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Abstract

Many real-world planning problems are oversubscription
problems where all goals are not simultaneously achievable
and the planner needs to find a feasible subset. We present
complexity results for the so-called partial satisfaction and
net benefit problems under various restrictions; this extends
previous work by van den Briel et al. Our results reveal strong
connections between these problems and with classical plan-
ning. We also present a method for efficiently compiling over-
subscription problems into the ordinary plan existence prob-
lem; this can be viewed as a continuation of earlier work by
Keyder & Geffner.

1 Introduction

Classical propositional planning is the problem of finding
a sequence of operators that achieves a set of goals from
a given initial state. An important feature of this prob-
lem is that a solution plan must achieve all goals simul-
taneously. Unfortunately, this is not possible in many real-
world problems. For instance, Smith (2004) notes that many
NASA planning problems have a large number of pos-
sible goals and the planning system has to find a feasi-
ble subset of the goals. This kind of planning is known
as oversubscription planning. Ordinary planning systems
cannot handle oversubscription planning and, in response
to this, several custom-made planners and heuristics have
been suggested, cf. (Benton, Do, and Kambhampati 2009;
Mirkis and Domshlak 2013; van den Briel et al. 2004).
Compared to classical planning, it is fair to say that the al-
gorithmics of oversubscription planning is not very well-
understood and the number of available planners is quite
limited. It is also fair to say that the computational complex-
ity of oversubscription planning is not very well-understood
either: besides the fact that oversubscription planning is
PSPACE-complete (van den Briel et al. 2004), very little is
known. The aim of this paper is two-fold:

1. to study the computational complexity of oversubscrip-
tion planning under various restrictions, and

2. to present a new way of compiling oversubscription plan-
ning into classical planning.
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We study two different problems: the partial satisfac-
tion problem (PSP) where the number of achieved goals
is to be maximized, and the net benefit problem (NBP)
where the total weight of the achieved goals minus the
cost of the plan is to be maximized. These problems are
analyzed in Sections 3 and 4, respectively, and the re-
sults are summarized in Section 5. Our complexity anal-
ysis considers two types of restrictions: syntactically re-
stricted pre- and postconditions (Bylander 1994) and the
P,U,B,S restrictions (Backstrom and Klein 1991). We con-
centrate on these restrictions since they (or slight varia-
tions of them) are quite popular when studying different as-
pects of planning complexity, cf. (Biackstrom et al. 2012;
Giménez and Jonsson 2012; Katz and Domshlak 2008).

A small number of cases are left open in both cases and
this reflects that we do not have a full understanding of the
complexity of the plan existence problem (PE) under nei-
ther Bylander’s nor the P,U,B,S restrictions. Despite this,
there are several observations to be made. One important
observation is that, in many cases, oversubscription plan-
ning is not substantially harder than classical planning. For
instance, if the PE problem for some set of instances X (un-
der mild additional assumptions) is NP-complete, then PSP
for X is NP-complete, too. Another observation is that (in
the cases where we can exactly pinpoint the complexity),
PSP and NBP have the same complexity. This is, of course,
not always the case and we give an example of instances
that strongly separates the two problems. However, our re-
sults indicate that PSP, NBP, and classical planning are more
closely related than one may initially suspect.

We demonstrate this close relationship in a different way
in Section 6. We present a polynomial-time reduction from
the decision version of NBP to PE such that the number of
variables of the resulting instance is slowly growing in the
size of the original instance or, put differently, the number of
nodes in the corresponding search space increases only mod-
erately. Such a reduction is interesting since algorithms for
PE can be used for solving NBP problems with limited slow-
down. One should additionally note that PE, cost-optimal
planning, and PSP can be trivially reduced to NBP. Thus,
these four problems are tightly connected, and algorithms
for PE, i.e. ordinary classical planners, may be a viable al-
ternative for performing both oversubscription planning and
cost-optimal planning. This result is inspired by Keyder &



Geffner (2009) who have presented a method for compiling
the optimization version of NBP into cost-optimal planning.

2 Planning Framework

We use the SAS™T planning framework (Bickstrom and
Nebel 1995) as our basic formalism. A SAS™ planning in-
stance is a tuple IT = (V, A, I, G) where V' = {v1,..., v, }
is the set of variables over a finite domain D. We add a value
u to D (where u stands for undefined) resulting in the set
D,. D" is the set of total states and D} is the set of par-
tial states. The value of a variable v in a state s € D7 is
denoted as s[v], and we let (s) = |[{v € V | s[v] # u}|.
I € D" is the initial state and G € D is the goal state.
A is the set of actions where every action a € A has a pre-
condition pre(a) € D’ and a postcondition post(a) € D}.
For two states s1, so, we write s1 C s if and only if for all
v € V, either s1[v] = wor s1[v] = sz[v]. An action a is
applicable in a state s € D" if and only if pre(a) C s. The
result of a in s, if a be applicable in s, is a state ¢ € D™ such
that for all v € V, t[v] = s[v] if post(a)[v] = u, otherwise
t[v] = post(a)[v]. We say action a affects variable v in state
s, if s[v] # t[v] where t is the result of a in s.

Given two states I € D" and G € D, a sequence of
actions w = (ay, ..., a,,) is called a plan from I to G if and
only if there exists a sequence of total states (s1, ..., Sm—1)
such that sy is the result of aq in I, s; is the result of a; in
si_1forall2 < i <m —1,and G C sg where s¢ is the
result of a,, in S;,,—1.

Let © be an arbitrary set of SAS™ instances. The SAS™
plan existence problem PE(O) has the following definition:

INSTANCE: A SAS™ instance I = (V, A, I,G) € ©.
QUESTION: Does II have a solution, i.e. a plan from I to G?

We will also consider the bounded cost plan existence
problem (BCPE(©)):

INSTANCE: A tuple II (V,A,I,G,c,K) where
(V,A,I,G) € O, cis a function assigning a non-negative
integer weight to each @ € A, and K is an integer.
QUESTION: Does II have a solution (aq, ..., a,) such that
n
>oieqcla;) < K?
For historical reasons (but also notational convenience),
we will sometimes use a different notation for re-

stricted SAS™ instances. Consider the following restrictions
(Bickstrom and Klein 1991) on instances (V, A, I, G):

P: (Post-unique) for every v € V and every d € D, there is
at most one a € A such that post(a)[v] = d.

U: (Unary) for every a € A, (post(a)) = 1.

B: (Binary) |D| = 2.

S: (Single-valued) for every v € V and every a,b
A, if pre(a)[v] # u, pre(b)[v] # u and post(a)[v]
post(b)[v] = u, then pre(a)[v] = pre(d)[v].

We write PE-R to denote the PE problem restricted to in-
stances satisfying the restrictions in R, i.e. PE-PU means
PE(O) where O contains all instances satisfying restrictions
P and U. We also study another type of restrictions (intro-
duced by Bylander (1994)) which is based on restricting the
sign and number of preconditions and postconditions of ac-
tions (the sign restriction is only discussed when we already
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have restriction B). For example, by SAS‘*-B% 4, We mean
PE for instances having |D| = 2 and allowing at most one
precondition and two positive postconditions per action.

When dealing with two-valued domains, we always as-
sume that D = {0, 1} and we use a simplified way of defin-
ing actions. We write T to denote that variable x has (or is
assigned) value 0. Then we may simply write =, § — z when
referring to the action having preconditions x = 1,y = 0
and postcondition z = 1. If an action has no precondi-
tions, then this is indicated with the symbol ). Finally, we
letY ={g|yeY}.

3 The Partial Satisfaction Problem

Let © denote a set of SAS™ instances. The partial satisfac-
tion problem PSP(O) has the following definition:
INSTANCE: A tuple (V, A, I,G, K) where (V, A, I,G) € ©
and K is a positive integer.

QUESTION: Is there a state G’ C G such that (G') > K and
(V, A, I,G") has a solution?

We define the PSP problem as a decision problem which
allow us to simplify the forthcoming proofs. Viewing it as
an optimization problem instead does not affect the com-
plexity substantially: a decision problem in P will have a
corresponding optimization problem in FP (the functional
analogue of P), an NP-complete decision problem will have
an optimization problem in FPNP (by using binary search),
and a PSPACE-complete decision problem will have an opti-
mization problem in FPSPACE. Furthermore, we use integer
values instead of rational values. Rational values can easily
be replaced by integers via multiplication with suitable fac-
tors, and this reformulation leads to an equivalent instance
whose size is only marginally larger. These observations also
apply to the NET BENEFIT problems that we will introduce
later on.

Note that PE(O) can be viewed as an instance of PSP(O)
(simply by setting K = (G)) and recall that PSP(©) is in
PSPACE (van den Briel et al. 2004)). We say that © is closed
under goal substitution if for arbitrary (V, A, I, G) € 0, all

instances (V, A, I, G') such that G’ € D‘Jrvl are members of
O. Clearly, the sets of instances satisfying the P,U,B,S and/or
Bylander’s restrictions are closed under goal substitution.

Lemma 1. Let © be a set of SAS™ instances that is closed
under goal substitution. If PE(©) € NP, then PSP(©) € NP.

Proof. Let TI' (V,A,I,G,K) be an arbitrary instance
of PspP(O). Nondeterministically guess a state G’ C G
such that (G') > K. We know that (V,;A,I,G’) is an
instance of PE(O), too. Hence, we can nondeterministi-
cally guess a polynomially bounded certificate X showing
that (V, A,I,G") is solvable. It follows that (X,G’) is a
polynomial-time verifiable certificate for IT'. O

Thus, there is a close connection between PE(O) and
PsP(©): if O is closed under goal substitution and PE(O) is
NP- or PSPACE-complete, then PSP(O) is NP- or PSPACE-
complete, respectively. We can now concentrate on instance
sets O such that PE(O) is solvable in polynomial time.

Theorem 1. Psp-BY, and Psp-B{ | are NP-hard.



Proof. We begin with Psp-BY,. The proof is by a
polynomial-time reduction from the NP-complete problem
VERTEX COVER, (Garey and Johnson 1979, GT1):
INSTANCE: Graph G = (V, F) and integer K < |V|.
QUESTION: Is there a vertex cover of size K or less for (7,
i.e., a subset V' C V with |V’'| < K such that for each edge
{u,v} € E atleast one of u and v belongs to V'?

Assume that we have an instance (V, E, K') of VERTEX
COVER where V = {v1,...,v,}, E = {e1,...,em} C
V2, and 0 < K < [V|. Define a Psp-BY, instance II =
(V,A,I,G,K’) as follows: V = {v1,...,v,} U {e§-|1 <
j<m,0<Ii<1},I=(0,...,0), K =2m+n— K,
and G[v;] = 0 for every 1 < ¢ < n. Furthermore, for every
0<l!<1landeveryl <j <msuchthate; = (u,w) € E,
let G[e] = 1 and let A contain the actions a’; : ) — €}, u

and b’ : § — e}, w.

Assume II has a solution w and, additionally, assume that
w achieves the highest possible number of goals. Let ¢ and s
be the number of v; and eé» variables that are equal to 1, re-
spectively, in the state s resulting from applying w to I. We

first show that sG[ez} = 1 for all 7, j and, consequently, that
s = 2m. Assume to the contrary that SG[eﬂ = 0 for some
l,j.1f sG[ejlfl] = 1, then we can set e,li to 1, too, by using
either the action a! or b’. Note that this can be done with-
out assigning the value 1 to any additional v; variables. This
new plan achieves a strictly higher number of goals which
contradicts the choice of w.

If sq[eY] = sglej] = 0, then we can set both of them

to 1 by using actions a? and a! . This gives us two new
satisfied goals and, possibly, one less v; variable satisfying
its goal. All in all, this new plan achieves a strictly higher
number of goals which once again contradicts the choice of
w. Hence, all €' variables can be assumed to have value 1
and s = 2m. Finally, note that n — ¢ is the number of v;
variables that are given the value 0 and, thus, contribute to
the number of satisfied goals. It follows that s + n — ¢ >
K =2m+n—t>2m+n—K <t < K. Consequently,
(V, E, K) has a solution.

If (V,E,K) has a solution V' C V, then let
A" = {ai,...,a,} contain the actions a € A satisfing
post(a)[v'] # ufor some v’ € V'. Letw = (aq, ..., a,) and
note that w is applicable in /. Furthermore, it will achieve at
least 2m + n — K goals.

The proof for PSP-BHr is virtually identical: the only ma-
jor difference is that we replace actions of the type aé-
0 — eé, u with the two actions ) — u and u — eé», and we

do an analogous replacement for bé» actions. O

Theorem 2. PSP-PUBS is NP-hard.

Proof. Proof by reduction from the NP-complete problem
INDEPENDENT SET, (Garey and Johnson 1979, GT20):
INSTANCE: Graph G = (V, E) and integer K < |V|.
QUESTION: Does G contain an independent set of size K or
more? i.e., a subset V’ C V such that |V’| > K and such
that no two vertices in V'’ are joined by an edge in F.
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Assume that (V, E, K) is an instance of INDEPENDENT
SET where V = {vy, ..., v, }. We define an instance of PSP-
PUBS, II = (V,A,I,G, K) as follows: V = {v1,...,v,},
A={a,...,a,}, I =1(0,...,0),G=(1,...,1), and for
every v; € V we define a; Uiy ,...,0; — v; Where
Vi, , ..., V;, are the neighbours of v;. It is straightforward to
verify that this instance is an instance of PSP-PUBS .

Let {v;,,...,v;,} € V be a solution to (V, £, K). We
immediately see that (a;,, . .., a;,) is a solution to II; merely
note that once a vertex v; has been selected (by inserting a;
into the plan), all of its neighbours are ‘blocked’ from fur-
ther consideration by the choice of preconditions. Similarly,
if IT has a solution (ay,,...,as,), then {v;,...,v; } is a
solutionto (V, E, K).

4 The Net Benefit Problem

Given a goal state G € D and a utility vector U € Ny
(where Ny denotes the set of non-negative integers), we let
ma,u(S) = Y AU | S[i] = Gli] # u}, ie. mgu(S)
denotes the total utility of a state .S given a goal state G and
the utilities of the components of G. Let © denote a set of
SAST instances. The net benefit problem NBP(O) has the
following definition:

INSTANCE: A tuple (V,A I,G,c,U,K) where
(V,A,I,G) € O, cis a function from A to Ng, U € Nj,
and K is a positive integer.
QUESTION: Is there a plan p
ing from [ and leading to a

me,u(S) = Yiz, elai) = K?

The value mg,p(S) — Z§=1 c(a;) is called the net benefit
of the plan p. Note that NBP always has a solution with net
benefit > 0: the empty plan. Psp(©) is trivially polynomial-
time reducible to NBP(O) by letting the action cost function
¢ always return 0 and choosing U = {1}". We next prove
that there is a connection between BCPE and NBP that is
analogous to the connection between PE and PSP established
in Lemma 1.

Lemma 2. Let © be a set of SAS™ instances that is closed
under goal substitution. If BCPE(©) € NP, then NBP(O) €
NP,

Proof. Let I = (V,A,I,G,c,U, K) be an arbitrary in-
stance of NBP(©). Nondeterministically guess

(1) two numbers v,y € Ny such thatv — v > K,

(2) a state S such that mg ¢ (S) > v, and

(3) a certificate X showing that there exists a plan w
(ar,...,ay) for (V,A,I,8) withy > >"" | c(a;).

X exists for some guess of S and can be verified in poly-
nomial time since BCPE(©) is in NP. Hence, (v,~, S, X)
exists if and only if IT has a solution, and the certificate
(v,7, S, X) can be verified in polynomial time. O

(al, RN ,at) start-
state S such that

We are now ready to prove the necessary complexity re-
sults for NBP. We begin with a tractability result.

Theorem 3. NBP! is in P,

Proof. Let 11 (V,A,I,G,c,U,K) be an arbitrary in-
stance of NBPY. Let A’ contain those actions that achieves



some component of the goal G, and if there are multiple ac-
tions for the same component, then pick one action with the
lowest cost according to function c. Finally, let {a1, ..., a,}
denote the actions a € A’ satisfying u — c(a) > 0 where u
is the utility of the goal achieved by a. Let S be the state re-
sulting from applying (a1, ...,a,) to I. Itis clear that IT has
a solution if and only if m¢ v (S) — > c(a;) > K. O

Next, we prove that certain NBP problems are members of
NP by showing that the corresponding BCPE problems are
in NP and using Lemma 2. The complexity of finding short-
est solutions for these problems is well-studied (Backstrom
and Nebel 1995; Bylander 1994) but we need results for ar-
bitrarily weighted actions. Given a solvable instance II =
(V,A,I,G, K) of BCPE, let S(II) contain the solutions to
IT with lowest possible cost and let S’(IT) contain the mem-
bers of S(II) having minimum length.

Theorem 4. NBP is in NP

Proof. We show that BCPE? is in NP and use Lemma 2. Let
ITI = (V,A,I,G,c, K) be an arbitrary solvable instance of
BcPE® and arbitrarily choose w € S’(IT). We claim that
every action in w occurs at most once and, consequently,
that |w| < |A| and BCPE® is NP since we can simply list
the actions in the plan. Assume to the contrary that there is
an action a that occurs in w more than once. Construct a
new plan w’ by deleting all occurrences of a except the last
one. Clearly, w’ is still a plan from I to G: the actions in A
have no preconditions so the removal of a will not affect the
applicability of other actions. If ¢(a) > 0, then the total cost
of w' is strictly lower than the total cost of w which leads to
a contradiction. If ¢(a) = 0, then w’ and w have the same
cost but |w’| < |w| which leads to a contradiction, too. [

Theorem 5. NBP-B is in NP.

Proof. We show that BCPE-B is in NP and use Lemma 2.
LetII = (V, A, I, G, ¢, K) be an arbitrary solvable instance
of BCPE-B, and arbitrarily choose w € S’(II). Each action
in w changes at least one variable from O to 1 and no action
changes it back. Hence, |w| < |V/| and we are done. O

Theorem 6. NBP-US and NBP-B are in NP.

Proof. We show that NBP-US is in NP; this immediately im-
plies that NBP-B;r is in NP, too. By Lemma 2, it is sufficient
to prove that BCPE-US is in NP. Let IT = (V, A, I, G, ¢, K)
be an arbitrary solvable instance of BCPE-US and arbitrar-
ily choose w = (ay,...,a;) € S'(II). We claim that every
action appears at most twice in w and that |w| < 2|A|. For
every v € V, letw, = (ay, ..., ax) denote the subsequence
of w containing those actions changing variable v, and let
Xy = (zo,21,%2,...,2;) be defined such that zp = I[v]
and pre(a;)[v] = x;-1, post(a;)[v] = z; for 1 < i < k.
Since II satisfies restriction S, we know that for everyv € V
and every a,b € A, if pre(a)[v] # u, pre(b)[v] # u and
post(a)[v] = post(b)[v] = wu, then pre(a)[v] = pre(b)[v].
Let y,, denote this unique ‘prevail” value for v if it exists and
let y, = u otherwise. Arbitrarily choose v € V and consider
the following three cases:
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None of the values in X, equals y,,. We claim that no ac-
tion appears more than one time in w,. Assume to the con-
trary that for some ¢ < j, the action a; is the same as action
a;. Then, the subsequence (a;, @1, ..,a;—1) produces v
values that are not needed in the precondition of any other
actions or the goal. Recall that these actions only affect vari-
able v (due to restriction U) so we can simply remove them
from w,. This results in a plan with either lower cost or
shorter length than w which leads to a contradiction.

At least two of the values in X, equal y,,. If 2; = 2; =
Yy, for some 7 < j, then we can delete actions
(@it1,..-,a5-1,a;) from w, — the reason behind this is
similar to the previous case. Hence, this cannot occur.

Exactly one value in X,, equals y,,. Assume that z;

Yy, and divide w, into w! = (ai,...,a;—1) and w?

(ait1,- - - ,ak). In each part, every action can appear at most
once since, otherwise, the actions between the two occur-
rences can be deleted (once again in a fashion similar to the
first and second cases) and this results in a cheaper and/or
shorter plan. This leads to a contradiction so every action
appears at most two times in w,.

By restriction U, every action appears in at most one of
the w, sequences which implies, by the three cases above,
that each action in A appears at most two times in w. O

S Summary of Complexity Results

We will now summarize the complexity results for PSP and
NBP. To do so, we need a few more hardness results.

Theorem 7. (Bdckstrom and Nebel 1995; Bylander 1994)
PE-B'*, PE-By, PE-B5", PE-UB, and PE-BS are PSPACE-
complete problems.

Bylander (1994) does not explicitly state that PE-B!*
is PSPACE-complete but it is a direct consequence of his
PSPACE-completeness proof for PE-B!. The complexity re-
sults for PSP and NBP under Bylander’s restrictions can be
found in Tables 1-4. The “*” symbol means that there is
no restriction on the number of pre- or postconditions while
‘> 2’ implies that the result holds for any fixed number > 2.
The tables also contain information about the PE problem
from (Backstrom and Nebel 1995; Bylander 1994): the sym-
bol ‘1’ indicates when we know for sure (under the assump-
tion P # NP) that the complexity of PE differs from the com-
plextiy of PSP and NBP. The difference is always the same,
namely, the PE problem is in P while the oversubscription
problem is NP-complete. One sees that the complexity of PE
and oversubscription planning only differs in a small num-
ber of ‘borderline’ cases.

The results can be inferred as follows: both PSP and NBP
problem are members of PSPACE (van den Briel et al. 2004).
PSPACE-hardness follows from Theorem 7 combined with
the fact that PE(©) polynomial-time reduces to PSP(©) and
NBP(O) for all ©. NP-hardness follows from the results in
Section 3 — recall that if PSP(T") is NP-hard, then NBP(T") is
NP-hard, too. The NP membership results is shown in Sec-
tion 4 — note that if NBP(O) is in NP, then Psp(O) is in NP,
too. Finally, the tractability results follow from Theorem 3.
Results for the P,U,B,S restrictions are collected in Figure 1.



Table 1: Results for PSP and NBP

post

1 >2 *
0 P NP-c. { NP-c. §
o 1 NP-h. NP-h. PSPACE-c.
& [ >2 NP-h. PSPACE-c. | PSPACE-c.
* PSPACE-c. | PSPACE-c. | PSPACE-c.

Unrestricted
PSPACE-C o
B
W s

_PUB  PBS/ UBS{
PUBSt
Figure 1: Results for P,U,B,S restrictions

These results and the results in Table 1 hold for arbitrary do-
mains D satisfying |D| > 2. Tables 2—4 contain results for
two-valued domains where we restrict ourselves to positive
pre- and/or postconditions. Once again, the complexity of
PsP and NBP coincide in all cases.

It may be slightly surprising that the PSP and NBP prob-
lems have the same complexity but this is inherent in the
restrictions we consider. Of course, this is not true for all in-
stance sets: Jonsson (1999, Sec. 4) shows that there is a set
© of planning instances that (1) always have a solution but
(2) finding the shortest solution is PSPACE-hard. (1) implies
that PSP(©) is trivially solvable in polynomial time while
(2) implies that NBP(©) is PSPACE-complete.

6 Compiling NBP into PE

We continue by presenting a method to compile NBP into
PE. The basic motivation behind this reduction is to pro-
vide a method for using ordinary planners for solving the
NBP problem. Our main concern is to make the reduction as
lean as possible, i.e. we want the reduction to increase the
size of the resulting instance as little as possible. The previ-
ously presented complexity results cannot be inferred from

Table 2: Results for + prec. / free postc.

post
1 > 2 *
0 P NP-c. | NP-c. |
% 1 NP-c. | NP-h. PSPACE-c.
+ | > 2 | NP-c. | PSPACE-c. | PSPACE-c.
* | NP-c. T | PSPACE-c. | PSPACE-c.
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Table 3: Results for free prec. / + postc.

+ post
1 > 2 *
0 P NP-c. T | NP-c. }
o 1 NP-c. NP-c. NP-c.
& [>2 [ NP. | NPc. | NP<.
* NP-c. NP-c. NP-c.

Table 4: Results for + prec. / + postc.

+ post
1 > 2 *
0 P NP-c. f | NP-c. {
% 1 NP-c. i | NP-c. NP-c.
i >2 | NP-c.7 | NP-c. NP-c.
* NP-c.f | NP-c. NP-c.

this reduction since it is not guaranteed to preserve any of
the properties except B.

The method is based on a certain kind of counter which
we introduce next. The counter is very important in the re-
duction since it is used for keeping track of the net bene-
fit during the course of the plan. Given an integer 0 < m,
we let (my,—1 ... mymg)2 denote m written in binary where
mqp—1 1s the most significant bit and my the least significant.
Given a sequence of binary variables X = (2,,—1,...,Z0),
we can easily use such a sequence to represent the number
m:let x; = 1if m; = 1 and z; = 0, otherwise. Define
(X =m) = {z; | miy = 1} U{&; | m; = 0}. For instance,
if X = (22,1, 20), the action (X = 3) — (X = 5) equals
To,T1,T9 — Ta,T1,xo. Given a state S over variable se-
quence X, we let [S] denote the number that X represents.

Let X = (2g—1,...,20) be a sequence of variables. If
0 <n < kand [X] < 2% — 2", then X is transformed into
a new state X’ such that [X’] = [X] + 2™ by exactly one
of the following & — n actions:

a; Ty — Tp
n _ _
ay Tni1, Ly —> Tpil,Tn
n . — _ _
Ap_p + Th—1,Tk—25-+-,Tn 7> Tk—1,Tk—2,...Tn

We use these actions to build a counter with arbitrary step
size and the ability to count both upwards and downwards.
Arbitrarily choose an integer 0 < 2 < 2F and a step
length 0 < s < 2F. Introduce ‘upward trigger’ variables
C ={c |0 < i < k}, ‘downward trigger’ variables
D ={d|0<i<k} and forevery 0 < i < k and
1 <1 < k — 4, introduce actions

inc} ¢, pre(al) — i, post(al)

dec; d',post(a;) — d¢, pre(a;)

Consider a planning instance (V, A, I, G) where V = X U
CUD, A contains the actions above, I specifies the values of
the X variables such that [/[X]] = z, the C variables equal
C' = s and the D variables equal 0. Finally, let G[v] = u for
v € XUD and G[v] = 0 for v € C. Itis not hard to see that



this instance has a solution and it reaches a state S where
[S[X]] = = + s. Similarly, if we want to lower X with s
steps, we use the downward trigger variables in D instead
of C. Note that if the X and D variables are representing
numbers x and d such that x < d, then the counter cannot
set all D variables to O: this way, underflows can be detected
and prevented.

We now use the counter for compiling NBP into PE. Given
an instance I = (V, A, I, G, c,U, K) of NBP, we construct
an instance of PE where we have a global counter (to keep
track of the net benefit) over variables X. Initially, X is

loaded with the value M = Z‘l‘jl Ui, i.e. the highest pos-
sible net benefit. This is done in order to avoid negative num-
bers. Each action in the plan decreases the counter with its
corresponding weight. If the value goes below 0O, then the
NBP instance has no solution. After having found a plan with
total cost v, we increase the counter with the total utility v
achieved by this plan. At this point, the counter has value
M — v+ v and we want to check whether this value is larger
or equal to M + K (in order to verify that v —y > K). This
is done by allowing ‘free’ decreasing of the counter until
reaching the goal value M + K.

Construction 1. Let 1T = (V, A, I,G,c,U, K) be an in-
stance of NBP such that A = {a,...,ap}. Construct a
SAST instance I = (V' A", I',G') as follows: let M =
Zl‘;‘l Uli] and m = [log M| + 1. We will use a counter
over variables X, C, D on m bits in the construction. De-
fine V' =V UXUCUDUBUE where B = {b;]1 <
i < [log|Al|] + 1} are variables used to prevent action in-
terference and E = {end,|G[g] # u} are variables used to
guarantee that after starting to count the utility of the goals,
no other action is applicable. Also, I'[v] = I[v] forv € V,
I'[z;] = p; for 1 < i < m where M = (D, ... p1)2, and
I'lv] = 0 otherwise. G'[z;] = gq; for 1 < i < m where
M+ K = (gm - .- q1)2, and G'[v] = u otherwise. We define
A’ as follows: for every a; € A, extend A’ with

a, : pre(a;),B,E — (B =1),(D = c(a;)) and

K2

al! : (B =1),D — B,post(a;).

3

For every v; € V such that Gv;] # u, extend A’ with
g. : B,end,,,C,(v; = G[v;]) = end,,, (C = Ulv])
Finally, add the following actions to A’:

freesubtract, post(al) — pre(al), 1 <1< m.

We note that the instance built in Construction 1 can eas-
ily be constructed in polynomial-time and that the size of
the instance increases slowly compared to the size of the
original NBP instance. Since |X| = |C| = |D| = m,
|B| = log |A| and |E| = |G/, the total number of variables
inIl'is |V'| = |V| + 3m + log | A| + |G|. Here, one should
recall that |[A| < (|D| + 1)IVI. (|D| + 1)V, implying that
log |A| < 2|V|log (|D| 4 1), and that m is the logarithm of
the sum of the utility vector U.

Theorem 8. Construction 1 is a reduction from NBP to PE.

Proof. Let II be an instance of NBP and let IT’ be the PE in-
stance obtained via Construction 1. Assume II has a solution

2226

w = (a1, ...,a,) and that it satisfies the goals for variables
v1,...,vs (for simplicity). It can be seen that

al, A, a’

s Wy B8y Wiy

195 Vs, A)

!
w

/ " / 1
(a1, A1,a7,a5, Ao ag, ...

/ /
917V17927v27 s

is a solution for II" where A; is a sequence of actions de-
creasing the counter initiated by a;, V; is a sequence of ac-
tions increasing the counter initiated by g;, and A is a se-
quence of freesubtract actions that decrease the counter by
net benefit of w minus K. Since w is a solution for IT with
net benefit at least K, w’ is applicable and the counter value
right before applying A actions is at least M + K. Note that
the minimum and maximum value of the counter are always
kept in the interval [0, 2] that the counter covers.

The other direction is similar and thus omitted. O

7 Discussion

In the first part of this paper, we presented complexity re-
sults for the PSP and NBP problems. Clearly, there are many
complexity issues in connection with oversubscription plan-
ning that are worth studying. One example is to consider
instances with restricted causal graphs. Classical planning
problems for such instances have been intensively stud-
ied (Brafman and Domshlak 2003; Chen and Giménez 2010;
Katz and Domshlak 2008). In particular, it is interest-
ing to see that the structure of the causal graph can be
exploited to identify tractable BCPE problems (Katz and
Domshlak 2008). This suggests that tractability results for
NBP may be obtained this way, too. Another relevant topic
is to study the parameterized complexity of oversubscrip-
tion planning. Lately, many parameterized complexity re-
sults for planning have appeared (Bickstrom et al. 2012;
de Haan, Roubickovd, and Szeider 2013; Kronegger, Pfan-
dler, and Pichler 2013)

In the second part of the paper, we presented a way of
compiling NBP into PE. Both compiling different planning
problems into each other (Keyder and Geftner 2009; Pala-
cios and Geffner 2009; Taig and Brafman 2013) and com-
piling planning into other problems (Cashmore, Fox, and
Giunchiglia 2012; van den Briel and Kambhampati 2005;
Kautz and Selman 1992) have been very active research ar-
eas for quite some time. It is both exciting and slightly sur-
prising to see that competetive planning algorithms result
from compilation: for instance, Keyder & Geffner (2009)
report encouraging results for benchmark oversubscription
problems from the 2008 IPC competition. Experimental
evaluation of our compilation method is an obvious direc-
tion for future research. In particular, using it to solve cost-
optimal planning with the aid of ordinary, non-optimizing
planners is an interesting possibility. One should also note
that the compilation method can be extended in different di-
rections: for instance, modifying it to handle negative utili-
ties is straightforward.
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