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Abstract

The Traveling Tournament Problem (TTP) is a com-
plex problem in sports scheduling whose solution is a
schedule of home and away games meeting specific fea-
sibility requirements, while minimizing the total dis-
tance traveled by all the teams. A recently-developed
“hybrid” algorithm, combining local search and inte-
ger programming, has resulted in best-known solutions
for many TTP instances. In this paper, we tackle the
TTP from a graph-theoretic perspective, by generating
a new “canonical” schedule in which each team’s three-
game road trips match up with the underlying graph’s
minimum-weight P3-packing. By using this new sched-
ule as the initial input for the hybrid algorithm, we de-
velop tournament schedules for five benchmark TTP in-
stances that beat all previously-known solutions.

Introduction
Inspired by the real-life problem of optimizing Major
League Baseball schedules to reduce team travel, the n-team
Traveling Tournament Problem (TTP) asks for the double
round-robin schedule that minimizes the sum total of dis-
tances traveled by all n teams. Since the problem was first
proposed (Easton, Nemhauser, and Trick 2001), the TTP
has attracted a significant amount of research (Kendall et al.
2010), with numerous heuristics developed for solving hard
TTP instances.

There is an online set of benchmark n-team TTP data sets
(Trick 2013) with the list of best-known upper and lower
bounds. Solutions to TTP instances are often found after
weeks of computation on high-performance machines us-
ing parallel computing, see, e.g. (Hentenryck and Vergados
2007). In many ways, the TTP is a variant of the well-known
Traveling Salesman Problem (TSP), asking for a distance-
optimal schedule linking venues that are close to one an-
other. The computational complexity of the TSP is NP-hard;
recently, it was shown that solving the TTP is strongly NP-
hard (Thielen and Westphal 2011).
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In a recent paper (Goerigk and Westphal 2012), a “hy-
brid” approach was developed to generate TTP solutions to
the instances in the Galaxy benchmark data set (Uthus, Rid-
dle, and Guesgen 2012), beating all previously-known upper
bounds. Their approach started with a well-known canonical
schedule based on an approximate minimum-weight Hamil-
tonian cycle, followed by a combination of commercial in-
teger programming solvers with local heuristics such as tabu
search.

In this paper, we build upon this work, and propose an in-
tegrated approach to solving hard TTP instances, consisting
of three phases. In Phase 1, a constructive procedure based
on the graph-theoretic concept of three-vertex path packings
(known as P3-packings) is used to produce an initial, feasi-
ble schedule. In Phase 2, a simple local search procedure
known as “pairwise-swapping” attempts to improve this so-
lution. In Phase 3, we take the solution from the previous
phase and apply the aforementioned hybrid heuristic of Go-
erigk and Westphal to output a final solution.

We apply this three-step approach to the n-team Galaxy
instances, a data set where the “teams” represent exoplanets
located in three-dimensional space. Our method finds best-
known solutions to the Galaxy instances for four cases, n ∈
{22, 28, 34, 40}.

We also explain how this algorithm can be combined to
generate a new solution for the NFL28 data set, beating the
previously best-known upper bound (Trick 2013) that was
published in 2007.

The main focus of this paper is our explanation of the fea-
sible schedule in Phase One. Our approach is novel in that
our schedule is based on a P3-packing, rather than a TSP-
tour (i.e., Hamilton cycle). We will describe the construction
of a double round-robin schedule where each team’s three-
game road trips match up with some (nearly)-optimal P3-
packing. Our n-team tournament schedule is a feasible TTP
solution whenever n = 6m− 2 for some integer m ≥ 1.

After describing the three phases, and sharing the results
of our new upper bounds, we conclude the paper with some
open problems and directions for further research.
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The Traveling Tournament Problem
Let {t1, t2, . . . , tn} be the n teams in a sports league, where
n is even. Let D be the n × n distance matrix, where entry
Di,j is the distance between the home stadiums of teams ti
and tj . By definition, Di,j = Dj,i for all 1 ≤ i, j ≤ n, and
all diagonal entries Di,i are zero. We assume the distances
form a metric, i.e., Di,j ≤ Di,k + Dk,j for all i, j, k.

For example, Table 1 provides the 6 × 6 distance matrix
for the Galaxy set (Trick 2013), consisting of the six “teams”
Earth, Eridanus, Ara, Gemini, Pisces, and Cepheus.

t1 t2 t3 t4 t5 t6
t1 0 15 22 47 45 50
t2 15 0 10 34 36 39
t3 22 10 0 32 31 40
t4 47 34 32 0 51 41
t5 45 36 31 51 0 35
t6 50 39 40 41 35 0

Table 1: The Galaxy6 Distance Matrix.

The TTP requires a tournament lasting 2(n − 1) days,
where every team has exactly one game scheduled each day
with no days off (this explains why n must be even.) The
objective is to minimize the total distance traveled by the n
teams, subject to the following conditions:

(a) each-venue: Each pair of teams plays twice, once in
each other’s home venue.

(b) at-most-three: No team may have a home stand or road
trip lasting more than three games.

(c) no-repeat: A team cannot play against the same oppo-
nent in two consecutive games.

When calculating the total distance, we assume that every
team begins the tournament at home and returns home after
playing its last away game. Furthermore, whenever a team
has a road trip consisting of multiple away games, the team
doesn’t return to their home city but rather proceeds directly
to their next away venue.

To illustrate with a specific example, Table 2 lists a feasi-
ble tournament schedule for the Galaxy6 benchmark set. In
this schedule, as with all subsequent schedules presented in
this paper, home games are marked in bold.

Team 1 2 3 4 5 6 7 8 9 10 # of Trips
t1 t4 t2 t3 t4 t5 t6 t3 t5 t6 t2 7
t2 t3 t1 t4 t5 t6 t4 t5 t6 t3 t1 8
t3 t2 t6 t1 t6 t4 t5 t1 t4 t2 t5 7
t4 t1 t5 t2 t1 t3 t2 t6 t3 t5 t6 7
t5 t6 t4 t6 t2 t1 t3 t2 t1 t4 t3 7
t6 t5 t3 t5 t3 t2 t1 t4 t2 t1 t4 7

Table 2: An optimal TTP solution for Galaxy6.

For example, team t1 makes 7 trips, with a travel distance
of D1,4 +D4,2 +D2,1 +D1,5 +D5,6 +D6,3 +D3,1 = 238.
We can use Table 1 to show that the total travel distance of
this tournament is 1365; it is known that this schedule, with
43 total trips, is distance-optimal (Trick 2013).

Hamiltonian Cycles and P3-Packings
We motivate our graph-theoretic approach with two sep-
arate 15-team instances, which combine to form the 30
teams of the National Basketball Association (NBA). These
two-dimensional data sets were introduced in the context
of the Bipartite Traveling Tournament Problem (Hoshino
and Kawarabayashi 2011), where a close-to-optimal inter-
league tournament was generated using graph theory. We
will now apply these ideas to solve hard instances of the
TTP, which models an intra-league tournament.

The 30 teams in the NBA are divided into two separate
leagues, with 15 in the Western Conference and 15 in the
Eastern Conference. Let GW be the complete graph on 15
vertices, representing the Western Conference teams, with
the weight of edge ij being the distance between the home
arenas of teams ti and tj . Similarly, define GE to be the
graph of the Eastern Conference teams. A computer search
quickly finds the minimum-weight Hamiltonian cycle for
each 15-team conference, as illustrated in Figure 1 below.

Figure 1: Optimal Hamiltonian Cycles for the NBA teams.

For a graph G on 3k vertices, define a P3-packing to be a
set of vertex-disjoint paths of length 3 that cover the vertices
of G. In our context, we say that a P3-packing is optimal if
the sum of the edge lengths (weights) is minimized. A com-
puter search finds the optimal P3-packing for graphs GW

and GE , illustrated in Figure 2 below.

Figure 2: Optimal P3-packings for the NBA teams.

Given an optimal Hamiltonian cycle of a graph with 3k
vertices, there are three ways we can remove “every third
edge” from this cycle to form a P3-packing. One of these
three P3-packings is optimal in graph GW , as we see from
the red edges in Figures 1 and 2.

Letting X be the minimum weight of a P3-packing and
Y be the minimum weight of a Hamiltonian cycle, we see
that 0 ≤ X

Y ≤ 2
3 , since the sum total of weights of the
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three trivial P3-packings is 2Y , forcing one of the three P3-
packings to have total weight at most 2Y

3 .
Whenever the edge set of the optimal P3-packing is not a

subset of the edge set of the optimal Hamilton cycle (as in
graph GE), the ratio X

Y is strictly less than 2
3 . And often this

ratio is much smaller than 2
3 : for example, using the NBA

distance matrix (Hoshino and Kawarabayashi 2011), we can
compute the values of X and Y to show that X

Y = 3038
5690 ∼

0.53 for the Western Conference and X
Y = 1765

3603 ∼ 0.49 for
the Eastern Conference.

We now explain how these graph-theoretic ideas can be
applied to generate new TTP solutions. We first describe
two traditional approaches of matching each team’s se-
quence of three-game road trips with the graph’s optimal (or
near-optimal) Hamiltonian cycle, generating two canonical
schedules frequently used by researchers. We then describe
our approach of matching each team’s sequence of three-
game road trips with the graph’s optimal (or near-optimal)
P3-packing, which we then apply to produce best-known so-
lutions for five TTP instances.

Two Standard Canonical Schedules
There is a common three-step heuristic (Rasmussen and
Trick 2007) for generating solutions to the n-team TTP. In
step 1, we generate double round-robin Home-Away pattern
sets (HAPs) in the form of an n by 2(n − 1) matrix, where
the (i, d) entry is H or A depending on whether team ti
is playing a home game or away game on day d. In step
2, we convert these HAPs into timetables which are assign-
ments of matches to time slots. Finally, in step 3, we convert
timetables into feasible tournament schedules by assigning
each of the n teams a unique row in the matrix.

The ideal timetable is one where each team has many
three-game road trips, to reduce the total number of trips
required over the course of the 2(n − 1)-day tournament.
Such timetables, where the total number of trips is minimal
or close-to-minimal, are known as canonical schedules, and
researchers often use these as initial solutions to difficult n-
team TTP instances. After this point (the end of step 2),
we can use various heuristics to select one of the n! per-
mutations of {t1, t2, . . . , tn} to create a feasible tournament
schedule. Additional techniques, such as simulated anneal-
ing and hill-climbing, can then be used to improve these so-
lutions even further, by swapping combinations of rows to
minimize the total travel distance.

There are two canonical schedules that have appeared fre-
quently in recent papers, especially those describing TTP
approximation algorithms. The first canonical schedule
(Westphal and Noparlik 2012) was applied to find a 5.875-
approximation algorithm for the generalized version of the
TTP, while the second canonical schedule (Yamaguchi et al.
2011) was introduced to find a 5

3 +O( 1
n )-approximation al-

gorithm for the TTP. As mentioned in the Introduction, Go-
erigk and Westphal took the first of these canonical sched-
ules as the basis of their analysis for the Galaxy instances,
and ran a complex hybrid algorithm to determine best-
known TTP solutions (Goerigk and Westphal 2012).

These canonical schedules are effective because in each

schedule, every team’s sequence of road trips roughly fol-
low the optimal Traveling Salesman tour. To illustrate, sup-
pose the n teams are labelled so that the minimum-weight
Hamiltonian cycle is t1, t2, . . . , tn−1, tn, t1.

A single round-robin tournament schedule can be created
using the polygon-circle method (Kirkman 1847); an exam-
ple of such a schedule for n = 10 teams is shown in Ta-
ble 3. The home-away patterns in this schedule follow a
commonly-used home-away assignment scheme (de Werra
1981) that guarantees that no team plays one home (road)
game sandwiched between two road (home) games.

1 2 3 4 5 6 7 8 9
t1 t10 t2 t3 t4 t5 t6 t7 t8 t9
t2 t9 t1 t10 t3 t4 t5 t6 t7 t8
t3 t8 t9 t1 t2 t10 t4 t5 t6 t7
t4 t7 t8 t9 t1 t2 t3 t10 t5 t6
t5 t6 t7 t8 t9 t1 t2 t3 t4 t10
t6 t5 t10 t7 t8 t9 t1 t2 t3 t4
t7 t4 t5 t6 t10 t8 t9 t1 t2 t3
t8 t3 t4 t5 t6 t7 t10 t9 t1 t2
t9 t2 t3 t4 t5 t6 t7 t8 t10 t1
t10 t1 t6 t2 t7 t3 t8 t4 t9 t5

Table 3: A Single Round-Robin Schedule for n = 10.

For each 1 ≤ i ≤ n − 1, let ci be the slate of matchups
and venues for all the games in the ith time slot. In other
words, ci represents the ith column in the schedule above.
Let ci denote the exact same matchups as ci, with the home
venues reversed (i.e., if tj plays a home game against tk in
ci, then tj plays a road game against tk in ci).

The first canonical schedule (Westphal and Noparlik
2012) is

Dn = c1, c2, . . . , cn−2, cn−1, cn−2, cn−1, c1, c2, . . . , cn−3.

Define Γ1 = {c1, c2, c3},Γ2 = {c4, c5, c6}, and so on, all
the way up to Γ(n−1)/3 = {cn−3, cn−2, cn−1}. Then, the
second canonical schedule (Yamaguchi et al. 2011) is

D∗
n = Γ1,Γ1,Γ2,Γ2,Γ3,Γ3, . . . ,Γ(n−1)/3,Γ(n−1)/3.

For example, if n = 10, we have

D∗
10 = c1, c2, c3, c1, c2, . . . , c6, c4, c5, . . . , c9, c7, c8, c9.

This tournament schedule, D∗
10, is provided in Table 4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t1 t10 t2 t3 t10 t2 t3 t4 t5 t6 t4 t5 t6 t7 t8 t9 t7 t8 t9
t2 t9 t1 t10 t9 t1 t10 t3 t4 t5 t3 t4 t5 t6 t7 t8 t6 t7 t8
t3 t8 t9 t1 t8 t9 t1 t2 t10 t4 t2 t10 t4 t5 t6 t7 t5 t6 t7
t4 t7 t8 t9 t7 t8 t9 t1 t2 t3 t1 t2 t3 t10 t5 t6 t10 t5 t6
t5 t6 t7 t8 t6 t7 t8 t9 t1 t2 t9 t1 t2 t3 t4 t10 t3 t4 t10
t6 t5 t10 t7 t5 t10 t7 t8 t9 t1 t8 t9 t1 t2 t3 t4 t2 t3 t4
t7 t4 t5 t6 t4 t5 t6 t10 t8 t9 t10 t8 t9 t1 t2 t3 t1 t2 t3
t8 t3 t4 t5 t3 t4 t5 t6 t7 t10 t6 t7 t10 t9 t1 t2 t9 t1 t2
t9 t2 t3 t4 t2 t3 t4 t5 t6 t7 t5 t6 t7 t8 t10 t1 t8 t10 t1
t10 t1 t6 t2 t1 t6 t2 t7 t3 t8 t7 t3 t8 t4 t9 t5 t4 t9 t5

Table 4: The canonical schedule D∗
10.
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Note that this definition of D∗
n only holds if n ≡ 4 (mod

6). For the other congruence classes modulo 6, D∗
n is defined

in a slightly-different way (Fujiwara et al. 2007).
In the second canonical schedule, this 2(n− 1)-day tour-

nament is split up into blocks of six games, with the first
half of each block being the mirror of the second half. We
now use a similar idea in creating our tournament schedule,
except that each trip’s road trips follow an optimal (or near-
optimal) P3-packing.

As mentioned in the Introduction, we now present our
three-phase algorithm. In Phase 1, we create a new “canon-
ical” schedule. In Phases 2 and 3, we apply this schedule to
determine new upper bounds for various TTP instances.

Phase 1: Schedule based on P3-packings
Our tournament schedule builds upon a recently-published
construction (Hoshino and Kawarabayashi 2012) that estab-
lishes a 4

3 -approximation in the special “linear distance” in-
stance where the n teams all lie on a common straight line.

Let m be a positive integer. We first create a single round-
robin tournament U on 2m teams, and then expand this to
a double round-robin tournament Zn on n = 2(3m − 1)
teams. Let {u1, u2, . . . , u2m−1, x} be the 2m teams. Then
each team plays 2m − 1 games, according to the polygon-
circle Kirkman construction described earlier in Table 3.

1 2 3 4 5 6 7
u1 x© u2 u3 u4 u5 u6 u7

u2 u7 u1 x© u3 u4 u5 u6

u3 u6 u7 u1 u2 x© u4 u5

u4 u5 u6 u7 u1 u2 u3 x©
u5 u4 x© u6 u7 u1 u2 u3

u6 u3 u4 u5 x© u7 u1 u2

u7 u2 u3 u4 u5 u6 x© u1

x u1 u5 u2 u6 u3 u7 u4

Table 5: The single round-robin construction for 2m = 8 teams.

For all games not involving team x, we designate one
home team and one road team as follows: for 1 ≤ k ≤ m,
uk plays only road games until it meets team x, before fin-
ishing the remaining games at home. And for m + 1 ≤
k ≤ 2m− 1, we have the opposite scenario, where uk plays
only home games until it meets team x, before finishing the
remaining games on the road. As an example, Table 5 pro-
vides this single round-robin schedule for the case m = 4.

This construction ensures that for any match between ui

and uj , for all 1 ≤ i, j ≤ 2m− 1, there is exactly one home
team and one road team. To verify this, note that ui is the
home team and uj is the road team iff i occurs before j in
the set {1, 2m− 1, 2, 2m− 2, . . . ,m− 1,m + 1,m}.

Now we “expand” this single round-robin tournament U
on 2m teams to a double round-robin tournament Zn on n =
6m − 2 teams. To accomplish this, we transform uk into
three teams, {t3k−2, t3k−1, t3k}, so that the set of teams in
Zn is {t1, t2, t3, . . . , t6m−5, t6m−4, t6m−3, x}.

Suppose ui is the home team in its game against uj ,
played in time slot r. Then we expand that time slot in U

into six time slots in Zn, namely the slots 6r − 5 to 6r. We
describe the match assignments in Table 6.

6r − 5 6r − 4 6r − 3 6r − 2 6r − 1 6r
t3i−2 t3j−1 t3j t3j−2 t3j−1 t3j t3j−2

t3i−1 t3j t3j−2 t3j−1 t3j t3j−2 t3j−1

t3i t3j−2 t3j−1 t3j t3j−2 t3j−1 t3j
t3j−2 t3i t3i−1 t3i−2 t3i t3i−1 t3i−2

t3j−1 t3i−2 t3i t3i−1 t3i−2 t3i t3i−1

t3j t3i−1 t3i−2 t3i t3i−1 t3i−2 t3i

Table 6: Expanding one time slot in U to six time slots in Zn.

Recall that by the each-venue condition, each team in Zn

must visit every opponent’s home stadium exactly once, and
by the at-most-three condition, road trips are at most three
games. We will build a tournament that (nearly) maximizes
the number of three-game road trips, and ensure that the ma-
jority of these road trips involve three venues closely situ-
ated to one another, to minimize total travel. We will also
ensure that the no-repeat condition is satisfied, so that our
final tournament schedule Zn is feasible.

Group the vertices in the optimal P3-packing into triplets:
{t1, t2, t3}, {t4, t5, t6}, . . . , {t6m−5, t6m−4, t6m−3}. So in
Table 6 above, since {t3j−2, t3j−1, t3j} are roughly located
in the same region, that implies that each of the teams in
{t3i−2, t3i−1, t3i} can play their three road games against
these teams in a highly-efficient manner.

We now explain how to expand the time slots in games
involving team x. For each 1 ≤ k ≤ m, consider the game
between uk and x. We expand that time slot in U into six
time slots in Zn, as described in Table 7.

6r − 5 6r − 4 6r − 3 6r − 2 6r − 1 6r
t3k−2 x t3k t3k−1 x t3k t3k−1

t3k−1 t3k x t3k−2 t3k x t3k−2

t3k t3k−1 t3k−2 x t3k−1 t3k−2 x
x t3k−2 t3k−1 t3k t3k−2 t3k−1 t3k

Table 7: The six time slot expansion for 1 ≤ k ≤ m.

And for each m + 1 ≤ k ≤ 2m − 1, consider the game
between uk and x. We expand that time slot in U into six
time slots in Zn, as described in Table 8.

6r − 5 6r − 4 6r − 3 6r − 2 6r − 1 6r
t3k−2 x t3k t3k−1 x t3k t3k−1

t3k−1 t3k x t3k−2 t3k x t3k−2

t3k t3k−1 t3k−2 x t3k−1 t3k−2 x
x t3k−2 t3k−1 t3k t3k−2 t3k−1 t3k

Table 8: The six time slot expansion for m+ 1 ≤ k ≤ 2m− 1.

Let m be fixed. Considering the case (k, r) = (1, 1), we
see that teams t2 and t3 play each other in time slots 1 and
4. In the final step of our construction, we flip the venues
of these two matches so that t2 is the home team in slot 1
and t3 is the home team in slot 4. This minor modification
creates one fewer trip for t2.
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This construction builds a double round-robin tournament
Zn with n = 6m − 2 teams and 2(n − 1) = 12m − 6
time slots, where the three TTP feasibility conditions (each-
venue, at-most-three, no-repeat) are all satisfied. To give an
example, Table 9 provides the tournament schedule for Z10,
corresponding to the case m = 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t1 t10 t3 t2 t10 t3 t2 t5 t6 t4 t5 t6 t4 t8 t9 t7 t8 t9 t7
t2 t3 t10 t1 t3 t10 t1 t6 t4 t5 t6 t4 t5 t9 t7 t8 t9 t7 t8
t3 t2 t1 t10 t2 t1 t10 t4 t5 t6 t4 t5 t6 t7 t8 t9 t7 t8 t9
t4 t9 t8 t7 t9 t8 t7 t3 t2 t1 t3 t2 t1 t10 t6 t5 t10 t6 t5
t5 t7 t9 t8 t7 t9 t8 t1 t3 t2 t1 t3 t2 t6 t10 t4 t6 t10 t4
t6 t8 t7 t9 t8 t7 t9 t2 t1 t3 t2 t1 t3 t5 t4 t10 t5 t4 t10
t7 t5 t6 t4 t5 t6 t4 t10 t9 t8 t10 t9 t8 t3 t2 t1 t3 t2 t1
t8 t6 t4 t5 t6 t4 t5 t9 t10 t7 t9 t10 t7 t1 t3 t2 t1 t3 t2
t9 t4 t5 t6 t4 t5 t6 t8 t7 t10 t8 t7 t10 t2 t1 t3 t2 t1 t3
t10 t1 t2 t3 t1 t2 t3 t7 t8 t9 t7 t8 t9 t4 t5 t6 t4 t5 t6

Table 9: The schedule Z10, based on a P3-packing.

Recall that 0 ≤ X
Y ≤

2
3 , where X is the minimum weight

of a P3-packing and Y is the minimum weight of a Hamil-
tonian cycle. Intuitively, a smaller value of X

Y indicates that
there are many three-team sets clustered together, and so our
schedule Zn should require less travel distance than the stan-
dard canonical schedules Dn and D∗

n (see Table 4) based on
a minimum-weight Hamiltonian cycle.

To elaborate further, consider an arbitrary TTP instance
on n = 6m − 2 teams, and let G be the complete graph on
the n “vertices” {t1, t2, . . . , tn}, where the weight of edge
titj is the value appearing in the ith row and jth column
of the corresponding distance matrix. For each 1 ≤ i ≤
n, take any polynomial-time algorithm, such as the well-
known Christofides method (Christofides 1976), to compute
a (near)-optimal Hamiltonian cycle in the graph G− ti. Let
Y ∗
i be the total edge weight of this Hamiltonian cycle.
For each 1 ≤ i ≤ n, take any polynomial-time algorithm

to compute a (near)-optimal P3-packing in the graph G −
ti. Now let X∗

i be the minimum total weight among these
three P3-packings. As explained earlier, we have the trivial
inequality 0 ≤ X∗

i

Y ∗
i
≤ 2

3 for all values of i. Define Y :=

min(Y ∗
1 , Y

∗
2 , . . . , Y

∗
n ), so that Y = Y ∗

j for some index j.
Now define X := X∗

j .
For example, if we take the 10-team Galaxy instance, we

can show that Y = Y ∗
10 = 238. From this we determine

that X = X∗
10 = 119, with the optimal P3-packing be-

ing {t2, t1, t3}, {t6, t4, t8}, {t7, t5, t9}. Thus, we simply re-
order the ten teams as {t2, t1, t3, t6, t4, t8, t7, t5, t9, t10} to
create a schedule Z10 that matches the above P3-packing.

Since X
Y = 1

2 < 2
3 , we conjecture that Z10 requires much

less travel distance than the schedule D10. Indeed this is
true: the travel distance of Z10 is 5164, compared to 5635
for D10. (The results for D∗

10 are even worse.)
We can go one step further. Because n = 10 is such

a small case, we can check each of the n! permutations of
{t1, t2, . . . , t10} to see which row permutation of the tour-
nament schedule gives us the distance-optimal tournament.
From this brute-force search, we can show that the optimal

solutions of Z10 and D10 are 4916 and 5559, respectively,
which are extremely close to the solutions derived from the
optimal P3-packing and Hamiltonian cycle.

And as our theory predicts, this schedule with distance
4916 has a row permutation that is extremely close to the
optimal P3-packing found above.

Although this brute-force approach is not feasible for
large values of n, we now provide a simple heuristic that
finds new best bounds for the large Galaxy instances, com-
posed of “teams” based on exoplanets found throughout the
galaxy, including Earth. (The pairwise distances represent
the number of light years between the exoplanets’ host star.)
We also apply this heuristic to find close-to-optimal upper
bounds for two NFL instances, composed of the teams in
the National Football League.

Phase 2: Pairwise-Swapping
Earlier, we described the common three-step heuristic for
generating feasible solutions to the n-team TTP. Our tourna-
ment schedule, which works for any n ≡ 4 (mod 6) is the
end result of the first phase. In Phase 2, we decide how to
map the n Galaxy “teams” to {t1, t2, . . . , tn}.

As we cannot check all n! permutations to find a global
optimum, we propose a simple “pairwise-swapping” algo-
rithm that finds a local optimum in each iteration. Surpris-
ingly, this elementary heuristic generates tournaments for
the Galaxy instances that beat all previously-known solu-
tions for n ∈ {22, 28, 34, 40}. In Phase 2, we follow the
following four-step sequence:

(a) For each team (vertex) in {t1, t2, . . . , tn}, use any
polynomial-time algorithm to compute a (near)-optimal
P3-packing of G−tk, with total weight X∗

k . Select the P3-
packing with total weight X := min(X∗

1 , X
∗
2 , . . . , X

∗
n),

and reorder the n teams accordingly. This creates perm,
a specific permutation of the n teams.

(b) Calculate dist, the total travel distance of this schedule.

(c) There are
(
n
2

)
possible choices for the pair (i, j), with

1 ≤ i < j ≤ n. List these choices in some random order.
Starting with the first pair, calculate the total travel dis-
tance of the schedule where teams ti and tj are swapped.
As soon as we find a pair (i, j) for which the resulting
schedule has total distance less than dist, swap the ith

and jth entries of perm and go back to step (b).

(d) End when none of the
(
n
2

)
pairs (i, j) yield a schedule

whose total distance is less than dist.

We start with the same initial solution (based on our P3-
packing). In each iteration, we swap rows until the algo-
rithm outputs a locally-optimal permutation perm whose to-
tal travel distance is dist. The decision of which rows are
swapped is based on the random ordering described in (c).

For each n ∈ {22, 28, 34, 40} in the Galaxy data set and
for each n ∈ {22, 28} in the NFL data set, we apply this
“pairwise-swapping” algorithm and iterate until we hit a to-
tal running time of 3600 seconds. Our algorithm is coded
using Maplesoft, on a stand-alone laptop with 2.75 GB main
memory and a single 2.10 GHz processor.
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We then choose the tournament that has the lowest travel
distance, among all the solutions generated by our iteration.
The results are presented in Table 10, comparing our sched-
ules with the best-known results (Trick 2013). In four of the
six cases, our tournament schedule is better.

Data Best Known Output of
Set Upper Bound Phases 1 and 2

Galaxy22 35, 467 35, 014
Galaxy28 77, 090 76, 518
Galaxy34 146, 792 145, 165
Galaxy40 247, 017 245, 052
NFL22 402, 534 415, 874
NFL28 609, 788 613, 574

Table 10: Table of results for Galaxy and NFL instances.

Phase 3: Hybrid Algorithm
We now take the schedules described in the previous sec-
tion as starting solutions to a much more powerful heuristic
algorithm that combines tabu search with integer program-
ming local search. This is the final phase of our TTP-solving
algorithm.

Using this algorithm with weaker canonical schedules
as starting solutions already resulted in best-known upper
bounds on a large set of instances (Goerigk and Westphal
2012). The basic idea is to iteratively consider the following
two neighborhoods:

1. Tabu search step: We begin with improving the start-
ing solutions using a tabu search approach similar to
(Di Gaspero and Schaerf 2005). The considered moves
in every iteration are the following:

• Swap home/away pattern for matches between two
teams.
• Swap all matches of two teams.
• Swap two days.
• Swap opponents of two teams on a certain day.
• Swap opponents of a team on two days.

Additionally, infeasible solutions are considered by using
an adaptive, randomized penalty factor on the number of
constraint violations.

2. Integer programming step: The resulting solutions are
then further improved using an IP solver (in this case,
Gurobi v. 5.0). We consider the following two simplified
IP formulations:

• Fix schedule, and optimize the home/away pattern.
• Fix home/away pattern, and optimize the remaining

schedule.

If one step successfully improves the current best solu-
tion, the next step begins, until no more improvements can
be made. Taking the solutions from Phase 2, we post-
improved each of them five times using this approach with
randomized parameter choices on a desktop PC with a 2.60
GHz processor. The resulting improvements can be seen in
Table 11.

Data Best Known Output of
Set Upper Bound Phases 1,2,3

Galaxy22 35, 467 33, 901
Galaxy28 77, 090 75, 276
Galaxy34 146, 792 143, 298
Galaxy40 247, 017 241, 908
NFL22 402, 534 402, 977
NFL28 609, 788 589, 123

Table 11: Table of improved results for Galaxy and NFL instances.

As we can see from Table 11, we have developed new
upper bounds for five instances, each of which beat the pre-
viously best-known upper bound by at least 2%. We only re-
ported the results of sets where we found a new upper bound,
or came extremely close. For all other instances (e.g. NL16,
CIRC16, Super10), our method came close (roughly 1% to
2% worse), but was not an improvement.

Conclusion
Our tournament schedule, based on minimum-weight P3-
packings, generates a feasible solution to the TTP whenever
n ≡ 4 (mod 6). The analysis in this paper seems to indicate
that our P3-packing canonical schedule is a better “base” as
compared to the standard approach of using the minimum-
weight Hamiltonian cycle.

Certainly this was the case in the 10-team Galaxy in-
stance, where the P3-packing gave an excellent solution
which was close to the provably-optimal schedule, and was
a much better approximation than either of the canonical
schedules found by Hamiltonian cycles.

As demonstrated, our method generalizes to larger n,
where we can find a close-to-optimal P3-packing using
any polynomial-time heuristic, and map this permutation
of teams (vertices) to find an excellent approximate solu-
tion to our TTP instance. We then apply the heuristics de-
scribed in Phases 2 and 3 to improve this result further, as
we showed in beating previously-known upper bounds for
five hard benchmark instances.

A natural question is whether there exist similar construc-
tions for n ≡ 0 and n ≡ 2 (mod 6). If we can construct
canonical schedules in these cases, it is likely that our three-
phase approach can generate better solutions to the n-team
Galaxy instances, for each n ∈ {24, 26, 30, 32, 36, 38}, as
well as better solutions to the n-team NFL instances, for
each n ∈ {24, 26, 30, 32}.
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