
Delivering Guaranteed Display Ads under
Reach and Frequency Requirements

Ali Hojjat∗ and John Turner
Paul Merage School of Business
University of California Irvine

hojjats@uci.edu, john.turner@uci.edu

Suleyman Cetintas and Jian Yang
Advertising Sciences Group
Yahoo Labs, Sunnyvale, CA

cetintas@yahoo-inc.com, jianyang@yahoo-inc.com

Abstract

We propose a novel idea in the allocation and serving of on-
line advertising. We show that by using predetermined fixed-
length streams of ads (which we call patterns) to serve ad-
vertising, we can incorporate a variety of interesting features
into the ad allocation optimization problem. In particular, our
formulation optimizes for representativeness as well as user-
level diversity and pacing of ads, under reach and frequency
requirements. We show how the problem can be solved ef-
ficiently using a column generation scheme in which only a
small set of best patterns are kept in the optimization prob-
lem. Our numerical tests suggest that with parallelization of
the pattern generation process, the algorithm has a promising
run time and memory usage.

Introduction
Efficient serving of advertising is a key problem and a dom-
inant source of revenue for online publishers. A large pub-
lisher may have hundreds of millions of page visits every
day, and tens of thousands of concurrent advertising cam-
paigns to manage. A guaranteed contract typically demands
a certain number of ad impressions to be shown in certain
slots on specific pages of the publisher’s website. A targeted
campaign further requires the ad to be shown only to users
of certain demographic groups (e.g. age, gender, income
level, location) and/or behavioral attributes (e.g. shopping).
User arrivals, in aggregate, follow certain patterns which en-
ables the publisher to forecast the supply of impressions and
sell guaranteed advertising campaigns well in advance. Over
short time intervals, however, the arrival of each user type is
a lot less predictable. Even a few percent improvement in
drawing the “correct” ad for each slot on the web page that
each user sees can improve publisher revenues by tens of
millions of dollars, increase advertising efficiency and return
on investment for advertisers, and enhance user experience.

In this paper, we propose and examine a new idea for
serving targeted display ads in the guaranteed display mar-
ketplace, namely serving with patterns. Upon the first visit
over the serving period, we assign each user a predetermined
fixed-length stream of ads, called a pattern, which is drawn
from an existing pool of patterns according to the solution of
∗Work completed while interning at Yahoo Labs.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

our optimization problem. Then, in later visits, the user will
be shown the exact sequence of ads in the assigned pattern.
Further visits beyond the pattern length are treated as sur-
plus ad inventory and served in a secondary sales channel
(e.g. ad auctions in the non-guaranteed marketplace) until
the next serving period. We show that the resulting formula-
tion, although seemingly intractable, can be solved rather ef-
ficiently using a column generation approach. Furthermore,
our formulation is capable of explicitly modeling all or any
of the following concerns related to serving guaranteed dis-
play ads:

• Representativeness: The publisher should not try to de-
liver an entire contract to a small (potentially easy to
serve) subgroup of targeted users. To capture a notion
of fair allocation in the model, it is often assumed that
the advertiser would like to be matched with a somewhat
equal mix of targeted demographics. See (Ghosh et al.
2009) for a more elaborate discussion.

• Reach and Frequency: Advertisers can specify the
number of unique individuals who should see their ad
over the campaign period (reach), and also the mini-
mum/maximum number of times each user should see
their ad over the campaign period (frequency). This gener-
alizes the commonly-practiced, and more widely-studied,
idea of impression-based contracts that simply require a
certain number of ad impressions to be shown to a tar-
geted audience. To the best of our knowledge, our model
is the first to consider optimal scheduling of online adver-
tising under explicit reach and frequency specifications.
This added flexibility, we expect, will greatly enhance the
efficiency and ROI of the advertiser’s campaign.

• User-level Pacing: The advertiser or the publisher may
like to maintain a desired spacing of each ad over time
(e.g. uniform delivery over time) which will determine
how quickly each user is re-exposed to the ad over the
campaign duration. To the best of our knowledge, ex-
isting research that explicitly considers uniform delivery
of campaigns at the time of optimizing ad allocation fo-
cuses on the cumulative impressions received by each
campaign in aggregate and not at the user-level (Araman
and Fridgeirsdottir 2010). In practice, uniform delivery
is considered as an implied requirement and treated with

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2278

run-time frequency capping1 heuristics. Our model is ca-
pable of explicitly measuring the spacing of ads over time
at the optimization stage and generating patterns with the
desired pacing at the user level.

• User-level Diversification: The publisher would like
each user to see a variety of (relevant) ads from differ-
ent advertisers. So, unless requested by an advertiser, the
publisher prefers to avoid showing the same ad too many
times to the same user. Again, the diversity of ads within
a pattern can be explicitly modeled when patterns are be-
ing generated. Moreover, we have the ability to restrict
the number of competing campaigns in a pattern (e.g. re-
quire that a pattern cannot contain both Coke and Pepsi
ads). This is a common practice in arranging TV com-
mercials within each break (Bollapragada, Bussieck, and
Mallik 2004).

We begin with a brief overview of the underlying mathemat-
ical problem and relevant notation. We then describe how
patterns can be used to serve ads, provide details of our col-
umn generation algorithm, and show our numerical results.

Problem Statement
The structure of a typical ad allocation problem can be rep-
resented with a bipartite graph, as shown in Figure 1. Each
partition of user impressions (e.g. based on website, posi-
tion of ad on the webpage, user demographics and behav-
ioral attributes) is modeled as a supply node, indexed by
i ∈ {1, . . . ,M} on the left, and each ad campaign (adver-
tising contract) is modeled as a demand node, indexed by
j ∈ {1, . . . , N} on the right. The arcs show the targeting
criteria of the campaigns, i.e., which impressions are eligi-
ble to be served with ads from which campaigns. We use
Γ(j) to denote the set of all impressions i eligible for con-
tract j, and Γ(i) to denote the set of all eligible contracts j
that can be delivered to an impression of type i. Each supply
node i represents si impressions, or ŝi unique users, over the
planning horizon (Note that ŝi ≤ si since each user may ar-
rive multiple times). Similarly, each campaign may demand
a total of dj impressions across all eligible supply, or a reach
of rj unique users, with each user being required to see the
ad at least qmin

j and at most qmax
j times to be counted as

reached. The problem is then to find the optimal fraction
of impressions i that should be allocated to each contract
j, denoted xij , so as to minimize under-delivery, maximize
representativeness, and achieve the desired user-level pacing
and diversity of ads.

Modeling the ad allocation problem as a bipartite graph
is not new. Langheinrich et al. (1999) is among the first
and they use a linear objective to maximize the total click-
through rate. More recently, Turner (2012) uses a quadratic
objective to spread impressions across viewer types and thus
minimize the variance of the number of impressions served.

1Frequency capping simply restricts number of views of each
ad per visitor within a specific period of time (e.g. 1hr, or 24hrs) so
the user is not overexposed to an ad. Browser cookies are typically
used to keep track of impression counts. Many online publishers
allow campaign managers to control the frequency cap.

Supply of

Impressions

Campaign

Demands

s1
d1

.

si

.

sM

dj

dN

Figure 1: Example Bipartite Graph

Bharadwaj et al. (2012) consider the following impression-
based formulation that minimizes a weighted average of
non-representativeness (as an L2-norm penalty) as well as
under-delivery:

Minimize:
1

2

∑
j,i∈Γ(j)

siVj

θj
(xij − θj)2 +

∑
j

pjuj (1a)

s.t.
∑

i∈Γ(j)

sixij + uj ≥ dj ∀j (1b)

∑
j∈Γ(i)

xij ≤ 1 ∀i (1c)

xij , uj ≥ 0 ∀i, j (1d)

Demand constraint (1b) requires the total number of impres-
sions allocated to each contract j to exceed its demand dj ,
or otherwise we have an under-delivery of uj impressions.
Supply constraint (1c) implies that we cannot allocate more
than 100% of supply from each node i. Each contract has
an under-delivery penalty pj per impression, and a relative
importance weight Vj . Parameter θj =dj

/(∑
i∈Γ(j) si

)
de-

notes the ratio between the contract’s demand and its total el-
igible supply. By definition, in a perfectly representative al-
location, each contract should grab exactly a θj–proportion
of each eligible supply pool, and therefore the deviation
from θj is (quadratically) penalized in (1a). Using duality
theory, (Bharadwaj et al. 2012) develop an efficient iterative
algorithm, referred to as SHALE, for solving a problem with
the above structure. Similar formulations of the problem and
further discussion can be found in (Nakamura and Abe 2005;
Yang et al. 2010).

In the following section we demonstrate how the above
formulation can be modified to incorporate a variety of in-
teresting features, when we serve ads using patterns. Note
our main idea (of using patterns) can be incorporated into
any math program with similar steps described below.

Serving ads using Patterns
We define a serving pattern as a finite permutation of ads. A
particular campaign may show up multiple times at differ-
ent points in the serving pattern, and the pattern should not
necessarily contain all campaigns. A few examples of pat-
terns composed of three campaigns {A,B,C} are shown in
Figure 2. The first pattern has 6 slots, and an equal number
of each ad are spread uniformly throughout the pattern. The
next patterns have a length of 8, with campaign C appearing

2279

 A B C A B C

 A C B C A C B C

 A B B A C C C C

Figure 2: Example of patterns with 3 campaigns {A,B,C}

twice as often as campaigns A or B. The second pattern il-
lustrates uniform pacing (assuming arrivals are also uniform
over time), whereas the third pattern delivers campaigns B
and C repeatedly to strengthen user recall.

Upon the first arrival in the serving period, each individ-
ual user is assigned a particular serving pattern, and upon
his/her kth arrival will be shown the ad in the kth slot of the
assigned pattern. The goal is then to find a handful of well-
paced patterns and a representative user assignment such
that reach and frequency requirements are met.

Let N denote the entire set of possible patterns of differ-
ent lengths and structure. For each pattern n ∈ N , we know
the exact number of times each contract j appears in the pat-
tern (i.e. its frequency), denoted ajn, and we can easily tell
if ajn is within the desired frequency range

(
qmin
j , qmax

j

)
,

which we denote using the binary indicator bjn. The qual-
ity of the pacing and diversity of ads within a pattern is
captured by the cost parameter πn whose precise definition
will become clear when we describe our pattern generation
problem. Let vin denote the number of times pattern n is as-
signed to users from supply node i. Therefore,

∑
n ajnvin

gives the total impressions of j shown to supply pool i, and∑
n bjnvin is the number of unique users in i who have

seen j within the desired frequency range. Realizing that
xij = 1

si

∑
n ajnvin, we can formulate our ad allocation

problem in similar form to (1) as:

Minimize:
1

2

∑
j,i∈Γ(j)

siVj

θj

(∑
n ajnvin

si
− θj

)2

+
∑
j

pjuj +
∑
i,n

πnvin (2a)

s.t.
∑

n,i∈Γ(j)

bjnvin + uj ≥ rj ∀j (2b)

∑
n

vin ≤ ŝi ∀i (2c)

vin, uj ≥ 0 ∀i, j, n (2d)

Notice that we use the cost parameter πn to explicitly pe-
nalize non-smooth and/or non-diverse delivery at the user
level in the objective function. The demand constraint (1b),
or equivalently

∑
n,i∈Γ(j) ajnvin + uj ≥ dj , is replaced

with the reach and frequency constraint (2b) which requires
the contract to be served with at least rj unique users see-
ing the ad within the correct frequency range. The shortfall
uj is penalized in the objective. Note that under-delivery
uj is now measured in terms of reach (and not impres-
sions). The supply constraint (2c) ensures that the total num-

ber of patterns assigned to pool i cannot exceed the num-
ber of unique users in i (since each user is assigned a sin-
gle pattern). Here, representativeness is still measured in
terms of impressions, but one could easily express it in
terms of reach as

∑
j,i∈Γ(j)

ŝiVj

θ̂j

(∑
n bjnvin
ŝi

− θ̂j
)2

, where

θ̂j = rj
/(∑

i∈Γ(j) ŝi
)

is the ratio between the desired reach
of contract j and the available number of unique users across
all targeted users.

A key assumption in the above model is that each user,
over the serving period, will generate at least as many im-
pressions as there are in the serving pattern assigned to
him/her. Only then is it guaranteed that the user will see
each ad j the ajn number of times (where s/he is counted
as reached if bjn = 1) as we planned when we solved (2).
To this end, we assume that users can be further classified
according to their browsing behavior. All users of the same
visit type, w ∈ W , share a common probability distribu-
tion, φw(k), that gives the probability of such a user gen-
erating exactly k impressions over the serving period. We
can then say that each user of type w will make at least
Lw(ρ) = Φ−1

w (1 − ρ) visits with probability ρ. With a
reasonably high ρ, we can use the resulting Lw(ρ) (from
now on referred to in short as Lw) as the appropriate pattern
length for a user of type w. To reflect this in our model, each
supply node needs to be partitioned further based on the user
visit types w, and we also need to maintain a separate pool
of patterns, Nw, in order to ensure that each user of type w
is assigned a pattern of appropriate length Lw. The updated
formulation is provided in the following section when we
formlize our master problem. We should also point out that
further impressions that the user generates beyond Lw are
assumed to be served in a secondary market (e.g. ad auc-
tions in the non-guaranteed marketplace) and are therefore
ignored in our formulation.

Column Generation

Indeed, generating all possible patterns, storing them in
memory, and solving an optimization problem that requires
as input the entire possible pattern set N is unmanageable.
However, this issue can be handled rather efficiently using a
column generation scheme2. The idea is to start with a small
pool of patterns, solve an assignment problem of type (2),
and then use the optimal primal/dual solution to generate
new patterns that can improve the current solution. We will
then add these improving patterns to the pool and solve the
assignment problem again, and repeat the procedure until no
improving pattern can be found (i.e., full convergence to the
optimal solution), or the improvement in the objective func-
tion seems negligible. In the following, we describe the two
core steps of the column generation algorithm.

2For the theory of column generation, the reader may refer to
(Desaulniers, Desrosiers, and Solomon 2005). Other applications
of column generation in the allocation of online advertising can be
found in (Abrams et al. 2008; Walsh et al. 2010).

2280

Pattern Assignment
For any given set of pattern pools {Nw : w ∈ W}, the opti-
mal assignment of patterns to users is given by the following
quadratic program, which we refer to as the Master Problem:

Ψ := Min
1

2

∑
j,w,
i∈Γ(j)

swiVj

θj

(
1

swi

∑
n∈Nw

ajnvwin − θj

)2

+
∑
j

pjuj +
∑

w,i,
n∈Nw

πnvwin (3a)

s.t.
∑

w,i∈Γ(j),
n∈Nw

bjnvwin + uj ≥ rj ∀j (3b)

∑
n∈Nw

vwin ≤ ŝwi ∀w, i (3c)

vwin, uj ≥ 0 ∀j, w, i, n ∈ Nw (3d)

Here, swi and ŝwi are, respectively, the total number of im-
pressions and unique users of visit type w in supply node i,
and vwin is the number of such users that should be served
with pattern n (of appropriate length Lw selected fromNw).
Once the above is solved, we can use v∗win/ŝwi as the prob-
ability that pattern n ∈ Nw should be assigned to a user of
type (w, i) upon his/her first visit.

Note that by maintaining separate pattern pools based on
length, {Nw : w ∈ W}, we ensure that a pattern of the cor-
rect length Lw is assigned to a user of visit typew. However,
the set of contracts appearing in each pattern may not be
entirely eligible for all impression types i, since in general,
Γ(i) 6= Γ(i′) if i 6= i′. At the time of serving we should draw
patterns of not only the correct length, but also containing
only (some subset of) the eligible contracts j ∈ Γ(i) for the
arriving impression (w, i). This may suggest that we need to
maintain a separate pattern pool for each (w, i); but in fact,
this is unnecessary. The terms

∑
ajnvwin and

∑
bjnvwin

in the objective function (3a) and demand constraint (3b)
are only evaluated for neighboring (i, j) pairs. Therefore,
ineligible contracts j 66∈ Γ(i) in a pattern are counted as lost
impressions if the pattern is assigned to a user of type (w, i).
Therefore, with a scarce supply of unique users and guaran-
teed impressions, we expect the math program to naturally
avoid such assignments and always find (or generate, in the
following iteration) a “fully eligible” pattern to replace any
“partially eligible” pattern. In the end, we expect v∗win = 0
if the set of contracts in pattern n are not fully eligible for
i. This is important, since if we were forced to use sepa-
rate pattern pools for each user type (w, i), we would sig-
nificantly (and unnecessarily) increase memory usage and
the scale of the problem. To see why, note that some pat-
terns may be relatively short (e.g., 5 or 10 slots in length)
and therefore contain only a few contracts. Moreover, the
sets Γ(i) and Γ(i′) for i 6= i′ can have significant overlap.
Therefore, we would end up with many duplicate patterns
composed of contracts j ∈ Γ(i) ∩ Γ(i′) if we used separate
pattern pools Nwi and Nwi′ .

Let αj and βwi denote the (non-negative) dual multipli-
ers of the reach and supply constraints (3b) and (3c), respec-
tively. The reduced cost of each variable vwin can be derived

by constructing the full Lagrangean of the problem and tak-
ing its derivative with respect to vwin. We have:

L =
1

2

∑
j,w,
i∈Γ(j)

swiVj

θj

(1

swi

∑
n∈Nw

ajnvwin − θj
)2

+
∑
j

pjuj +
∑

w,i,
n∈Nw

πnvwin

+
∑
j

αj

(
rj − uj −

∑
w,i∈Γ(j),
n∈Nw

bjnvwin

)

+
∑
w,i

βwi

(∑
n∈Nw

vwin − ŝwi

)
, (4)

from which we have:
∂L
∂vwin

=
∑

j∈Γ(i)

Vj

θj

(1

swi

∑
n∈Nw

ajnvwin − θj
)
ajn

+ πn −
∑

j∈Γ(i)

αjbjn + βwi. (5)

The stationarity condition for an optimal solution requires
(5) to be zero for all basic variables (i.e., patterns that are
used in the solution), and positive for all non-basic vari-
ables (suggesting that patterns which are unused would in-
crease and worsen the objective function if they were used).
However, we might be able to find (or more precisely, con-
struct) a pattern k, not currently existing in any of the pattern
pools, with ajk, bjk, and πk values that renders the reduced
cost function (5) negative. Adding such a pattern to the pat-
tern pool is then expected to improve the optimal solution
when (3) is re-solved. We use this property to formulate our
pattern-generation model.

Pattern Generation
Let v∗win, α∗j , and β∗i denote the optimal primal and dual
solutions to (3) given the current set of pattern pools Nw,
and let x∗wij = 1

swi

∑
n∈Nw

ajnv
∗
win denote the current

impression-allocation plan. For each user type (w, i), the
following model, which we refer to as the subproblem, will
generate a pattern of minimum reduced cost:

ψwi := Min
∑

j∈Γ(i)

Vj

θj

(
x∗wij − θj

)
âj −

∑
j∈Γ(i)

α∗j b̂j + π̂(·)

(6a)

s.t.
∑

j∈Γ(i)

âj = Lw (6b)

qmin
j b̂j ≤ âj ≤ qmax

j ∀j ∈ Γ(i) (6c)

âj : Integer, b̂j ∈ {0, 1}, ∀j ∈ Γ(i) (6d)

Our decision variables, and the cost metric (which depends
on our decision variables) are marked with a caret (̂). The
integer variable âj counts the number of times campaign j
appears in the pattern. The knapsack constraint (6b) ensures
that the correct length Lw of the pattern is used and fully
utilized. The constraint set (6c) ensures that âj is at most
the maximum frequency required by the contract j (as we

2281

would otherwise waste an ad slot in the pattern). Finally,
the binary variable b̂j indicates whether or not the pattern
being generated meets the minimum frequency requirement
for campaign j (Note that b̂j has a negative coefficient in the
objective function, and so b̂j = 1 is always desirable).

If the optimal values of all (w, i) subproblems yield
ψ∗wi + β∗wi ≥ 0, i.e., the reduced costs (5) are all non-
negative, then no improving pattern exists. In that case, the
current solution to the master problem (3) is optimal and
the current set of patterns, contained in the pattern pools
{Nw : w ∈ W}, comprise the basic subset of N . If, how-
ever, we find ψ∗wi + β∗wi < 0 for any (w, i), we will add the
constructed pattern to the poolNw with ajn = âj , bjn = b̂j ,
and πn = π̂(·). For increased memory efficiency, one may
also remove all patterns that are unused in the current solu-
tion (although the removed patterns may enter the pool again
in later iterations of the master problem).

It is noteworthy to point out that we do not need to solve
the above subproblems for all (w, i) before returning to the
master problem. Even with a single improving pattern we
are guaranteed to improve upon the optimal value in (3).
Therefore, one may solve the subproblems, in some clever
ordering, until a certain number of new patterns are found,
and then return to re-solve the master problem. Moreover,
the above subproblems are independent from one another,
and therefore the pattern construction step is parallelizable.

To initialize the algorithm, we can use any heuristic to
generate an initial set of patterns, or we may set αj = 0,
βwi = 0, xij = 0 (which is primal/dual feasible) and solve
as many subproblems as needed to construct a desired num-
ber of patterns with negative reduced cost. In practice, ad
schedules would need to be re-optimized periodically (and
rather frequently) with updated supply forecasts and con-
tract lists. As long as the problem parameters (i.e. the list
of guaranteed contracts and supply forecasts) do not change
drastically from one period to the next, we expect many of
the patterns from the previous period to be good candidates
for initializing the pattern pools.

Note that the overall structure of (6) is similar to a knap-
sack problem (with complicating frequency capping con-
straints (6c)). However, the degree of difficulty of (6) highly
depends on the functional choice for the cost function π(·).
Recall that π(·) is a cost function that measures the (lack of)
quality of a pattern in terms of pacing and/or diversity of ads.
Assuming that diversity and pacing metrics are separable,
we can write π(·) as a weighted sum of diversity and pacing
metrics: π(·) = λdπd(·) +λpπp(·). A diversity-seeking cost
function may take the form:

πd(·) = −
∑
j

Îj , (7)

which simply encourages including more campaigns in the
pattern. The binary variables Îj indicate whether campaign
j appears in the pattern at all. The Big-M constraints of the
form âj ≤ Lw Îj should also be added to the subproblem to
enforce âj = 0 whenever Îj = 0.

A uniform-pacing cost function may take the following

form (adapted from (Kubiak and Sethi 1991)):

πp(·) =
∑

j∈Γ(i)

Lw∑
k=1

(
z̄jk −

k

Lw
âj

)2

, (8)

where z̄jk is the number of times campaign j appears in the
first k slots of the pattern. In order to incorporate (8) into
(6) we also need an additional set of binary decision vari-
ables zjk that indicate whether campaign j is placed in the
k’th slot of the pattern. Furthermore, we need constraints∑
j zjk = 1, so exactly one ad is placed in each slot k of the

pattern; z̄jk =
∑k
r=1 zjr to model the cumulative relation-

ship; and finally âj = z̄jLw . The above pacing metric simply
assumes that with uniform pacing, the cumulative count z̄jk
should grow linearly with slope âj/Lw throughout the pat-
tern length.

Finally, if we have any set of competing campaigns, C,
which should not be shown to the same user (e.g., Coke and
Pepsi), we can add a constraint of the form

∑
j∈C Îj ≤ 1

so at most one of the competing campaigns is put into the
pattern.

Bollapragada, Bussieck, and Mallik (2004) examine more
involved formulations for the uniform arrangement of TV
advertising. They describe the problem as “placing balls of
different colors into a fixed number of slots such that balls
of the same color are as equally-spaced as possible”. In their
model, the number of balls of each color (âj in our model)
is considered as given. Their performance test on a variety
of formulations shows that a (sub-optimal) greedy approach,
based on the formulation of (Kubiak and Sethi 1991), is the
only viable way of solving the problem with more than 50
slots (Lw) in a reasonable amount of time. Note that our
model has a higher degree of complexity since the subprob-
lem should also figure out the optimal number of balls of
each color (âj) at the same time as finding the optimal uni-
form arrangement.

One practical approach is to postpone the arrangement of
ads within the patterns until the assignment problem is fully
solved. That is, we no longer evaluate the best possible ar-
rangement of patterns in terms of pacing at the time of gener-
ating the patterns. Instead, we apply an exact or greedy algo-
rithm, e.g. from (Bollapragada, Bussieck, and Mallik 2004),
only on the surviving patterns in the optimal solution (with
already-known frequencies ajn) to evenly pace the ads be-
fore streaming the patterns to user visits.

Numerical Experiments
Prior work in exposure-based guaranteed advertising is
impression-based; that is, it assumes publishers do not dif-
ferentiate between serving 2 impressions to 1 person, or 1
impression each to 2 people. Consequently, there are no ex-
isting benchmarks for comparing the performance of our
algorithm. We tested the algorithm on randomly-generated
graphs that we constructed in such a fashion to resemble
appropriately-scaled3 versions of real-world instances. For

3by matching the distribution of parameters (supply and de-
mand values, density of links between nodes, and θj values).

2282

0

20

40

60

80

100

120

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300 350

P
a

tt
e

rn
 C

o
u

n
t

M
a

st
e

r
P

ro
b

le
m

 O
b

je
ct

iv
e

Time (seconds)

Master Problem Objective (Ѱ)

Number of New Patterns

Total Patterns in the problem

Figure 3: Performance of the Column Generation Algorithm on a Sample Graph

example, Figure 3 demonstrates the progress of the algo-
rithm on a small graph with 40 demand nodes and 300 sup-
ply nodes. Each supply node was further partitioned into 3
subgroups with guaranteed visit lengths of {10, 20, 30} im-
pressions. There are approximately 4600 arcs in the graph.
The horizontal axis shows time (in seconds). Each vertical
dashed line shows an epoch where the master problem is
solved, and the thick black curve tracks the optimal value of
the master problem, denoted Ψ∗, that decreases each time
the master problem is re-solved. In between the epochs, we
solve the subproblems until (at most) 20 improving patterns
were found. The dotted curves show the cumulative number
of new patterns found during each epoch, and the solid thin
curve shows the total number of patterns existing in the mas-
ter problem. Throughout the process, we deleted old unused
patterns to keep the total number of available patterns at each
point in time from growing too quickly. We solved the sub-
problems in an ad-hoc (essentially random) order. We used
a diversity-seeking metric of the form (7), and did not use a
pacing metric (i.e. πp(·) = 0). We used the AMPL modeling
language with CPLEX solver on a dual core i5 2.5GHz CPU
with 8GB of RAM to carry out the experiments.

The master problem fully converged to the optimal solu-
tion after 10 iterations (6 minutes), at which point we solved
all 900 subproblems to verify that no improving pattern ex-
isted. As we can see in Figure (3), the optimal value Ψ∗ ini-
tially improves quickly, but the rate of improvement tapers
off, becoming negligible beyond iteration 6 (2.5 minutes).
Note that the subproblems are not being solved in parallel in
our numerical experiment. With full parallelization, the full
convergence could be attained in less than 1 minute. More-
over, there is a tradeoff between the number of iterations it
takes for the master problem to converge and the maximum
number of new patterns we aim for during each epoch. With
no limit on the number of new patterns, the above example
would converge in 4 iterations; however, 900 subproblems
need to be solved in each iteration, and the total run time
happens to be worse than 6 minutes.

Note that among the possible O
(
1019

)
patterns that can

be constructed for this small instance, only 111 are used in
the final solution4. This illustrates the power of column gen-

4If we differentiate patterns based on the exact arrangement of

eration to isolate only the best patterns. This further shows
that keeping a separate pattern pool for each (w, i) combi-
nation is highly inefficient. If we grouped patterns by (w, i),
we would need to have at least 300 × 3 = 900 patterns in
the solution (one per each Nwi to be able to access ŝwi).

Finally, we would like to point out that the improvement
in the optimal value of the master problem is not guaran-
teed to be monotonically decreasing. For instance, the im-
provement in Ψ∗ in iterations 3 and 5 was very low, whereas
a number of patterns were found during iteration 4 which
drastically improved the solution. Therefore, a termination
criteria based on the absolute or relative improvement in Ψ∗

should be used with great caution.

Concluding Remarks
In this paper, we proposed a novel idea for allocating and
serving online advertising: using predetermined fixed-length
streams of ads (which we call patterns). Our framework in-
troduces a user-level perspective into the common aggre-
gate modeling of the ad allocation problem. This enables us
to incorporate a variety of features (that are typically mod-
eled and analysed as separate problems in the literature) into
a single optimization problem. In particular, our formula-
tion can optimize for representativeness as well as user-level
diversity and pacing of ads, under reach and frequency re-
quirements. We showed that the problem can be solved ef-
ficiently using a column generation scheme in which only a
(small) set of best patterns are kept in the problem. In each
iteration, we solve a set of optimization problems to generate
new patterns that improve the solution. Our preliminary nu-
merical tests show that near-optimal solutions are attained
rather quickly with a relatively small number of patterns.
Furthermore, the run time can be drastically improved by
parallelizing the pattern generation process.

ads within the pattern, we can construct
∑

L 40L = 1.15 × 1048

patterns, given L ∈ {10, 20, 30}. If we differentiate only based on
the number of times each campaign appears in the pattern, we can

construct
∑

L

∑L
c=1

(
40
c

)(
L− 1
c− 1

)
≈ 3.16× 1019 patterns.

2283

References
Abrams, Z.; Keerthi, S. S.; Mendelevitch, O.; and Tomlin,
J. A. 2008. Ad delivery with budgeted advertisers: A com-
prehensive LP approach. Journal of Electronic Commerce
Research 9(1).
Araman, V. F., and Fridgeirsdottir, K. 2010. A uniform al-
location mechanism and cost-per-impression pricing for on-
line advertising. Working paper.
Bharadwaj, V.; Chen, P.; Ma, W.; Nagarajan, C.; Tomlin, J.;
Vassilvitskii, S.; Vee, E.; and Yang, J. 2012. SHALE: An ef-
ficient algorithm for allocation of guaranteed display adver-
tising. In Proceedings of the 18th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining,
1195–1203. ACM.
Bollapragada, S.; Bussieck, M. R.; and Mallik, S. 2004.
Scheduling commercial videotapes in broadcast television.
Operations Research 52(5):679–689.
Desaulniers, G.; Desrosiers, J.; and Solomon, M. M. 2005.
Column generation, volume 5. Springer.
Ghosh, A.; McAfee, P.; Papineni, K.; and Vassilvitskii, S.
2009. Bidding for representative allocations for display ad-
vertising. In Internet and Network Economics. Springer.
208–219.
Kubiak, W., and Sethi, S. 1991. A note on “level schedules
for mixed-model assembly lines in just-in-time production
systems”. Management Science 37(1):121–122.
Langheinrich, M.; Nakamura, A.; Abe, N.; Kamba, T.; and
Koseki, Y. 1999. Unintrusive customization techniques for
web advertising. Computer Networks 31(11):1259–1272.
Nakamura, A., and Abe, N. 2005. Improvements to the lin-
ear programming based scheduling of web advertisements.
Electronic Commerce Research 5(1):75–98.
Turner, J. 2012. The planning of guaranteed targeted display
advertising. Operations Research 60(1):18–33.
Walsh, W. E.; Boutilier, C.; Sandholm, T.; Shields, R.;
Nemhauser, G. L.; and Parkes, D. C. 2010. Automated chan-
nel abstraction for advertising auctions. In AAAI.
Yang, J.; Vee, E.; Vassilvitskii, S.; Tomlin, J.; Shanmuga-
sundaram, J.; Anastasakos, T.; and Kennedy, O. 2010. In-
ventory allocation for oonline graphical display advertising.
arXiv preprint arXiv:1008.3551.

2284

