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Abstract

In this paper we investigate three different approaches
to encoding domain-dependent control knowledge for
Answer-Set Planning. Starting with a standard imple-
mentation of the action description language B, we add
control knowledge expressed in the GOLOG logic pro-
gramming language. A naive encoding, following the
original definitions of Levesque et al., is shown to scale
poorly. We examine two alternative codings based on
the transition semantics of ConGOLOG. We show that
a speed increase of multiple orders of magnitude can be
obtain by compiling the GOLOG program into a finite-
state machine representation.

Action programming languages have a long history of use as
a form of domain-dependent control knowledge in planning
(Thielscher 2008). They provide a means to prune the search
space of a planner by allowing the user to specify high-
level plan structure while leaving space for the planner to fill
in the specific details. Many different languages have been
proposed for this purpose, including temporal logic (Do-
herty and Kvarnstom 1999; Bacchus and Kabanza. 2000)
and hierarchical task networks (Nau et al. 1999). One of the
more enduring languages is GOLOG. Originally designed
by Levesque et al. (1997) for use with the situation calculus
(Reiter 2001), it has since been employed with other plan-
ning systems, including FF (Claßen et al. 2007) and Answer
Set Planning (Son et al. 2006).

In this paper we are interested in this latter problem: im-
plementing GOLOG as an answer set program (ASP) with
the action description language B (Gelfond and Lifschitz
1998). While Son et al. have already addressed this prob-
lem, we found that their implementation scaled poorly to
large programs. This is a common issue with answer set
programming: while the declarative semantics make spec-
ifying a problem simple, naive problem descriptions often
give rise to inefficient solutions. Often a different encoding
can change the solution time by orders of magnitude (Geb-
ser et al. 2013). Particular attention has to be paid to the
grounding process, whereby first order logic programs are
turned into propositional logic. We find that the direct en-
coding of the GOLOG definition often produces grounded
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ASPs that increase polynomially in size with the length of
the GOLOG program. A different encoding, based on the
finite-state machine semantics of ConGOLOG (Giacomo,
Lespérance, and Levesque 2000) can in many cases reduce
this to linear growth.

In what follows we first describe the basics of GOLOG
and Son et al.’s original ASP encoding, then two alternatives
based on ConGOLOG and finite state machines. We calcu-
late the size of the grounded ASP for basic program struc-
tures and then we empirically evaluate each approach on a
complex example program. We conclude that our two new
encodings are generally superior to the original, although the
best implementation is still problem dependent.

GOLOG and ConGOLOG

GOLOG was originally expressed in terms of the situation
calculus, but for greater generality we shall consider it sim-
ply in terms of a set of constraints on a plan expressed as
an interleaved sequence of states and actions. We define the
predicates holds(T,φ) to denote that some formula φ holds
at time T and does(T, a) to denote that the agent does ac-
tion a at time T . We assume that the standard planning con-
straints between states and actions hold. The details of these
constraints do not effect the definitions below.

A simple GOLOG program consists of six basic elements:
the empty program: nil

primitive actions: a, b ∈ A

tests: φ? for a formula φ describing a set of states
sequences: δ1; δ2 for programs δ1 and δ2

choices: δ1|δ2 for programs δ1 and δ2

repeat: δ∗ for program δ

The complete language description also includes choice over
variable instantiation and procedure calls. We have omitted
them here for reasons of space. They do not significantly
impact the results that follow.

The semantics of these operators are described by the
predicate do(T1, T2, P ) which designates that program P

is started at time T1 and is completed at time T2. We can
encode these semantics in ASP as shown in Figure 1.1.

1In their paper, Son et al. call this predicate trans rather than do
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do(T, T, nil) ← time(T ).

do(T, T + 1, action(A)) ← time(T ), program(action(A)), does(T,A).

do(T, T, test(F )) ← time(T ), program(test(F )), holds(T, F ).

do(T1, T2, seq(A,B)) ← time(T1), time(T2), program(seq(A,B)), T1 ≤ T ≤ T2, do(T1, T, A), do(T, T2, B).

do(T1, T2, choose(A,B)) ← time(T1), time(T2), program(choose(A,B)), do(T1, T2, A).

do(T1, T2, choose(A,B)) ← time(T1), time(T2), program(choose(A,B)), do(T1, T2, B).

do(T, T, repeat(A)) ← time(T ), program(repeat(A)).

do(T1, T2, repeat(A)) ← time(T1), time(T2), program(repeat(A)),

T1 < Tm ≤ T2, do(T1, Tm, A), do(Tm, T2, repeat(A)).

Figure 1: An encoding of GOLOG’s do predicate in ASP.

An important factor in this encoding is that ASP solvers
generally only work over finite domains. This means that
each variable needs to be ‘safe’, i.e. it must be grounded
over a finite domain. The recursive definition of the GOLOG
language above allows an unbounded grounding for the pro-
gram argument to the do predicate. To prevent this from
causing a problem, we introduce the program predicate,
which, given a starting program, enumerates all subparts of
the program (Figure 2). This provides a finite domain for
the program variable while also allowing all possible sub-
programs that might be encountered during execution.

One of the guidelines for writing more efficient ASP pro-
grams is to keep the number of ground rules and atoms low
(Gebser et al. 2013). The do predicate in this encoding is
defined in terms of two time points, T1 and T2. We should
expect therefore (as we verify later) that grounding program
will produce a number of rules quadratic in the number of
time points as ground rules can possibly be generated for
every pair (T1, T2). This is liable to increase both grounding
and solving time for these problems.

We would prefer an encoding which only takes a single
time argument. To this end, we look to ConGOLOG (Gia-
como, Lespérance, and Levesque 2000), an alternative en-
coding of the language designed to include concurrency.

but we prefer to keep the original naming to avoid confusion with
the definition of trans from ConGOLOG.

program(A) ← program(seq(A,B)).

program(B) ← program(seq(A,B)).

program(A) ← program(choose(A,B)).

program(B) ← program(choose(A,B)).

program(A) ← program(repeat(A)).

Figure 2: Generating all subprograms from a given program.

We won’t be addressing the concurrent aspects in this pa-
per, but we are interested in the alternative execution seman-
tics. In place of the do predicate ConGOLOG defines pred-
icates trans(T ,P1 ,P2 ) and final(T ,P). The trans pred-
icate states that program P1 can be executed for a single
time step at time T , leaving program P2 remaining to be
executed. P2 is termed the ‘continuation’ of P1. The final
predicate states that program P can be considered finished
at time T without further execution. We can encode this in
ASP as shown in Figure 3.2

Once again, we need some means to ground the pro-
gram variables in this encoding. The earlier definition of the
program predicate is insufficient, as the trans predicate cre-
ates new program fragments that do not appear as subpro-
grams of the original. Consider, for example, the program:

repeat(seq(a, b))

If we execute this for one time step by performing the action
a the continuation of this program is:

seq(b, repeat(seq(a, b)))

We need to include this continuation as a possible grounding
of any program variable. This can be achieved with the rule:

program(P �) ← program(P ), continue(P, P �).

and a definition for continue for similar to that of trans
in Figure 3 with the timestamp argument and references to
holds and does removed (we omit the details for the sake of
brevity).

With this definition of trans we can redefine do as:

do(T, T, P ) ← T = n,final(T, P ).

do(T1, T2, P ) ← time(T ), T2 = n, program(P ),

trans(T1, P, P
�), do(T1 + 1, T2, P

�).

2Note there is one slight variation between this and the stan-
dard ConGOLOG definition. In ConGOLOG the handling of the
test command φ? needs special attention because it is possible to
interleave tests and actions from different concurrent threads. As
we are not implementing concurrency in this paper, we can sim-
plify the definition.
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trans(T, action(A), nil) ← time(T ), program(action(A)), does(T,A).

trans(T, seq(A,B), seq(A�
, B)) ← time(T ), program(seq(A,B)), trans(T,A,A

�).

trans(T, seq(A,B), B�) ← time(T ), program(seq(A,B)), final(T,A), trans(T,B,B
�).

trans(T, choose(A,B), A�) ← time(T ), program(choose(A,B)), trans(T,A,A
�).

trans(T, choose(A,B), B�) ← time(T ), program(choose(A,B)), trans(T,B,B
�).

trans(T, repeat(A), seq(A�
, repeat(A))) ← time(T ), program(repeat(A)), trans(T,A,A

�).

final(T, nil) ← time(T ).

final(T, test(F )) ← time(T ), program(test(F )), holds(T, F ).

final(T, seq(A,B)) ← time(T ), program(seq(A,B)), final(T,A), final(T,B).

final(T, choose(A,B)) ← time(T ), program(choose(A,B)), final(T,A).

final(T, choose(A,B)) ← time(T ), program(choose(A,B)), final(T,B).

final(T, repeat(A)) ← time(T ), program(repeat(A)).

Figure 3: An encoding of ConGOLOG’s trans predicate in ASP.

While we have maintained the arity three predicate for clar-
ity, the second time argument is always bound to n, the max-
imum time step of our plan, so the grounding of this predi-
cate is now linear in the plan duration.

We need also consider the grounding of the trans and
final predicates. The trans could potentially blow-up if
a subprogram has a lot of possible continuations, but this
seems unlikely in practice. Relatively few programs are can
be completed without any action so the final predicate is
also unlikely to cause problems.

There is, however, another issue: the ground ASP will
contain a trans fact for almost every subprogram at every
time point, which can again cause quadratic growth in the
grounding. We can avoid this by eliminating any explicit ref-
erence to sub-programs altogether.

Compilation to a Finite State Machine

It is no surprise the GOLOG programs resemble regular ex-
pressions. GOLOG is effectively a grammar over action se-
quences (with the addition of test fluents to enforce state
properties). The grammar is regular3 and so can be com-
piled into a finite state machine (FSM) (Thompson 1968).
The states of the machine are the program and its continua-
tions. Each edge is labelled with an action to be performed
and a set of fluents that must be true to make the transition.
The ASP encoding of Figure 3 implicitly represents this ma-
chine, but we can encode it explicitly as state and goal pred-
icates.

The full algorithm is too long to include here, but we il-
lustrate the concept with an example. Consider the program:

(φ? ; a ; (b | c))∗ ; ¬φ? ; d ;ψ?

3Unless we allow recursive procedure calls, in which case it is
context-free.

Let this be s0, the initial state of our machine. There are two
possible transitions from here. If φ is true, the agent may
execute action a, with continuation:

(b | c) ; (φ? ; a ; (b | c))∗ ; ¬φ? ; d ;ψ?

Let this be state s1.
Otherwise, if ¬φ is true, the agent may execute action d

and be left with the program:

ψ?

Let this be state s2.
There are two transitions from state s1, executing either

b or c, both of which lead back to s0. Finally s2 is the only
finishing state, under condition that ψ is true. This yields the
augmented state machine shown in Figure 4(a).4

Having performed this compilation, we can encode the
resulting state machine in ASP with individual rules de-
scribing each transition, as in Figure 4(b). The advantage
of this representation is that we have eliminated all refer-
ence to subprograms, so we should expect a much smaller
ground ASP. Furthermore we have eliminated the need to
refer to programs as deeply nested functors, replacing them
with numbered states. This fact alone provides a major boost
in efficiency.

Grounded program sizes

We shall look at the size of the grounded ASP for each of
the above approaches on the following GOLOG programs:
• The sequence: a1 ; a2 ; . . . ; an

• The choice: a1 | a2 | . . . | ak
4Note that the machine is potentially non-deterministic if a pro-

gram such as (a ; b) | (a ; c) includes multiple transitions with the
same state and action requirements but different continuations.
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s0 s1

s2

Start

Finish

ɸ? a

b

c

¬ɸ? d

ψ?

(a)

state(0, 0).

state(T + 1, 1) ← time(T ), state(T, 0),

holds(T,φ), does(T, a).

state(T + 1, 2) ← time(T ), state(T, 0),

holds(T,¬φ), does(T, d).
state(T + 1, 0) ← time(T ), state(T, 1), does(T, b).

state(T + 1, 0) ← time(T ), state(T, 1), does(T, c).

goal(T ) ← time(T ), state(T, 2), holds(T,ψ).

(b)

Figure 4: (a) The augmented state machine for the GOLOG program (φ? ; a ; (b | c))∗ ; ¬φ? ; d ;ψ? and (b) its ASP encoding.

• The nested repetition: (. . . ((a∗)∗)∗ . . .)∗

We used the gringo grounder from the Potassco ASP toolkit
(Gebser et al. 2011) to ground the programs. The results are
summarised in Table 1. We consider each in detail below,

Sequence: a1 ; a2 ; . . . ; an
GOLOG: Since we encode sequences using recursive bi-
nary functors there are O(n) subprograms for a sequence
of length n. For each subsequence of length l there will be
n − l + 1 ground instances of the do/3 rule, giving O(n2)
in total.
ConGOLOG: If we define the sequence operator as right-
associative (i.e. a ; b ; c ≡ a ; (b ; c)) then the subprograms
and the continuations of the sequence are identical. Other-
wise there may be up to twice as many program/1 atoms
as in GOLOG. In either case, the number is still O(n).

There also are O(n) ground instances of the do/3 rule,
one at each time point, but there are now O(n2) instances
of trans/3 as there is an instance of trans for every subse-
quence at every time point.
FSM: There are O(n) states in the state machine and each is
connected by a single edge to the next. Notably, the grounder
is able to recognise that there is a single reachable state for
each time point, so there are only O(n) ground instances of
state/3.

Choice: a1 | a2 | . . . | ak
GOLOG: As with the sequence above, a choice of k ar-
guments yields O(k) program/3 facts due to the use of a
binary choose functor. As the program executes in a single
time step there are only O(k) instances of the do/3 predi-
cate, one for each action.
ConGOLOG: Continuations do not add any extra programs
in this case, so the ground instances of program/3 are the
same as for GOLOG. There is only one ground instance of
the do/3 rule and O(k) instances of trans one for each sub-
program.
FSM: There are two states joined by k edges. This results in
O(k) ground instances of state/3.

Nested repetition: (. . . ((a∗)∗)∗ . . .)∗

GOLOG: There are O(d) instances of program/3 one for
each level of nesting. The size of the do/3 rule grows quite
quickly. Every subprogram is possible between every pair
of time points. What is more, the midpoint time Tm can be
ground to any value between T1 and T2 resulting in O(n3d)
grounded rules.
ConGOLOG: Let us write a∗(i) to indicate nested repeats
of depth i. Each subprogram a∗(i) has continuation:

a
∗ ; a∗∗ ; · · · ; a∗(i)

Each of these programs is its own continuation, so there
are O(d) ground instances of the program/3 predicate. For
each program of the form a∗(i) there is a single ground
trans rule at each time step; for each program of the form
a∗ ; a∗∗ ; · · · ; a∗(i) there are two (one for each case of
the sequence rule). This yields a total of O(nd) ground in-
stances. Similarly there is an instance of the do/3 rule for
each program at each time point, O(nd) in all.
FSM: The nested repeats are lost in the compilation process,
leaving two states joined by a single edge. This results in
O(n) ground instances of state/3.

From this analysis we would expect to some small im-
provements in performance in the ConGOLOG encoding
over the GOLOG encoding and more significant improve-
ments when the finite state machine implementation is used.

Testing

We implemented a compiler which output these three ASP
encodings for a given GOLOG program, along with an im-
plementation of the action description language B. These
programs were passed to a grounder and then an ASP solver.
We use the Potassco tools gringo and clasp for this purpose5.
To evaluate the encodings we ran different size instances of
the program:
�
a
��((a|b); a)

�� ((a|b)2; a)
�� . . .

�� ((a|b)k−1; a)
�∗

; (a|b)k

5Experiments were run with gringo 3.0.5 and clasp 2.1.5. Avail-
able at http://potassco.sourceforge.net/
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Program Length Actions Approach Atoms Rules

a1 ; a2 ; . . . ; an n n

GOLOG program/1 : O(n) do/3 : O(n2)
ConGOLOG program/1 : O(n) do/3 : O(n)

trans/3 : O(n2)
final/2 : O(1)

FSM state/3 : O(n)

a1 | a2 | . . . | ak 1 k

GOLOG program/1 : O(k) do/3 : O(k)
ConGOLOG program/1 : O(k) do/3 : O(1)

trans/3 : O(k)
final/2 : O(1)

FSM state/3 : O(k)

(. . . ((a∗)∗)∗ . . .)∗� �� �
depth d

n 1
GOLOG program/1 : O(d) do/3 : O(n3d)
ConGOLOG program/1 : O(d) do/3 : O(nd)

trans/3 : O(nd)
final/2 : O(nd)

FSM state/3 : O(n)

Table 1: The size of the ground ASP for various programs and approaches.

where δk is a shorthand for a sequence of k instances of δ.
This particular program was chosen as it shows exponential
blow-up when converted to a deterministic finite automa-
ton (Jirásek, Jirásková, and Szabari 2007). We wish to see
how this growth affected each of our encodings. The action
model contained only the actions a and b necessary for this
program. Their preconditions were always true and they had
no effects. This test is designed to focus on the variation
in run-time caused by the GOLOG implementation, so the
planning domain itself is deliberately simple.

We ran instances of this problem with size k varying from
5 to 100, measuring compilation, grounding and solving
times6. In each case the maximum plan length was 100 time
steps. Each instance was run 100 times and average times
are reported. Runs that took more than 100s were aborted.

The total run time, including compilation, grounding and
solving, for each approach is plotted in Figure 5(a). The dif-
ference in performance is striking. The ConGOLOG encod-
ing is almost an order of magnitude faster than the GOLOG
encoding and the finite state machine encoding is another
order of magnitude faster still.

The size of the ground programs, as shown in Figure 5(b),
also reflect this. The GOLOG program has a large number
of ground rules and grows almost linearly. The ConGOLOG
program has slower initial growth but increases quadrati-
cally in both rules and atoms. The finite state machine pro-
gram is much smaller and grows much more slowly, at an
apparently linear rate. It is interesting to note that while the
ConGOLOG ground program ultimately grows larger than
the GOLOG program, the total run time is still significantly
shorter. The reason for this is not apparent.

It is informative to visualise the breakdown on this time
into compilation, grounding and solving, as shown in Fig-
ure 6. For both GOLOG and ConGOLOG compilation is
simply writing the program to a file and takes little time. For
the finite state machine it is much more significant, taking

6Measurements were taken on a 3.20GHz Intel XeonTM.

an increasing proportion of the total time as the problem size
increases. Grounding dominates for ConGOLOG and larger
GOLOG problems. Our investigation seems to indicate that
a lot of this time is due to the handling of deeply nested
functors in program expressions. Possibly a more efficient
method of handling such expressions could make these ap-
proaches more viable.

Space does not permit the presentation of further results
but we have run similar tests with a variety of ‘toy’ problems
of this nature and seen similar patterns of results – the finite
state machine representation is always much faster than the
other approaches. We hope to soon be able to test on more
realistic problems but that will require the implementation
of additional language features, concurrency being the most
notable.

Conclusion

Efficient answer-set programming is still a difficult art. We
have demonstrated three different encodings of the GOLOG
action language, two based on the logical definitions of
GOLOG and ConGOLOG and one based on a compiled
finite-state machine representation. Our aim was to improve
the run time of the resulting ASP by reducing the overall size
of the ground program. Our results show that we succeeded
in this aim. By compiling the GOLOG program to a finite
state machine we have produced an encoding that runs ap-
proximately two orders of magnitude faster than the original
encoding.

In future work we plan to expand these encodings to in-
clude the concurrent action semantics of the ConGOLOG
language.
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