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Abstract
Imitation Learning (IL) is a popular approach for teach-
ing behavior policies to agents by demonstrating the de-
sired target policy. While the approach has lead to many
successes, IL often requires a large set of demonstra-
tions to achieve robust learning, which can be expensive
for the teacher. In this paper, we consider a novel ap-
proach to improve the learning efficiency of IL by pro-
viding a shaping reward function in addition to the usual
demonstrations. Shaping rewards are numeric functions
of states (and possibly actions) that are generally eas-
ily specified, and capture general principles of desired
behavior, without necessarily completely specifying the
behavior. Shaping rewards have been used extensively
in reinforcement learning, but have been seldom con-
sidered for IL, though they are often easy to specify.
Our main contribution is to propose an IL approach that
learns from both shaping rewards and demonstrations.
We demonstrate the effectiveness of the approach across
several IL problems, even when the shaping reward is
not fully consistent with the demonstrations.

1 Introduction
We consider teaching policies to agents to perform specific
tasks. One framework for doing this is reinforcement learn-
ing (RL), where the learner is given a reward function, and
learns a policy to maximize the reward. However, two draw-
backs of this approach are that RL can suffer from poor scal-
ability, and it can be difficult to design a reward function that
leads RL to a specific desired behavior.

Imitation Learning (IL) is an alternative to RL that ad-
dressed both the scalability and reward-design issues. Rather
than design a reward function, the teacher directly demon-
strates the desired behavior. The learner then attempts to
learn a policy that can mimic the expert demonstrations, and
generalize to new situations. While the IL approach has of-
ten been successful, robust learning can often require a large
number of demonstrations, which can be expensive to col-
lect. The main contribution of this paper is a new IL ap-
proach that leverages shaping rewards in order to learn ef-
fectively from fewer demonstrations.

Shaping rewards are commonly used to speed up RL (Ng,
Harada, and Russell 1999; Dorigo and Colombetti 1994;
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Mataric 1994; Randlov and Alstrom 1998), and can be
viewed as rules-of-thumb that provide short-term informa-
tion about the goodness/badness of states and actions. Thus,
shaping rewards are often easier to learn from than the true
reward function, which is often much longer term and in-
frequent. However, shaping rewards are generally a simpli-
fication of the true problem, and maximizing the shaping re-
ward alone will not usually produce optimal policies under
the true reward. Thus, in practice, shaping rewards are com-
bined additively with the true reward during learning. Con-
vergence to optimal policies can be guaranteed under certain
restrictions (Ng, Harada, and Russell 1999).

Despite the wide use of reward shaping in RL, little
prior work has consider leverage shaping rewards in an IL
setting. As a motivating example, consider the IL bench-
mark of teaching car driving policies (Pomerleau 1989;
Chernova and Veloso 2009; Ross and Bagnell 2010). A
teacher can easily use shaping rewards to specify certain
general rules-of-thumb about good/bad driving behaviors
(e.g. avoiding collisions and staying on the road). Demon-
strations might then be used to specify more detailed and
specialized aspects of the desired behavior (e.g. lane and
speed preferences). Ideally, if the shaping reward is mostly
consistent with the target policy, we would hope an IL agent
could learn from fewer demonstrations by biasing learning
toward policies with higher shaping reward.

In this paper, we give a new IL algorithm called Shaped
IL (SHAIL) for combining a shaping rewards and demon-
stration data. The key idea is to formulate a constrained op-
timization problem over policies, where the goal is to maxi-
mize shaping reward, subject to the constraint that the policy
tends to agree with the demonstrations. This formulation en-
sures that we meet our learning goal of imitating the teacher,
even when the shaping reward is not fully consistent with the
teacher. At the same time, when the shaping reward is infor-
mative, by maximizing the shaping reward, the learner can
be expected to require fewer demonstrations to identify the
target policy. SHAIL addresses this problem via Lagrangian
relaxation, which reduces the IL problem to a sequence of
unconstrained problems. Our experimental results across a
variety of IL problems show that SHAIL is able to use sim-
ple shaping rewards to significantly reduce the number of
required demonstrations, and is robust to shaping rewards
that are sometimes inconsistent with the teacher.
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2 Related Work
The value-based prior (VBP) approach for IL (Syed and
Schapire 2007) is a closely related approach where a reward
function is used to define a prior over policies, such that
policies with higher values have higher prior probabilities.
Given demonstration data, learning involves finding a policy
that maximizes the posterior. A major drawback of the ap-
proach is that the algorithm is designed for flat state spaces,
and does not scale to large problems such as the domains
used in our experiments.

IL is related to inverse RL (IRL) (Ng and Russell 2000),
where a teacher’s reward function is estimated based on
demonstrations and used to compute a policy. The Bayesian
IRL approach (Ramachandran and Amir 2007) assumes a
prior over reward functions, and attempts to find a reward
function that maximizes the posterior given the demonstra-
tions. The scalability of the approach is unclear, and has so
far been applied only to small problems (up to 1000 states).

Prior work (Judah et al. 2010) studied how to incorporate
an expert advice on actions into an RL agent. Similar to our
work, the approach learns by combining a reward function
with the teacher’s direct advice about actions. However, their
objective is to maximize reward, even if that means ignoring
the teacher’s action advice. This is the opposite of our IL
objective, where the goal is to agree with the demonstrations
and rewards are viewed as possibly fallible advice.

Other prior work allows a teacher to train an agent on-
line by supplying numeric reward signals about an agent’s
actions (Knox and Stone 2009; 2010; 2012; Thomaz and
Breazeal 2008), sometimes in combination with the true en-
vironmental reward. This mode of teaching is less direct and
less informative than IL, though potentially more widely ap-
plicable when it is not feasible to provide demonstrations.
However, the goal in these approaches is again to converge
to an optimal policy with respect to the environmental re-
ward, using the teacher reward as a way to accelerate learn-
ing. Hence these approaches are in contrast to our IL work.
Similar comments hold for other work on advice in RL
(Rosenstein and Barto 2004; Maclin et al. 2005).

3 Problem Setup
Imitation Learning. We consider the framework of Markov
decision processes with no rewards (denoted MDP\R) and
finite time horizon H . An MDP\R is a tuple 〈S,A, T, I〉,
where S is a set of states, A is a finite set of actions,
T (s, a, s′) denotes the probability of transitioning to state
s′ upon taking action a in state s, and I is the initial state
distribution. A stationary policy π gives a probability dis-
tribution π(s) over actions for each state s, where π(s, a)
denotes the probability of selecting action a in s. To han-
dle large state spaces, we use parametric log-linear policies
of the form πθ(s, a) ∝ exp(f(s, a) · θ), where f(s, a) is a
feature vector of state-action pairs and θ is the weight vector.

In IL, the learner is provided with a set of demonstrations
D = {T i}Ni=1 of a target policy π∗. Each demonstration
T i = (sit, a

i
t)
H
t=1 is a sequence of H state-action pairs start-

ing at a state drawn from I with actions selected according to
π∗. The goal is to learn a policy π that can accurately mimic

π∗. A typical approach for learning such a policy is to supply
the state-action pairs from D to a supervised classification
learner and then let π be the learned classifier. This approach
is justified by the fact that if π can accurately predict the ac-
tions of π∗ with respect to the induced state distribution of
π∗, then the long-term value of π will be close to that of
π∗ for any reward function (Ross and Bagnell 2010). In this
paper, since we utilize probabilistic policies, we will mea-
sure accuracy of a policy πθ in terms of its log-likelihood
L(θ,D) =

∑
(s,a)∈D ns,a log πθ(s, a), where ns,a is the fre-

quency of the state-action pair (s, a) in D.
IL with Shaping Rewards. In this work, we are inter-

ested in using shaping rewards for accelerating IL. We as-
sume that in addition to the set D, the learner is also sup-
plied with a shaping reward function Rs and a simulator
M of the MDP\R. Here Rs is a function from states and
actions to numeric rewards that is intended to reflect prior
knowledge about the goodness/badness of being in different
states and executing different actions from the perspective
of the teacher’s intended target behavior. We assume that
the learner does not know or learn the transition model T .
Rather, it has access to a simulatorM that allows it to sample
trajectories from the MDP in order to evaluate different poli-
cies. The assumption of having access to M is not too unre-
alistic because many domains of interest are either simulated
(e.g. agents in video games) or have sophisticated simulators
available (e.g. computer network simulators). Given M and
Rs, we can define the H-horizon shaping value VRs(π) of a
policy π as the expected total shaping reward of trajectories
that start in s1 ∼ I and then execute π for H steps.

Note that access to Rs does not imply that π∗ can be
learned using pure RL. This is because shaping rewards sel-
dom completely define the target policy as there will often be
other policies that maximize the shaping value. Rather, the
role of Rs is to encode extra information that we may have
about π∗. For example, consider a situation where an agent
will be solving multiple IL problems within a particular do-
main (e.g. car driving).Rs in this case can capture properties
that are likely to be common across different target policies
in the domain (e.g. collision avoidance), while demonstra-
tions distinguish individual policies (e.g. lane preferences).

Given demonstration data D and Rs, we want to learn
a policy π that mimics the expert policy π∗, ideally, more
efficiently than without Rs. Importantly, even if Rs is in-
consistent with π∗, we still want to converge to π∗, ideally,
nearly as efficiently as if Rs were not provided. That is, we
are willing to ignore Rs when it conflicts with demonstra-
tions. Given that goal, we seek a policy that maximizes the
shaping value subject to remaining accurate with respect to
the demonstration data, which is formalized as follows:

θ̂ = argmax
θ

VRs(πθ) s.t. L(θ,D) ≥ L̄, (1)

where L̄ is a lower bound allowed on L(θ,D) that speci-
fies the accuracy constraint. In our experiments, we auto-
matically set L̄ based on the log-likelihood L∗ of a pure
supervised learner, which ignores the shaping reward, and
can be easily computed via convex optimization. We set
L̄ = L∗ − δ, where L∗ = maxθ L(θ,D) and δ is the slack
allowed on the optimal log-likelihood value L∗. In all of our
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experiments, we set δ = 0.01 · |D|, which in our experience
is a robust setting that results in minimal loss in training ac-
curacy.

Theoretical Analysis. Ideally, we would like to guaran-
tee that the performance of the learned policy should never
be much worse than that of a pure IL learner that ignores the
shaping reward, even when the shaping reward is mislead-
ing. At the same time, we would like to characterize how the
efficiency of learning can be improved for high-quality shap-
ing rewards. Here we address these questions by proving a
PAC-style bound (Valiant 1984) related to learning policies
according to optimization problem (1), which illustrates the
dependence on the shaping reward.

We consider a simple learning setting where the learner
considers a finite set of deterministic policies Π as its hy-
pothesis space. It is further assumed that the teacher policy
π∗ is in Π. We first describe the PAC IL framework from
prior work (Khardon 1999), which we extend to incorpo-
rate shaping rewards. Let Dπ∗

be a distribution over trajec-
tories of π∗ and define the trajectory error of a policy π,
denoted as e(π), to be the probability that π disagrees with
π∗ on any state of a random trajectory drawn fromDπ∗

. It is
easy to show that if e(π) is small then the value of π will be
close to the value of π∗ for any reward function. We consider
bounding the performance of a consistent learner, which is
provided a training set of D of N independent trajectories
from Dπ∗

, and returns a policy π ∈ Π that is consistent
with each trajectory, which is always possible under our as-
sumptions. Khardon showed that for any π returned by a
consistent learner, with probability at least (1− δ), we have
that e(π) ≤ 1

N ln( |Π|δ ) (Khardon 1999). This shows that the
trajectory error decreases at a linear rate in the number of
training trajectories and that there is a worst case logarith-
mic dependence on the size of the hypothesis space.

We now adapt this framework toward optimization prob-
lem (1), where the learner outputs a policy π that is both
consistent with D (satisfying the loss constraint of (1)) and
maximizes VRs among all consistent policies. We will call
such a learner a shaped consistent learner. The impact of
the shaping reward is to effectively reduce the space of vi-
able hypotheses. We characterize this by defining Ππ∗

Rs
to be

the set of hypotheses that are ranked equal to or higher than
π∗ according to VRs . Ππ∗

Rs
is well defined for a given target

policy π∗ and shaping reward function Rs. The following
result gives an upper bound on the error of π.

Theorem 1. Let L be a shaped consistent learner and as-
sume that π∗ ∈ Π. If L returns π given a set of N training
trajectories drawn from Dπ∗

, then with probability at least

(1− δ), we have e(π) ≤ 1
N ln(

|Ππ
∗
Rs
|

δ ).

Proof (sketch). Similar to the classic Blumer bound proof
(Blumer et al. 1987), the main idea is to bound the proba-
bility that any hypothesis in Ππ∗

Rs
whose error is more than

some constant ε > 0 is consistent with the demonstrations,
which is at most (1− ε)N . Since π∗ ∈ Π, shaped consistent
learning only considers outputting policies in Ππ∗

Rs
. Thus, via

the union bound, the probability that at least one of those

policies is consistent is at most |Ππ∗

Rs
|(1−ε)N ≤ |Ππ∗

Rs
|e−εN .

The theorem is obtained by bounding this quantity by δ.
Hence, we see that the worst case error bound is similar

to that of a consistent learner, but is reduced by an amount
1
N ln(|Ππ∗

Rs
|/|Π|). This bound captures some of the intuitive

properties of the shaped IL framework. First, note that since
Ππ∗

Rs
⊆ Π, the worst-case PAC bound will never get worse

with shaping. This holds even for completely uninformative
shaping rewards (e.g. Rs = 0) or even a malicious shaping
reward that ranks π∗ as the worst. Second, in the case with an
ideal shaping rewardRs such that π∗ is the only maximizing
policy, we get |Ππ∗

Rs
| = 1, indicating that the learner will be

able to learn with no training examples (i.e. the problem is
equivalent to RL). In between these extremes, we see that
according to the bound, the quality of the shaping reward
can be measured according to the number of policies that
are ranked below π∗, which agrees with intuition.

Above we assumed that problem (1) can be solved ex-
actly, which will often not be feasible in practice. A relax-
ation of the above considers a learner that may not exactly
maximize VRs , but still outputs a consistent policy. In that
case, if |Ππ∗

Rs
| is redefined to account for imperfect optimiza-

tion of VRs , then the above result still holds, and in the worst
case |Ππ∗

Rs
| = |Π|, guaranteeing that in a worst-case PAC

sense we do not perform worse than the pure IL, even with
an imperfect optimizer.

4 Solution Approach
Optimization problem (1) is non-convex due to the VRs(θ)
term. Thus, we focus on finding locally optimal solutions
that work well in practice. In particular, we attempt to ensure
that our returned solutions satisfy the accuracy constraints,
while maximizing the objective as much as possible. As dis-
cussed above, as long as the constraints are satisfied, we can
be confident that in the worst-case we will perform similarly
to pure IL. Below we describe the Shaped IL (SHAIL) al-
gorithm, first introducing the overall Lagrangian-relaxation
approach to arrive at a sequence of unconstrained problems,
and then giving an approach for the unconstrained problems.

Lagrangian Formulation. Lagrangian relaxation (LR)
(Ahuja, Magnanti, and Orlin 1993) solves a constrained op-
timization problem via a series of unconstrained problems
by removing the constraints, and adding them to the objec-
tive function as penalty terms weighted by Lagrange multi-
pliers. This is useful when the unconstrained problems are
easier to directly address compared to the constrained prob-
lem. For our constrained problem (1) (the primal problem),
LR will relax the constraint by moving it to the objective
function weighted by a Lagrange multiplier λ ≥ 0. This
yields the following unconstrained problem P (λ):

θ̂ = argmax
θ

VRs(θ) + λ(L(θ,D)− L̄), (2)

where λ controls how strongly we penalize solutions that
violate the inequality constraint.

Importantly, λ can always be set large enough so that
the resulting solution θ̂ is a feasible primal solution. This
is due to our selection of L̄, which is based on the best loss
L(θ,D) achievable when ignoring the shaping reward. Thus,
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Algorithm 1 Pseudocode for Shaped IL (SHAIL)
Input: D, Rs, parametric policy representation Θ, L̄
Output: (θ̂, VRs(θ̂), L(θ̂,D)), solution to problem (1)
1: λ← 1
2: loop
3: θ̂ ← optimize(D, Rs, λ)

4: if L(θ̂,D) ≥ L̄ then . θ̂ is feasible
5: λu ← λ, λl ← λu/2
6: break
7: λ← next higher λ
8: θ∗ ← θ̂, V ∗ ← −∞, L∗ ← −∞
9: repeat

10: λ← (λl + λu)/2

11: θ̂ ← optimize(D, Rs, λ)

12: if L(θ̂,D) ≥ L̄ then . θ̂ is feasible
13: λu ← λ
14: if VRs(θ̂) > V ∗ then
15: V ∗ ← VRs(θ̂), θ

∗ ← θ̂, L∗ ← L(θ̂,D)

16: else
17: λl ← λ
18: until search is done
19: return (θ∗, V ∗, L∗)

we know that there is always a feasible value of θ when λ
is large enough, because the second term in (2) dominates.
Here we assume a black box optimizer for (approximately)
solving P (λ), which we describe in the next section.

If we let J(λ) denote the optimal objective value of P (λ),
it is easy to show that for any fixed value of λ, J(λ) is an
upper bound to the optimal value of the primal problem (1).
Therefore, we can approximate the optimal value of the pri-
mal problem (and the θ at which the optimal occurs) by min-
imizing this upper bound. This minimization is captured by
the following optimization problem (the dual problem):

min J(λ) s.t. λ ≥ 0.

Because our Lagrangian dual problem optimizes over just
one variable, SHAIL can perform a line search over different
values of λ, using our black box optimizer for P (λ) and find
the value that minimizes J(λ). As is typical in LR, the min-
imizing λ is not guaranteed to result in a feasible θ for the
primal problem. Thus, during the line search SHAIL keeps
track of the best feasible solution uncovered with respect to
VRs and returns that solution.

Algorithm 1 gives pseudocode for SHAIL’s line search
component, where optimize(D, Rs, λ) denotes the black
box optimizer for P (λ). The line search starts with a small
value for λ and increases it until finding a multiplier value
λu that results in a feasible primal. Then a halving line
search is conducted over λ values, using λu as an upper
bound, to find the best minimizer of J(λ).

Optimization of P (λ). We now consider the procedure
optimize(D, Rs, λ), which optimizes VRs(θ)+λL(θ,D).
Since this objective is non-convex with respect to θ due to
the VRs term, we follow a gradient-based optimization ap-
proach with random restarts to combat local optima. The
best solution across restarts is returned as the final answer.
Specifically, we use stochastic gradient ascent (SGA), which

Algorithm 2 Optimizer for VRs(θ) + λL(θ,D)

1: procedure OPTIMIZE(D, Rs, λ)
2: Set learning rate α, discount factor γ
3: θ∗ ← θ0, J∗ ← −∞
4: for some # of random restarts do
5: θ ← θrand

6: for some # of iterations do
7: . run an episode in the MDP
8: Initialize eligibility trace z
9: Initialize MDP to a random state

10: for t = 1 to H do
11: s← getCurrentState()
12: a← takeAction(θ)
13: r ← Rs(s, a)
14: z ← γ ∗ z +∇(log(πθ(s, a)))
15: θ ← θ + α ∗ r ∗ z
16: . run SGA
17: for each (s, a) in D do
18: g ← ∇(L(θ, (s, a)))
19: θ ← θ + α ∗ λ ∗ g
20: if VRs(θ) + λL(θ,D) > J∗ then
21: J∗ ← VRs(θ) + λL(θ,D)
22: θ∗ ← θ
23: return θ∗

performs a sequence of many cheap gradient-based param-
eter updates, each based on an individual term of the ob-
jective. This process continues until a stopping condition is
met. In our case, the objective consists of the VRs(θ) term,
and the N = |D| components of the L(θ,D) term. Further,
VRs(θ) is an expectation over random outcome sequences,
and hence can be implicitly decomposed into one term per
possible outcome sequence. Each iteration of our algorithm
performs a gradient update for a randomly sampled compo-
nent of the VRs(θ) term (i.e. a trajectory in the MDP) fol-
lowed by updates for the individual components of L(θ,D).
We present this routine in algorithm 2.

For the VRs(θ) component, we run one episode of the
policy gradient RL algorithm OLPOMDP (Baxter, Bartlett,
and Weaver 2001) (lines 8-15). OLPOMDP is a well-known
stochastic optimization algorithm for RL. Next, we do SGA
updates for each component of the likelihood term L(θ,D),
for which the gradients can be computed in closed form.
This effectively loops over the entire set of state-action pairs
in the demonstration data, updating θ for each one (lines 17-
19). This entire process is repeated for some number of iter-
ations during which we keep track of the best policy found.

5 Experiments
We evaluate SHAIL in three domains: Car driving, Cart-
pole, and an IL formulation of handwriting recognition. In
each, the learner is given a shaping reward function that en-
codes simple knowledge about good behavior. In this paper,
all demonstrations are provided by simulated experts.

We compare SHAIL with the following baselines: 1) Ex-
pert, the (ground truth) entity we are trying to imitate, 2) IL,
traditional IL which learns using only the demonstrations via
Algorithm 2 without any shaping reward (effectively setting
λ = ∞), 3) RL, which learns only by maximizing the shap-
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Figure 1: Driving-Expert1: (a) Training accuracy (b) Test accuracy (c) Total expert reward.
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Figure 2: SHAIL results: (a) Driving-Expert2 (b) CartPole-Expert1 (c) CartPole-Expert2 (d) Handwriting.
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Figure 3: Driving-Expert2 with inconsistent shaping reward: (a) Training accuracy (b) Test accuracy (c) Total expert reward.

ing rewards via Algorithm 2 with λ = 0, which is identical
to running the OLPOMDP algorithm.

We measure the performance of each algorithm accord-
ing to three different criteria: 1) Training accuracy, which
measures the classification accuracy of the learned policy on
the training (demonstration) set. The purpose behind mea-
suring training accuracy is to evaluate the ability of the
learned policy to reproduce the specific demonstrations of
the teacher. In practice, this is important, since as noted in
prior work (Judah et al. 2010), users become quite frustrated
when the learning system is clearly contradicting the specific
examples shown to it. 2) Test accuracy, which measures the
generalization capability of the learned policy using a test
dataset drawn from independently generated teacher trajec-
tories. 3) Average total expert reward accumulated during
a test episode with respect to the “true expert reward func-
tion”. Here the true expert reward is the reward function that
the expert policy is intended to optimize, which is unknown
to the learners and always more complex than the shaping
reward used in our experiments. Evaluating learned policies
w.r.t. the expert reward is a common practice in IL, since it
gives another indication of how well the learned policies ac-
tually perform when executed in the environment, which the
test accuracy only indirectly measures. In all of our exper-
iments, we created each expert by maximizing a particular
reward function via RL (sometimes an expensive process),
so the expert reward was precisely known.

Each learner’s policy is represented via a log-linear policy
representation (a.k.a. linear logistic regression classifier) us-

ing features of state-action pairs where features correspond
to state variables (details are in (Judah 2014)). We report
results in the form of learning curves along with 95% confi-
dence intervals. To generate a learning curve, we incremen-
tally provide demonstration data to the learner and allow the
learner to learn from it. We then evaluate the performance
according to the above mentioned criteria. We repeat the ex-
periment 50 times. The final learning curve is the average of
the individual curves. We next describe our domains and the
experts followed by the experimental results.

Car Driving. The driving domain is a simple simulation
of multi-lane highway driving that has been commonly used
in IL (Abbeel and Ng 2004). We use a recent implementation
(Cohn, Durfee, and Singh 2011), where there are three traffic
lanes and two shoulder lanes. The learner controls the move-
ment of the car across lanes (including the shoulder lane) at
a constant speed. The other cars move at a randomly cho-
sen constant speed in fixed lanes. We allow each episode to
run for 200 time steps. We created two experts to learn from
in this domain. Driving-Expert1 was the result of training
a policy using SARSA(λ) with linear function approxima-
tion. At a high level, the reward function used for training
Driving-Expert1 is to exhibit generally good driving behav-
ior but to prefer the rightmost lane, not to tailgate, and to
follow other cars at a safe distance. Driving-Expert2 was
trained with a reward function that allows for a riskier driv-
ing behavior in that it prefers to tailgate small sized cars, but
avoids tailgating larger cars. The shaping reward used for
both experts gives penalties for driving in the shoulder lane
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and for collisions, which agrees with most target behaviors.
Cart-Pole. Cart-pole is a well-known RL benchmark in-

volving balancing a pole on a moving cart. We created two
different expert policies that can keep the pole balanced, but
do so with different preferences. CartPole-Expert1 is a tra-
ditional cart-pole agent that keeps the pole balanced while
keeping the cart position in the range [−1.0, 1.0]. The re-
ward function used to train this behavior gives +1 for each
step the pole is kept balanced and the cart is in range, and
−1 otherwise. CartPole-Expert2 has a preference to keep the
pole balanced in a goal location at −1.0 and so must move
from the initial location of 0.0 to −1.0, and remain close to
−1.0 while balancing the pole. The reward used to train the
expert gives +2 when in the goal location with a balanced
pole, +1 if the pole is balanced elsewhere, and−1 if the pole
is not balanced. The shaping reward used in the main exper-
iments only gives rewards related to pole balancing (+1 for
balanced and−1 otherwise), and not the position of the cart.

Handwriting Recognition. We applied SHAIL to hand-
writing recognition using the data set from Tasker et al.
(Taskar, Guestrin, and Koller 2004). In this task, we are
given handwritten words and asked to assign one of the 26
character labels to each letter of the word in the left-to-right
order. This problem can be viewed as IL (see for example
(Daumé III, Langford, and Marcu 2009)), where at each time
step (letter location), the learner has to execute the correct
action (i.e. predict correct label) given the current state. The
state consists of features describing the input (the current
letter) and the previous C predictions made by the learner
(the prediction context). In our experiments, we use C = 1.
The expert in this domain is derived from the labels in the
training set, giving the true characters. The dataset has 6600
words divided into 10 folds. We used the first fold to produce
demonstration data and the remaining folds as test data.

The shaping reward is based on the linguistic knowl-
edge of the lowercase-by-lowercase character bigram fre-
quencies in the English language, taken from the work of
Jones and Mewhort (Jones and Mewhort 2004). In partic-
ular, we exploit the fact that there are many character bi-
grams that are quite rare, and do not occur in commonly
used English words. The shaping reward function penal-
izes (reward=−100) policies that output rare bigrams, and
otherwise does not assign rewards for non-rare bigrams
(reward=0). We defined rare bigrams by thresholding based
on frequency.

Experimental Results. Figure 1 shows the results when
learning to imitate Driving-Expert1. SHAIL performs nearly
as well as the expert and IL in terms of training accuracy. At
the same time, in terms of test accuracy, it performs better
than IL, especially with little training data due to the shaping
reward. This shows that SHAIL achieves better generaliza-
tion to unseen states while staying competitive with IL on
the training data. RL performs worse than SHAIL and IL in
terms of training accuracy, since it does not consult the train-
ing data and relies on only the shaping reward. It achieves
some generalization and starts out better than IL in terms of
test accuracy since the shaping reward provides non-trivial
information about the expert policy. However, it remains in-
ferior to SHAIL, which finds a better trade-off between the

demonstration data and shaping reward. Furthermore, RL is
soon overtaken by IL as the training data grows and captures
the information in the shaping reward signal. SHAIL is also
superior in terms of the expert reward.

Figure 2(a),(b) and (c) shows the results when learning
to imitate other experts. Due to space constraints, we only
show performance in terms of total expert reward, noting
that similar trends were seen in the training and test accu-
racy results. As seen with Driving-Expert1, SHAIL again
remains an overall superior method throughout the learning
curve. Figure 2(d) shows the results for handwriting recog-
nition. RL performs very poorly since the linguistic knowl-
edge in the shaping reward does not allow it to learn how to
relate image features to characters. The Expert performance
is always 1.0 and not shown. We see that SHAIL performs
better than IL as the learning curve progresses. Somewhat
unexpectedly, SHAIL did not show an advantage over IL
early in the training. We believe that this is because initially
IL has not seen labels spanning all characters, and hence it is
unable to predict those characters in the output, which dom-
inates the error rate with or without shaping. However, once
the training data grows and begins to span all character la-
bels, IL starts predicting the rare bigrams more aggressively.
Our approach, in contrast, has learned not to predict the rare
bigrams based on the supplied linguistic knowledge, and this
results in improved character recognition rate.

So far the shaping rewards have been consistent with our
experts. Now we consider a partially inconsistent shaping
reward in the driving domain. Recall that Driving-Expert2
attempts to avoid collisions and driving in the shoulder lane,
but has a preference to tailgate small sized cars. We modi-
fied the shaping reward function in the driving domain to add
an additional penalty for any type of tailgating, where pre-
viously tailgating was not part of the shaping reward. This
type of partial inconsistency between shaping rewards and
the target policy should be expected in practice.

The results are shown in Figure 3. Even though SHAIL
has suffered a degradation in performance due to inconsis-
tent reward function, it continues to perform well relative to
both IL and RL. SHAIL remains comparable to IL in train-
ing accuracy, and outperforms it in test accuracy and total
expert reward. This shows that SHAIL can overcome incon-
sistent shaping rewards, and even leverage the consistent as-
pects of such shaping rewards to improve over pure IL.

6 Summary
There has been little work on incorporating shaping rewards
into IL, despite the fact that shaping rewards are often easy
to specify. A main contribution of this paper was to intro-
duce a constrained optimization formulation for integrating
shaping rewards into the IL framework. We described the
SHAIL algorithm for addressing this problem and showed
that it can effectively exploit shaping rewards in order to
improve the data efficiency of IL. Further, SHAIL was de-
signed to be robust to incorrect shaping rewards and was ex-
perimentally shown to perform as well as traditional IL, even
when the shaping reward conflicts with the training demon-
strations. We also presented a theoretical result that provides
first insight into when can IL benefit from shaping rewards.
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