forward and inner probabilities with p(xi|t).

Besides parsing, an FSCFG grammar can be learned from
samples of strings, in a supervised manner by exploring both
spaces of possible structures and parameter values. Learn-
ing the structure of an FSCFG corresponds to the process of
finding the optimal set of rules. The parameters that need to
be optimized during learning are P (the probability of each
rule),wF (the weight of each feature set), andwf (the weight
of each feature) for each terminal.

Learning the structure of an FSCFG
In order to find an optimal set of rules, first an initial set
of rules are generated which fit a given sample of strings
maximally. To this end, for each symbol in the string, we
generate a terminal with a single feature set t={(F1, wF1)}.
In addition, a non-terminal X and a lexical rule X → t [1]
is generated for each terminal. In the end, a start rule S →
X Y . . . [1] comprising the entire given string – by produc-

ing the sequence of all non-terminals – is added to the set of
rules.

Upon initialization, the structure is generalized by apply-
ing the merge and chunk operators proposed by Stolcke. The

merge operator merge(X1, X2) = Y replaces all occur-
rences of the non-terminals X1 and X2 with a new non-
terminal Y . The chunk operator chunk(X1 . . . Xk) = Y
replaces all occurrences of the ordered sequence of the non-
terminals X1 . . . Xk with a single new non-terminal Y and
adds a new chunking rule Y → X1 . . . Xk to the grammar.
These operators simplify the grammar by decreasing its De-
scription Length (DL) (Rissanen 1983). The loss measure
during this process is the negative logarithm of the Bayesian
posterior parsing probability. The likelihood term, which in-
dicates how well the given samples fit the learned model, is
set to the parsing probability of the samples; the prior proba-
bility of a grammar is set to its DL, which is proportional to
the code length in bits needed to store the grammar’s rules.
In this way, by using a Bayesian loss measure, the grammar
structure is modified towards a trade-off between general-
ization (or simplicity) and fitting of the model to the given
data.

Given the Bayeisan loss measure for an FSCFG, similarly
to SCFG, different search strategies can be applied to find a
relatively optimal grammar structure. (1) In best-first search
all candidates of merge and chunk operators are pooled and
the best one locally is selected. To overcome local minima,
if the loss begins to increase, further modification steps are
checked for a sudden drop of loss (look-ahead steps). (2)
Multilevel best-first search is very similar to the best-first
search, except that it searches for the best merge and chunk
candidates at two different levels. Only after the best local
merge candidate is selected, is the best local chunk candi-
date chosen. (3) In beam search, instead of always choosing
the best local modification candidate, different possible se-
quences of merge and chunk operators are checked as a tree
of possible moving paths in the structure space.

When providing samples to learn the structure of an
FSCFG, the process of adding new rules to the grammar and
optimizing them by searching the structure space, is repeated
for each sample that cannot be parsed by the grammar with
a high enough probability.

Learning the parameters of an FSCFG
The parameters of an FSCFG are learned and optimized dur-
ing both learning the structure and parsing new input strings,
after a default initialization at the beginning.

Rule probabilities (P ): Similarly to SCFG, the proba-
bility of each rule is determined from how often the rule
has been invoked for parsing, normalized by the sum of all
invocations of the rules with the same left-hand side non-
terminal.

Weights of features (wf ): The weights of features are
set for each terminal individually, and they are set for all
feature sets of a terminal equally. This means, wf refers to
the weight of feature f in the terminal t for all its l feature
sets {Fi|i = 1, . . . , l}. wf is defined inversely proportional
to the standard deviation of the values of f among all feature
sets, given by

wf (t)=
1

std({f ∈ Fi|Fi ∈ t; i = 1, . . . , l}) + 1
(3)

2071



Hence, the higher the variance of a feature within a termi-
nal, the less discriminative is the feature for the terminal and
the less it contributes to the parsing through that terminal. In
other words, during parsing, each terminal is more sensitive
to its less variable features and in this way an FSCFG distin-
guishes between variant and invariant features for each ter-
minal. The sensitivity of each terminal to the given features
depends on the parsed input symbols and can lead to differ-
ent weightings at different positions of the grammar rules.
Thus, some variant features for a terminal may be counted
as invariant for other terminals and vise versa.

Weights of feature sets (wF): Computing the weight
of each feature set of a terminal employs a counter
which is normalized by the sum of its values in each
terminal. Initially, this counter is set to one yielding
t={(F1,

1
l ), . . . , (Fl,

1
l )}. This set of feature sets can be ex-

tended in two ways: (1) During parsing, when terminal t
parses a symbol xi, the symbol – which is represented as
a single feature set – is added to the terminal, with an initial
counter of one. In this way, parsing reshapes the terminals
of a grammar towards the features of the parsed symbols.
(2) During learning the structure of a grammar, when merg-
ing two lexical non-terminals merge(X1, X2) = Y with
X1 → t1 and X2 → t2, the right-hand side terminals – e.g.
t1={(F1, 1)} and t2={(F2, 1)} – are also merged. This re-
sults in a new rule Y → t, where the new terminal t is
a cluster of the old terminals: t={(F1,

1
2 ), (F2,

1
2 )}. These

two incorporation steps for feature sets during both parsing
and learning may lead to terminals that are too large with
too many feature sets and therefore additional computational
costs. To increase the efficiency, we perform a pruning step
that combines similar feature sets. In this case, the counter
of a new feature set is set to the sum of the counters of the
ones replaced. As a result, the new feature set gains more
weight and therefore more influence in the representation of
its terminal.

Through the computation and optimization of the pa-
rameters wF and wf during both learning and parsing, an
FSCFG learns the set of its terminals continuously, dynam-
ically and incrementally. This is a useful feature when deal-
ing with continuous input strings without a clear defini-
tion of compositional elements as symbols, such as contin-
uous human motion data. In many studies that have applied
grammar-based approaches to learning models of human ac-
tions, a symbolization step has been performed as prepro-
cessing for the input data. For instance, Wang, Lorette, and
Bouthemy (1991) and Ivanov and Bobick (2000) applied
Hidden Markov Models (HMMs) to learn symbols as pro-
totypes of movement segments before applying a SCFG. In
FSCFG, by representing each terminal as weighted feature
sets, there is no clear cut off between these two processing
levels and the statistical symbolization of terminals is ho-
mogeneously integrated in the learning process of syntac-
tic structure. Furthermore, such an integrated symbolization
process also takes the learned syntax of the grammar into
account, and may lead to different symbolization results for
different parts of a the grammar.

Handling uncertain input
An important challenge in grammar learning and parsing is
uncertainty in the input data. This may lead to deletion er-
rors when an expected symbol is missing in the input stream,
insertion errors when symbols occur spuriously, or substitu-
tion errors when a symbol is parsed with the wrong terminal.
Since FSCFG can parse any symbol by any terminal through
feature-based parsing, the substitution error is handled im-
plicitly. To deal with the insertion and deletion errors during
parsing, we introduce special symbols (cf. Ivanov and Bo-
bick 2000):
• A new terminal skip ∈ Σ with no feature set
• A new non-terminal SKIP ∈ N , mapped to the skip

terminal through the lexical rule SKIP → skip.
• A new terminal ε ∈ Σ which is used to create null pro-

duction rules of the form X → ε for any X ∈ N .
skip handles insertion errors as it treats all symbols

equally and is assigned a small probability. Consequently,
a parsing path through skip is costly and is only used if oth-
erwise parsing would fail. To enable this path, we add to any
lexical ruleX → t the new alternative ruleX → SKIP X .
In addition, the start rule of the form S → λ receives the
alternative rule S → λ SKIP . Finally, a new lexical rule
SKIP → skip is added to the grammar. ε handles dele-
tion errors because it forces its associated non-terminal to
be ignored during parsing. Additionally, we add to each lex-
ical rule X → t, the alternative rule X → ε with a small
probability. In this way, the parsing algorithm ignores the
occurrence of the terminal t only if need be.

Note that, from parsing to structure learning, deletion and
insertion errors exchange their roles as cause and effect.
Learning a grammar rule based on an input string with an
insertion error results in adding an erroneous lexical rule
which then causes a deletion error when parsing a correct
string. On the other hand, when learning a rule from a string
with a deletion error, the missing lexical rule in the learned
grammar causes an insertion error when parsing a correct
string. Using these error handling symbols when confronted
with noisy data, the FSCFG framework should entertain
both hypotheses that either the learned grammar structure
is incorrect or the given input string is noisy. Hence, when
a given input string uses a deletion handling rule such as
X → ε, the structure of the grammar is optimized by adding
an alternative for each rule containingX in the form of Y →
λXν, by omitting the missed non-terminal as Y → λν. Fur-
thermore, in the case of using a skip-rule, the corresponding
terminal skip and non-terminal SKIP are renamed to new
symbol names and are inserted into the set of grammar rules.

These error handling rules result in a growing FSCFG
which also contains rules and symbols for noisy data. How-
ever, after providing enough training data, the noisy rules
will be used less for parsing and will result in low probable
rules. In a successive pruning step after learning, these rules
can be removed from the grammar as needed.

3D Iconic Gestures Dataset
To test our grammar framework, we have recorded a dataset
of 1739 iconic gestures performed by 29 participants (20
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Sphere Egg Ellipsoid Cylinder Rectangular box Cube Cone Pyramid Trapezoid Parallel trapezoid

House Apple Vase Bulb Bottle Chair Table Umbrella Dumbbell Teapot

Figure 2: 3D object models used in the study; in this situa-
tion the cube is to be described next.

males and 9 females; from 9 different declared ethnicities) to
depict different objects. All gestures were recorded using the
MS KinectTM. Participants were presented with twenty vir-
tual 3D models of simple and complex objects on a screen
(see Figure 2). One of the objects moved to the center of
the screen, enlarged and rotating, and participants signaled
when they felt ready to perform a gesture for that object.
Then, the object disappeared and a photo of an addressee
person was shown to whom the object had to be depicted
gesturally. After the participants retracted their hands or
gave a verbal signal, the face disappeared and the next ob-
ject was shown (order randomized). The participants were
told that their gestures would be videotaped and shown to
other participants, who would have to recognize the object
from the same set. Each object was shown three times. This
procedure resulted in approximately 87 gestures per object,
each recorded in color video, depth video and 3D motion of
the skeleton (in 30 fps). This three-dimensional iconic ges-
ture dataset (3DIG) has been made available online1.

Analysis of the gestures performed
Analyses of the video data revealed that the participants
used four different representational techniques to depict vi-
sual or functional features for each object: (1) Drawing the
3D or 2D contours of an object in the air. (2) Enacting an
action performed on an imaginary object (e.g. “throwing”
to refer to the ball). (3) Static posturing with the hand(s)
held still in order to form an object (e.g. forming a con-
cave circular shape with both hands). (4) Dynamic postur-
ing where drawing and static posturing are combined, as if
the gesturer is touching the surface of an imaginary object.
Figure 3 shows the use of each technique among gestures
performed for each object or object set. Note that within
a single gesture performance, different techniques could be
used sequentially or simultaneously. As shown, the drawing
technique was the most dominant choice followed by dy-
namic posturing. Static posturing was used more frequently
for simple objects with abstract geometrical shapes, whereas

1http://projects.ict.usc.edu/3dig/
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Figure 3: The rates of different representational techniques
used to refer to each 3D virtual object.

Structural
variability

Examples of variation

Degree of
simplification

Drawing a 3D shape or a 2D projection.

Ordering First, referring to the triangle shape of a cone
and then to its circular bottom, or vise versa.

Repetition Drawing the round shape of a circle once,
twice or three times.

Handedness Drawing a circle with one hand or both hands.

Feature-based
variability

Examples of variation

Direction Drawing while moving a hand upward or
downward, clockwise or counter-clockwise.

Velocity Drawing fast or slow.
Size Drawing a small or a big circle.
Position Drawing in front of head or chest.
Projection Drawing a horizontal or vertical projection.
Form Making curved movements or straight ones.

Table 1: Structural and feature-based variabilities among
iconic gesture performances.

the enacting technique was used preferentially for complex
everyday objects.

Except for static posturing, the wrists movements made
the greatest contribution to the gestural depiction. We thus
concentrate in the following section on wrist trajectories in
gesture space, which can be better captured with low-cost
tracking systems such as MS Kinect TM than, e.g., hand-
shape. Our goal is to learn a hybrid grammar for iconic ges-
ture trajectories.

The structural property most commonly acknowledged
for gestures is the division of a gesture into different phases
(Kendon 1972): (1) pre-stroke preparation to move the
hands from a rest position to a start position; (2) stroke, the
meaningful and most effortful phase; (3) post-stroke retrac-
tion to move the hand back to a rest position. Furthermore,
even during the stroke phase, some parts of the movement
might be transitional (e.g. when continuing to draw in a
different location). This means that in order to interpret a
communicative iconic gesture, the irrelevant parts (i.e. pre-
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stroke, post-stroke, transitional sub-movements) need to be
ignored. This structural property should be identified when
learning a grammar for gestures.

To get a better idea of the variabilities involved in ges-
ture, we began by analyzing the variation among the gestures
observed in the corpus. Table 1 reports the most prominent
structural (or syntactic) variabilities, which can lead to very
different gestures performed for the same object. Below the
level of syntactic variation, there are spatiotemporal varia-
tions of features that represent statistical variabilities. At this
level, the spatiotemporal features can be invariant and thus
characteristic for a specific gesture class (e.g., a curved tra-
jectory for round objects), or they can be variant and thus
likely irrelevant with respect to a specific technique (e.g.
movement direction while drawing). In the next section, we
report on how FSCFG is able to cope with both kinds of
variability while generalizing over different gestures, sep-
arating different performing ways and determining variant
and invariant features from seemingly meaningless aspects
of a gesture.

Results
We applied the FSCFG framework to learn a generalized
model from the gesture performances performed for each of
the twenty objects in the 3DIG dataset. The learned grammar
models were then tested by classifying the unseen gesture
performances, based on their parsing probabilities.

Before learning a grammar model of hand gestures, the
continuous wrist movement trajectories needed to be seg-
mented into discrete symbols. Inspired by the concept of
guiding strokes (Kopp and Wachsmuth 2004) as segments
of movement trajectories of hand gestures, we segmented
the continuous trajectories on the minima of their velocity
profiles. Since wrist movements are slower while changing
direction or drawing a sharp curve, the resulting segments
were in the form of simple curves or straight lines. Then,
each segment was normalized as follows (see the figure in
Table 2). First, the start position of the segments was trans-
lated to the origin. Second, the segments were rotated about
all three spatial axes and mapped on the x-y plain. Finally,
segments were resized while maintaining their width-height
proportions. The normalized trajectory was then resampled
at equal distances on the x axis, whose y coordinates repre-
sented the form of the trajectory in 5 dimensions. As shown
in Table 2, each segment is represented by 18 features (as a
single feature set). These extracted features reflect the statis-
tical variabilities that were shown in Table 1.

Learning FSCFG models of gestures
One FSCFG model was learned for all gesture performances
for each object. At the beginning of the learning process for
each model, a small subset of gestures (e.g. three perfor-
mances) was used to initialize a maximally fitting FSCFG.
For this purpose, the following set of symbols and rules were
added to the grammar: a terminal symbol for each segment,
a lexical rule to produce each terminal, a rule producing the
movement sequence for each hand, and a start rule produc-
ing the whole gesture as a sequence of left and right hand
non-terminals successively.

l

x

z h
n

1.0

y1

y

y2

y3y4
y5

Features Dim. nr. Calculation/Notion
Samples’ heights 5 (y1, y2, y3, y4, y5)

Start to end vector 3 l = (xl, yl, zl)

Bounding box 2 (‖ l ‖, ‖ h ‖)
Normal vector 3 n = (xn, yn, zn)

Direction of concavity 3 ∈ {−1, 1} for each dim.
Average speed 1 ‖ l ‖ / duration
Start time 1 start time of movement

Table 2: Extracted features from each movement segment.
The blue arrow at the top represents a segment of a wrist
movement trajectory, and the red arrow shows the same tra-
jectory after normalization.

After this initial batch mode, the remaining samples were
given to the algorithm one by one in online mode. In this
mode, each training sample is first parsed, and if the parsing
probability is above a given threshold, the grammar rules are
adopted in three steps: (1) updating the rule probabilities, (2)
adding the parsed segments as new feature sets to the pars-
ing terminals, and (3) updating the weights of features and
feature sets (wF and wf ). In case the parsing probability is
below the threshold, first the grammar is extended by the
new rules to fit the given sample maximally. Consequently,
the resulting suboptimal structure is optimized by applying
merge and chunk operators, and in this way, searching the
structure space according to the Bayesian loss measure. In
this application of FSCFG, applying the naı̈ve but fast best-
first search algorithm with two look-ahead steps, we could
achieve classification results as accurate as the multilevel
best-first and beam search algorithms.

Figure 4 shows an example of an FSCFG model learned
from drawing gestures performed for the sphere object. The
grammar possesses three start rules that represent three main
ways of performing a gesture for sphere. Each of the start
rules produces one or two non-terminals, whereas each of
the non-terminals produces the movement of either the left
or right wrists as strings of lexical non-terminals. These
strings represent more specific ways of performing the same
gesture.

Each lexical non-terminal produces a terminal that con-
siders the regularities at the level of features. As illustrated,
each terminal is the prototype of a group of feature sets,
where the strength of each connection (i.e. wF) indicates
the weight of the corresponding feature set for each termi-
nal. It can be seen that some of the terminals link to one
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   MG16 => t13 (20)[1.0] 
   MG20 => t17 (20)[1.0]
   MG19 => t16 (20)[1.0]
   MG18 => t15 (20)[1.0]
   MG17 => t14 (13)[0.54] | MG33 MG17 (11)[0.46]
   MG22 => t19 (16)[1.0]
   MG21 => t18 (12)[0.86] | SK24 MG21 (2)[0.14]
   MG15 => t12 (18)[0.41] | MG34 MG15 (26)[0.59]
   NT15 => t11 (4)[1.0] 
   NT16 => t13 (23)[0.51] | SK21 NT16 (22)[0.49]
   NT17 => t14 (4)[1.0]
   NT18 => t15 (4)[1.0]
   NT19 => t16 (4)[1.0]
   NT20 => t17 (10)[1.0]
   NT22 => t19 (10)[1.0]
   SK21 => sk18 (22)[1.0]
   SK22 => sk19 (42)[1.0]
   MG33 => t29 (19)[1.0]
   SK24 => sk21 (2)[1.0]
   MG34 => t30 (33)[1.0]
   SK26 => sk23 (1)[1.0]
   NT28 => t25 (3)[1.0]
   NT30 => t27 (3)[1.0]
   NT31 => t28 (3)[1.0]
   NT32 => t29 (3)[1.0]
   NT33 => t30 (3)[1.0]
   NT34 => t31 (2)[1.0]
   NT35 => t32 (2)[0.67] | SK39 NT35 (1)[0.33]
   MG40 => t35 (4)[0.80] | SK40 MG40 (1)[0.20]
   NT37 => t34 (2)[1.0]
   NT39 => t36 (2)[1.0] 
   SK39 => sk34 (1)[1.0] 
   SK40 => sk35 (1)[1.0] 
   SK41 => sk36 (1)[1.0]

S => L24 R24 (24)[0.69]
    R33 (9)[0.26]
    L39 (2)[0.05]
    L24 => MG16 MG20 MG19 MG18 MG20 MG16 MG19 MG18(20)[0.45]
           L24 SK22 (20)[0.45]
           NT15 NT16 NT17 NT18 NT19 (4)[0.10]
    L39 => NT33 NT34 NT35 MG40 NT37 MG40 NT39 (2)[1.0]
    R24 => MG17 MG22 MG21 MG17 MG15 MG21 MG15 (6)[0.24]
           R24 SK26 (1)[0.04]
           NT20 MG22 NT22 (10)[0.40]
           MG17 MG22 MG21 MG15 MG21 MG15 (7)[0.28]
           MG15 (1)[0.04]
    R33 => MG33 NT28 MG34 NT30 NT31 NT32 (3)[0.30]
           R33 SK41 (1)[0.10]
           MG33 NT28 MG34 NT32 (5)[0.50] 
           MG33 NT28 NT32 (1)[0.10]

wf   
wF  

(counter)[probability]

Features ( f1, …,  f18)

alpha_sign
ax
ay

sample_1_y
sample_3_y
sample_5_y
sample_7_y
sample_9_y

sample_maxy
normal_vec_x
normal_vec_y

velocity
resize_factor

start_time_idx
start-end_x
start-end_y

f   F   

Figure 4: An example of a learned FSCFG for sphere.

or two strong feature sets (such as MG15, MG21 and MG22)
that they represent their typical movement segments. In con-
trast, non-terminals such as MG17 or MG40 are represented
through a set of equally influential feature sets. These ter-
minals represent parts of a gesture that vary widely and are
thus most likely less informative (e.g. the pre-stroke or post-
stroke phases). At the next level of statistical regularities,
feature sets are connected to the same features but with dif-
ferent weights (i.e. wf ). As illustrated, some of the features
have a higher impact on their feature sets and consequently
on the representation of their terminals than others. Small
sets of highly-weighted features thereby represent “invari-
ant” features, i.e. features that are most characteristic of a
particular terminal (and thus a specific part of a gesture).

In sum, the feature-based representation of terminals gen-
eralizes over many spatiotemporal deviations in different
parts of gesture performance. Grounded in this statistical
representation, the syntactic grammar rules generalize over
the structural variants among different gesture performances
for the same object.

Classification results
To evaluate the FSCFG models of gestures quantitatively,
we used them to probabilistically parse unseen gestures and
to classify them according to the highest parsing probabil-
ity. To this end, we divided the given corpus into different
subsets of gesture performances based on a manual anno-
tation of the gesture videos. Since the representation of ges-
tures as spatial wrists movement trajectories is an underspec-
ified representation of iconic gestures, it was expected that
the classification algorithm would achieve relatively more
accurate results for gestures performed with drawing tech-
nique than for example with static postures, where the ab-
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Figure 5: The ROC curves of classification using FSCFGs. A
ROC curve represents the mean of twenty ROCs, each rep-
resenting the classification result of gestures for an object.

sent hand postures play a decisive role. We tested the classi-
fication results for the following subsets of gestures: (1) The
subset of simple synchronized drawing gestures (367 ges-
tures) in which the drawing technique was used, both hands
moved synchronously, no part of the gesture was repeated
and a two-dimensional projection of the referred object was
depicted; (2) 2D drawing subset (543 gestures) with only
drawing gestures with two-dimensionally depicted shapes;
(3) Drawing subset (702 gestures) that contained gestures
performed only with the drawing technique; (4) The sub-
set at least one drawing (909 gestures) refers to all gestures
with at least one part performed with drawing technique; (5)
Drawing or dynamic posturing subset (1303 gestures) con-
sisted of all gestures performed only with one of these tech-
niques; (6) No static posturing (1507 gestures) was the sub-
set of gestures in which no static posturing technique was
applied; and finally (6) all gestures contained all 1739 ges-
tures in the 3DIG corpus.

Figure 5 shows the receiver operating characteristics
(ROC) graphs of two-fold cross-validation results, for each
subset of the gesture performances. The results show that
FSCFG classified drawing with relatively high performance.
A considerable drop in classification accuracy occured when
the gesture performances with underspecified techniques
were added to the dataset.

Figure 6 shows the confusion matrix of the classification
results of the drawing subset. Many of the confusions oc-
cur between gestures for objects that share many visuospa-
tial properties. For instance, many of the gestures for sphere
and ellipsoid, cube and rectangular box, or cone and pyra-
mid are in fact performed ambiguously, because of a too
rough depiction or their similar 2D projection. These con-

2075



sphere:1cone:2ellipsoid:3rectangular_box:4parallel_trapezoid:5cube:6trapezoid:7cylinder:8pyramid:9egg:10apple:11table:12chair:13umbrella:14dumbbell:15vase:16bulb:17bottle:18teapot:19house:20

81310000000010010200030011014000000200015160000002100000230110020000000000000000000001300000000000000011151741110020000002000000240000000000000110002022100000000020000000016000000000000000000001600000000001000000000100000000001001110100022000010200000000000018000000000000000000008000000000000000000007000000100101102000001722062101120003001001800200000000000300000140000000000000000000080000000000000000000030

Predicted label 

 

0
10
20
30Teapot 20

Dumbbell 19
Umbrella 18

Table 17
Chair 16
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Figure 6: Confusion matrix of the FSCFG classification re-
sults, performed on drawing gestures.

fused classes are in fact a result we had hoped for, since the
eventual goal is to learn a grammar that carves out gestural
strategies to iconically depict object properties and not spe-
cific individual objects. For example, a single FSCFG model
for all performances for sphere and ellipsoid can be learned
to represent a generative gesture model for round objects.
Other confusions can be found with complex objects such
as the table object, which are referred to by relatively very
few but diverse drawing gestures, resulting in very different
training and test samples.

In order to evaluate the classification performance of the
FSCFG models, we compared them to the performance of
other methods on the same datasets (Hidden Markov Mod-
els2 and Support Vector Machines3), and human judgment
performance (see Figure 7). The features we used for HMM
were instantaneous features of movement trajectories, such
as spatial position, velocity and acceleration at each time
step for each wrist. As features for SVM, we took the his-
togram of the features of all segments of a given gesture
sample. The idea of these so-called HoGS features was
proposed in a previous work on this dataset (Sadeghipour,
Morency, and Kopp 2012), in which – in contrast to this ap-
plication – the best features were selected for each pair of
SVMs separately. As shown in Figure 7, the FSCFG model
outperforms the other algorithms in all subsets of the ges-
ture dataset. Moreover, we found that normalizing the pars-
ing probability of each class for each gesture performance to
the sum of all parsing probabilities from all twenty FSCFG
models improved the classification accuracy significantly, as
shown in Figure 7 under the notion of “norm. FSCFG”.

Human judgment for recognizing the performed gestures
2Using the Bayes Net Toolbox for Matlab, available at

http://code.google.com/p/bnt/, with 5 hidden states and 8 Gaussian
mixtures.

3Using the LIBSVM library (Chang and Lin 2011), avail-
able at http://www.csie.ntu.edu.tw/ cjlin/libsvm/, with ν-SVM type
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Figure 7: Comparing the classification performance (F1) of
FSCFG to different methods and human judgment base-
lines, given different subsets of gestures.

represents a base-line for this classification task. We carried
out an online study in which the participants were asked to
guess which of the twenty objects each gesture refered to.
Each of the 240 participants watched 10 color videos of ges-
ture performances, then 10 videos showing rendered skele-
tons of the gesturers, and finally 10 videos showing only the
wrists movements as two moving dots. We excluded partic-
ipant who did not complete the task to the end, or who an-
swered at least one test question incorrectly4. The remaining
179 participants together guessed each gesture performance
in each of the three demonstration conditions at least once.
Notably, as shown in Figure 7, normalized FSCFG models
achieved better recognition rates than humans in the first
three subsets of drawing gestures, for which the extracted
features were designed. Further, the performance of normal-
ized FSCFGs is in all subsets was better than human judg-
ments in the skeleton or wrist conditions.

Conclusion
We have presented a hybrid grammar-based approach to cap-
ture the structural and feature-based characteristics of natu-
ral iconic gestures. To address the large variability and weak
compositionality in gesturing, our FSCFG models simulta-
neously leverage low-level statistical regularities and high-
level syntactic patterns during learning and recognition. Fur-
thermore, the extension of the parsing algorithm to deal with
uncertain input allowed for learning of noisy human motion
data. We extracted features from wrist movement trajecto-
ries and achieved reliable classification results of drawing
gestures, in which wrist movements depicted the contours
of objects. The FSCFG models of these gestures are gener-
alized interpretable representations of their samples. In clas-
sification, these models not only outperformed other classi-

(ν=0.01) and radial basis kernel type (γ=0.01).
4Three videos were shown randomly, in which the participants

were asked to click on a specific object in textual form.
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fication methods in gesture recognition, but they were also
more accurate than human judgment on color videos of the
drawing gestures.
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