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Uwe Köckemann and Federico Pecora and Lars Karlsson
Center for Applied Autonomous Sensor Systems, Örebro University, Sweden
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Abstract

Consider a family whose home is equipped with sev-
eral service robots. The actions planned for the robots
must adhere to Interaction Constraints (ICs) relating
them to human activities and preferences. These con-
straints must be sufficiently expressive to model both
temporal and logical dependencies among robot actions
and human behavior, and must accommodate incom-
plete information regarding human activities. In this pa-
per we introduce an approach for automatically gener-
ating plans that are conformant wrt. given ICs and par-
tially specified human activities. The approach allows
to separate causal reasoning about actions from reason-
ing about ICs, and we illustrate the computational ad-
vantage this brings with experiments on a large-scale
(semi-)realistic household domain with hundreds of hu-
man activities and several robots.

We address the challenge of automatically generating
plans that have to accommodate scheduled activities, fea-
tures and preferences of a set of uncontrollable agents (such
as humans). Consider, e.g., a domain in which a set of robots
have to plan for a whole day in a household environment
that is co-inhabited by a human family. The schedules and
preferences of humans impose complex constraints on robot
plans. We may, for instance, be required to avoid that a robot
is vacuuming a room in which an inhabitant is reading. This
could be resolved by separating these two events in time.
The applicability of such constraints may not only be based
on the activity (such as reading), but also on the preferences
of the inhabitant. The above example may only apply to in-
habitants that are easily distracted. In many cases we can
also allow to violate these constraints by paying a social
cost (Alami et al., 2006).

To handle such domains we propose to use Interaction
Constraints (ICs) to model how robot plans and human ac-
tivities should relate to each other. The building blocks of
ICs are also constraints, albeit at a lower level of abstrac-
tion, which enforce temporal and logical requirements or
costs on robot plans. We show through the use of examples
how the expressiveness of constraint-based planning is well
suited for modeling interaction requirements with humans.
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The constraint-based nature of the domain definition lan-
guage also allows to account for partially specified human
behavior. We propose a planning algorithm which leverages
the richness of the language to decompose the overall prob-
lem into easier sub-problems that are separated from causal
reasoning (assuming robot and human activities are only
connected via ICs). The planner computes plans that are
conformant wrt. given ICs and partially specified human ac-
tivities. Finally, we exemplify how using off-the-shelf plan-
ning technology (i.e., modeling ICs as actions) would create
a far more difficult search problem in the causal reasoner.

Related Research
In order to accommodate the behavior of uncontrollable
agents automated planning must take into account some
form of temporal knowledge about their activities. Also
these activities may be only partially specified. One possi-
bility is to model uncontrollable agent behavior as future
events modeled as timed-initial literals. These can be either
compiled into dummy actions (Coles et al., 2008; Benton,
Coles, and Coles, 2012) or processed in an event queue (Do
and Kambhampati, 2003). Both approaches imply a tight
coupling between future events and plan search. Our ap-
proach exploits the fact that we can decouple future events
from plan search under certain assumptions. Also these ap-
proaches are not adequate for partially specified behavior
of uncontrollable agents. The same holds for timeline-based
planning approaches (Chien et al., 2000; Bresina et al., 2005;
Fratini, Pecora, and Cesta, 2008), in which temporal con-
straints can be used to model external events. Our work ex-
tends this idea to cater for partially specified events and other
constraint types.

Conditional temporal plans can be used to describe alter-
native courses of action depending on the behavior of un-
controllable agents. These plans constitute temporal prob-
lems with choices. Tsamardinos, Vidal, and Pollack (2003)
propose an approach to solve these problems, but do not fo-
cus on obtaining the plans. Mausam and Weld (2008) ex-
tend Markov Decision Processes to temporal planning. Plan-
ning with temporal and resource uncertainty is addressed
by Beaudry, Kabanza, and Michaud (2010), who tackle the
problem by attaching probability densities to durations and
resource usages. The type of uncertainty addressed in these
papers is different (and more difficult) than what we are in-
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terested in here, namely un-/under-specified human activi-
ties.

Blythe (1994) studies the problem of planning and plan
repair with probabilistic external events. This approach,
however, only considers failures due to external events, and
lacks ways to model and take into account preferences dur-
ing plan generation.

Several approaches tackle the problem of human-aware
planning explicitly. These include work by Cirillo, Karlsson,
and Saffiotti (2009), who propose to handle human activi-
ties with a conditional planning approach (Karlsson, 2001).
We borrow their notion of ICs, but reformulate it to account
for qualitative and metric time, logical constraints and social
costs. In addition, the conditional nature of their approach
does not allow to decouple human activities from the search
space of causal reasoning which negatively affects scalabil-
ity. The work on human-aware task planning by Alami et al.
(2006) and Montreuil et al. (2007) is based on hierarchical
task networks and incorporates time, as well as social costs
depending on human and robot actions. Their notion of so-
cial constraints only imposes costs and there seems to be no
way to handle uncertainty about human actions. Conversely
it has the advantage of allowing cooperation between robots
and humans, an issue which we do not address in this paper.

Running Example
We now introduce an example domain for planning in inhab-
ited environments. This domain models a house with a set
of inhabitants that includes two parents, four kids, two in-
fants and four grandparents. The house consists of 20 rooms
with specific purposes (such as bedrooms, bathrooms, laun-
dry room etc.).

The temporal horizon of the problems in this domain is
1440 minutes (24 hours). This means that a plan has to
take place between 0 and 1440 minutes (where 0 represents
6:00am). Human activities are pre-scheduled and linked to
locations in the house and there may be cases in which the
human activity is unknown at planning time. The full set of
activities we used here is idle, out, eating, sleeping, reading,
working, cooking, playing and usingBathroom.

There are four robots, each with different capabilities, that
have to perform a set of tasks. The list of tasks we use is
vacuum, sortStuff, assist, collectTrash, takeOutTrash, col-
lectLaundry, doLaundry, cleanRoom, entertain. Robots can
either move from one location to another adjacent location
or perform a task at their current location. To make the prob-
lems more interesting, we use temporal constraints on goals
for a given day to divide them into three batches, where ev-
ery goal in the first batch has to be achieved before every
goal in the second batch. The goals in the second batch have
to be achieved after all those in the first batch and before the
ones in the third batch.

Robot plans have to follow certain rules to be executed
alongside human schedules. If one of the inhabitants is using
the bathroom, for instance, no robot is allowed to be in the
same room at the same time. Some of these rules are based
on preferences or features of the inhabitants. Here is a list of
possible rules (rules marked with ? can be violated by paying
social cost): (1) No working where someone is sleeping?;

(2) No working where a “light sleeper” is sleeping; (3) Don’t
interrupt easily distracted people?; (4) Robots not allowed
when bathroom is occupied; (5) Robots avoid locations with
people that dislike them?; (6) Collecting trash not allowed
while people are eating?; (7) Robots not allowed in bedroom
with two married people?; (8) No working in the kid’s rooms
while a kid is playing?; (9) Robots not allowed to vacuum
while someone is reading?.

Constraint-based Planning
In this section we introduce a constraint-based formulation
of the planning problem (Köckemann, Pecora, and Karls-
son, 2014) and extend it to account for constraints between
robot actions and partially specified activities of uncontrol-
lable agents. The language we use describes states (or con-
text), actions, goals and human activities via statements and
constraints. Statements attach information to temporal inter-
vals. Constraints are used to limit the allowed assignment of
variables (e.g. an interval’s duration). A context is described
by a set of statements F and a set of constraints C. We refer
to the pair Φ = (F , C) as a Constraint Database (CDB). Let
us start with an example CDB:
initial-context:
statements:
(a1, activity(father,kitchen,cooking))
(a2, activity(mother,study,A))
(/s, at(r1),robotRoom)
(/s, at(r2),robotRoom)
(/s, state(t1,clean,kitchen),waiting)
(/s, state(t2,vacuum,study),waiting)

constraints:
a1 At [0,0] [59,59];
a2 At [60,60] [106,106];
A in {reading,working};
s Release [0,0];
_planningInterval(0,1440);
socialCost() <= 100.0;

This initial context contains six statements: two human ac-
tivities, two robot locations and two tasks (t1 and t2) in
their initial state. Temporal intervals of these statements are
a1, a2 and /s1. Human activities are statements that have
a fixed interval (imposed by the At constraint, which sets
earliest/latest start/end time). All other statements (about
robot locations and task states) are constrained to start
at 0 (sRelease[0, 0]). The second human activity A (in-
terval a2) is unknown but has two possible values A ∈
{reading ,working}. In this way we introduce uncertainty
about the activity. The planning interval is set for 24 hours
and the maximum social cost we allow is 100.0. In the ex-
periments described later we will have four robots, between
110 and 260 human activities and between 10 and 30 tasks
for each problem.

We will now introduce statements, constraints, actions,
planning problem and solution. We use two types of
terms: Constant (or ground) terms refer to specific ob-
jects, while variable terms refer to an object of a spe-
cific type. The human activity (a2, activity(mother,study,A))

1/s is a syntactic element representing a set of intervals. This
allows to express temporal constraints for multiple intervals.
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above has two ground terms mother and study and one
variable A. A statement is a tuple (I, x, v) where I =
[[EST,LST ], [EET,LET ]] is a flexible temporal interval
with Earliest and Latest Start and End Times (EST, LST,
EET and LET) during which the statement holds. The do-
main of all time points EST , LST , EET and LET is im-
plicitly set to Dtime = {0, 1, 2, . . . , Tmax}, where Tmax ∈
N0 is also called the temporal horizon of the planning prob-
lem (set with planningInterval(0,1440) in the example). The
variable x has the form p(t1, . . . , tn), where p is the name
of the variable and all ti are terms. The term v is the as-
signed value (omitted for value True as, e.g., in activity
above). For every variable term t in a CDB we assume that
it has a finite domain D[t] of possible values. A substitution
σ = {x1/v1, . . . , xn/vn} can be used on any structure (such
as CDBs, statements, operators) that we use in this paper and
will replace all occurrences of terms xi in that structure with
terms vi. In the same way, we use Ground(Φ) to indicate
that all terms that occur in CDB Φ are ground. The union of
two CDBs Φ1 and Φ2 is Φ1∪Φ2 = (FΦ1 ∪FΦ2 , CΦ1 ∪CΦ2).
If F1 and F2 are sets of statements, let θ(F2,F1) be a set
of substitutions s.t. σ(F2) ⊆ F1,∀σ ∈ θ(F2,F1) (i.e., θ
represents all ways to substitute F2 to be a subset of F1).

Constraints limit the allowed values for all variables in a
CDB. Temporal constraints limit the earliest/latest start/end
times of a flexible interval I. Logical constraints limit al-
lowed combinations of variable assignments. Formally, ev-
ery constraint can be written down in a relational form
r(x1, . . . , xn), where r is a name and xi are terms. LetD[xi]
be the domain of each variable. We assume the existence of
a consistency function

SatisfiedType(r) : r×D[x1]×. . .×D[xn]→ {True,False}

for each type of constraint (Type(r)) that decides whether
or not c is satisfied given a (partial) assignment of all its
variable terms. We use SatisfiedType(c)(c, Φ) to express the
same for any constraint c given a CDB Φ (skipping the rela-
tional form). A CDB Φ is consistent iff

Consistent(Φ) ≡ ∃σ : Ground(σ(Φ))

∧∀c ∈ σ(CΦ) : SatisfiedType(c)(c, Φ).

Given this definition of Consistent , we need to provide a
definition for Satisfied for each type of constraint. For tem-
poral constraints (SatisfiedT ) we use quantitative Allen’s
interval algebra (Meiri, 1996). Allen’s interval constraints
(Allen, 1984) describe 13 qualitative relations between tem-
poral intervals (such as a Before/After/Equals/Overlaps b).
Quantitative Allen’s relations extend this notion by attach-
ing bounds. So, a Before b [1, 10] means that a ends be-
tween 1 and 10 time-units before b starts. We also added
unary constraints (such as Release and At from the ex-
ample) and conceptually neighboring constraints (Freksa,
1992) (such as BeforeOrMeets). In addition to temporal con-
straints, we also include reusable resources (SatisfiedR),
which are interpreted as a meta-CSP (Cesta, Oddi, and
Smith, 2002) over SatisfiedT (i.e., reasoning about re-
sources includes temporal reasoning). Logical constraints
(SatisfiedL) are evaluated as Prolog queries given back-
ground knowledge (Bratko, 2000) that is provided together

with domain and/or problem description. Cost constraints
(SatisfiedC ) boil down to simple function evaluations and
inequalities.

A CDB Φ1 supports a second CDB Φ2 iff

Supports(Φ1, Φ2) ≡ ∃σ ∈ θ(FΦ2
,FΦ1

) :

Consistent(Φ1 ∪ σ(Φ2))

requiring at least one way to make FΦ2
a subset of FΦ1

that
is consistent with the constraints in bothΦ1 andΦ2. This will
be used later to decide if a set of goals has been reached by
a plan or if the condition of an interaction constraint applies.

Interaction Constraints (ICs) are used to enforce a set of
constraints only under certain conditions. Whenever the con-
dition of an IC applies to a context (CDB) one of its resolvers
must be applied to satisfy the IC. Take the following as an
example:
ic HatesRobots(H,L,R,A,I):

condition:
statements: ( C, activity(H,L,A) )

( I, at(R), L )
constraints: hasProperty(H,hatesRobots);

_possibleIntersection(C,I);
resolver: C Before I [1,inf];
resolver: C After I [1,inf];
resolver: socialCost := socialCost + 5.0;

This constraint only applies to inhabitants with property
hatesRobots and when intervals C and I can possibly in-
tersect. The function we use to calculate the intersection
is common in the scheduling literature (Cesta, Oddi, and
Smith, 2002) and assumes earliest start and end time for the
intervals. If this condition holds one of the resolvers must be
applied. The first two resolvers separate C and I in time. The
third resolver allows to satisfy the constraint by paying a so-
cial cost. Social costs can either be used to determine the
quality of a plan or to prune unacceptable plans by setting
a maximum social cost (as was done in the initial context
example).

We can express the meaning of an IC in logical notation

Condition ⇒ Resolver1 ∨ . . . ∨ Resolvern

where Condition is a CDB and Resolver i are sets of
constraints. For convenience we use Condition(c) and
Resolvers(c) to access the respective data from any IC c.
Whenever a condition applies at least one resolver has to
apply in order to satisfy the constraint:

Satisfied IC (c, Φ) ≡ ∀σ ∈ θ(Condition(c), Φ) :

Supports(Φ, σ(Condition(c)))

⇒
∨

r∈Resolvers(c)

Supports(Φ, σ(r)).

Actions are also based on statements and constraints to
model their conditions and effects. Consider these examples:

operator Move( R, L1, L2 ):
preconditions: ( P , at(R) , L1 )
effects: ( E , at(R) , L2 )
constraints:

THIS Duration [T,inf];
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P Meets THIS; THIS Meets E;
E Duration [1,inf];
adjacent(L1,L2);
movingTime(R,L1,L2,T);

Here, P and E are intervals that have an attached state-
variable at(R) that assigns the robot’s position. Temporal
constraints are used to determine the time it takes to move
and when the assignment of at(R) changes. Logical con-
straints are used to make sure both locations are adjacent
and to decide the minimum time T it takes to move. Given
the above initial context, the two robots could move to any
location adjacent to the robot room. The second operator is
used to perform tasks:

operator PerformTask( R, Task, Class, L ):
preconditions: ( P1, at(R), L )

( P2, state(Task,Class,L), waiting )
effects:

( E1, state(Task,Class,L), attended )
( E2, state(Task,Class,L), finished )
( E3, busy(R), 1 )

constraints: THIS Duration [T,inf];
THIS During P1 [1,inf] [1,inf];
THIS Equals E1; E1 Equals E3;
P2 Meets E1; E1 Meets E2;
capability(R,Class);
executionTime(R,Class,T);

It requires the robot to be at the right location and changes
the state of the task from waiting to attended and finally to
finished. Logical constraints use background knowledge to
make sure the robot is capable of performing the task and
to lookup the minimum time T it takes R to perform a task
of this class. While the task is performed we assign a value
of 1 to variable busy(R), which is a reusable resource with a
capacity of 1 to make sure that any robot only performs one
task at a time.

More formally, an action a = (Pa, Ea, Ca) has a set of
precondition statements Pa, effect statements Ea and con-
straints Ca and can be applied to a CDB Φ = (FΦ, CΦ) iff
Pa ⊆ FΦ ∧ Consistent(γ(a, Φ)) where γ is the transition
function (Ghallab, Nau, and Traverso, 2004) formulated in
terms of CDBs: γ(a, Φ) = (FΦ ∪ Ea, CΦ ∪ Ca). A plan π
is a sequence of actions and is applicable to a CDB Φ iff
(∀ai ∈ π : Pai ⊆ FΦ ∪

⋃
j 6=i Eaj ) ∧ Consistent(γ(Φ, π)),

where γ(π, Φ) = (FΦ ∪
⋃
a∈π Ea, CΦ ∪

⋃
a∈π Ca). A plan-

ning problem Π = (I,G,A) consists of an initial CDB I ,
a goal CDB G and a set of actions A. A plan π is a solu-
tion to Π iff ∀a ∈ π : a ∈ A and π is applicable to I and
Supports(γ(I, π), G).

In classical planning, axioms provide a compact way to
imply facts from states. ICs perform a similar function,
as they imply constraints. Thibaux, Hoffmann, and Nebel
(2003) show how compiling axioms into actions causes sig-
nificantly larger domain formulations and plans, thus adding
complexity to the planning problem. Compiling ICs into ac-
tions poses a similar issue. Let us assume, for instance, that
we wanted to compile the IC HatesRobots into the Move
action. This entails that every activity (a, activity(H,L,A))
that can be matched to the condition has to be added to the
preconditions. In addition we have to add a copy of the ac-

tion for every possible combination of resolvers. Given just
10 matching activities in the initial context this would lead
to 103 versions of Move. None of these can be told apart
by a causal heuristic, since they all achieve the same ef-
fect. This forces the planner to pick a combination of re-
solvers together with an operator, which dilutes search and
is an unnecessary over-commitment. In addition, the con-
dition and resolvers of ICs may contradict each other, thus
making it impossible to model both condition and resolver
in an action. This is the case in the previous example, where
possibleIntersection(C,R) contradicts the first two resolvers.
As opposed to axioms, however, ICs imply constraints, not
facts. Therefore, they cannot lead to sub-goals or threats to
already achieved goals. The only way in which uncontrol-
lable activities can affect the search space of causal rea-
soning, is if human activities appear in preconditions or ef-
fects of actions. Here we assume this not to be the case and
can thus disregard uncontrollable activities and ICs during
causal reasoning.

Planner
Algorithm 1 shows a basic constraint-based planning algo-
rithm PLAN. It first uses CAUSALREASONING (line 3) to
create a plan using heuristic forward planning with a com-
bination of the Causal Graph (Helmert, 2006) and Fast For-
ward (Hoffmann and Nebel, 2001) heuristics that uses al-
ternating search queues (as suggested by Helmert (2006)).
Temporal propagation on goals is used to determine an order
and extract a structure of requirements between goals. This
enforces that goals that have an earlier start time have to be
achieved first. Inside CAUSALREASONING all constraints
and intervals are ignored which allows to solve this sub-
problem as a state-variable planning problem (Bäckström
and Nebel, 1993) with some extensions, as e.g., require-
ments between goals (detailed by Köckemann, Pecora, and
Karlsson (2014)). The plan is applied to the initial context
(line 5) and RESOLVE tests the resulting CDB Φ for con-
sistency wrt. to costs, temporal and resource constraints.
ICs are resolved by RESOLVEICS (line 6) which is de-
tailed in Algorithm 2 (explained in next section). If no con-
flict is found the plan π is returned as a solution, otherwise
CAUSALREASONING is called again, resuming its search.
If CAUSALREASONING fails to suggest a plan PLAN fails
(line 4).

RESOLVECOSTS implements SatisfiedC by simply cal-
culating the involved costs and applying inequalities. RE-
SOLVET&R implements SatisfiedR by using a precedence
constraint posting algorithm (Cesta, Oddi, and Smith, 2002)
that includes SatisfiedT . RESOLVELOGICAL implements
SatisfiedL by using Prolog (Bratko, 2000) (given back-
ground knowledge that is part of domain and/or problem
description). If an inconsistency is discovered at any point
PRUNING is used (line 8) to determine the shortest sequence
of actions that causes a conflict and to prune the search space
of CAUSALREASONING accordingly. PRUNING uses binary
search on π with RESOLVE and RESOLVEICS to find the
shortest inconsistent plan.

Algorithm 1 already employs problem decomposition by
separating causal reasoning from reasoning on constraints.
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Our experiments will show how we can exploit this idea
even further. The Algorithm is correct for problems that in-
clude costs, logical, temporal, resource and interaction con-
straints, since all sub-procedures that add constraints (i.e.,
RESOLVET&R and RESOLVEICS) test consistency of all
constraint types that can be added.

The completeness of Algorithm 1 depends on CAUSAL-
REASONING and PRUNING. The approach outlined above
can be incomplete for certain domains, due to limitations
of heuristic forward planning. One such limitation is the se-
quential approach to decision making that can lead to cases
in which two actions that are applicable in combination can-
not be applied in isolation. This could be remedied with
a partial-order based approach (McAllester and Rosenblitt,
1991). Despite this, we justify our choice of heuristic for-
ward planning with its performance in plan generation.

Algorithm 1 Constraint-based planning
Require: I,G - initial and goal CDB, A - set of actions

1: function PLAN(I,G,A)
2: loop
3: π ← CAUSALREASONING(I,G,A)
4: if π = Failure then return Failure
5: Φ← γ(I, π)
6: if RESOLVE(Φ) ∧ RESOLVEICS(Φ) then
7: return π . Success
8: else PRUNING(π, I)
9: function RESOLVE(Φ)

10: if ¬ (RESOLVECOSTS(Φ) ∧ RESOLVELOGICAL(Φ)
∧ RESOLVET&R(Φ)) then return False

11: return True

Resolving Interaction Constraints
Algorithm 2 shows how ICs are resolved. It first replaces
every IC with a set of candidates matching the context (line
2-5). Then it calls a recursive function (line 6) that takes the
first IC whose condition is satisfied (line 8-9), removes it,
finds a working resolver and calls itself recursively (line 10-
14). If the recursive call is successful or no IC applies we
return True . If the recursive call returns False we try the
next resolver if one is available or return False otherwise.
The type of search that Algorithm 2 realizes is a form of a
meta-CSP, where applicable ICs are variables and resolvers
are possible values.

The described algorithm naturally handles cases where
the executed human activity is only partially specified, since
line 4 will match all applicable constraints in case the human
activity is a variable. Consider, e.g., the initial context from
earlier, where (a2, activity(mother,study,A)) will be matched
to every IC that requires A = reading or A = working or
does not constrain A (as e.g., HatesRobots). Thus, the re-
sulting plan will be consistent with all activities that could
possibly occur and no plan will be generated if that is not
possible. The computational price is a larger number of po-
tentially applicable constraints n, which leads to more con-
sistency tests in line 9 and a larger recursion depth. This may
become expensive, since if m is the maximum number of

resolvers of all ICs, Algorithm 2 has to consider nm combi-
nations of resolvers in the worst case. In practice, however,
temporal and logical constraints in the condition of the ICs
can keep this number relatively low, even for large problems.

Algorithm 2 Resolving interaction constraints
Require: Φ - a CDB

1: function RESOLVE-ICS(Φ)
2: for c ∈ CΦ where Type(c) = IC do
3: Remove c from CΦ
4: for σ ∈ θ(FCondition(c),FΦ) do
5: CΦ ← CΦ ∪ {σ(c)}
6: return RESOLVESINGLEIC(Φ)
7: function RESOLVESINGLEIC(Φ)
8: for c ∈ CΦ where Type(c) = IC do
9: if RESOLVE(Φ ∪ Condition(c)) then

10: Remove c from CΦ
11: for Resolver ∈ Resolvers(c) do
12: Φ′ ← (FΦ, CΦ ∪ Resolver)
13: if RESOLVE(Φ′) then
14: if RESOLVESINGLEIC(Φ′) then
15: return True
16: return False . No working resolver
17: return True . No constraint applies

Experimental Setup
The purpose of the experiments is to show that the proposed
planner is capable of creating plans that satisfy a set of ICs
for problem instances of a reasonable size. In addition we
will show the potential benefits of problem decomposition
and constraint-based planning by comparing to a slight mod-
ification of Algorithm 1.

We randomly generated complete human schedules in the
following way: Starting at 6:00am, every activity lasts be-
tween 30 and 60 minutes. After filling a 16 hour time frame
in this manner, the activity of every family member is set
to sleep for the rest of the day. We used three different sets
of humans h1, h2 and h3 containing 5, 7 and 12 inhabi-
tants. The number of goals varies between 10 and 30 (g10
and g30) and goals are randomly distributed into the three
goal batches (keeping the number of goals in each batch ap-
prox. even). We used two configurations of uncertainty u0
(no uncertainty) and u1 (with uncertainty). For each activity
created with u1 there is a 10% chance that this activity will
be only partially specified and we randomly pick between
two and four random possible values.

To further exploit problem decomposition we observe that
satisfiability of logical constraints cannot change by apply-
ing any action or IC, since they are evaluated wrt. static
background knowledge that is provided with domain and
problem description. Once they are propagated they cannot
be violated anymore. In practice, this propagation will re-
place all actions and ICs with a set of substitutes that has
been proven to satisfy logical constraints. This allows us to
create an alternative to Algorithm 1, where we move RE-
SOLVELOGICAL outside of the loop of PLAN. We refer to
Algorithm 1 as p1 and to this alternative as p2. Finally, we
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Figure 1: Average times on 20 random problems for 15 dif-
ferent configurations.

Problem p1-d1 p1-d2 p2-d1 p2-d2

h1-g10 4.6 / 460.2 4.9 / 1118.3 4.6 / 140.7 4.9 / 155.4
h1-g15 6.6 / 731.8 6.9 / 1520.5 6.6 / 236.4 6.9 / 254.5
h1-g20 7.5 / 1008.2 8.2 / 2544.3 7.8 / 325.0 8.5 / 378.0
h1-g25 9.3 / 1677.3 9.8 / 3285.6 9.4 / 541.5 9.8 / 589.0
h1-g30 9.8 / 1861.4 10.6 / 3747.6 9.9 / 625.7 10.7 / 705.2

Table 1: Average number of applicable/tested IC conditions
for u0 with p1 and p2 for domains d1 and d2.

created two domains d1 and d2 containing the first 6 and 9
ICs from the list presented earlier to evaluate how the num-
ber of ICs changes the problem solving time. For each con-
figuration we created 20 random problems. We set a time
limit of 30 minutes to solve each problem. Experiments were
run on an Intel R© CoreTM i7-2620M CPU @ 2.70GHz x 4,
4GB RAM platform with a 3GB memory limit.

Experimental Results
Figure 1 shows the average problem solving times on 20 ran-
dom problems for each class. Planner p1 shows poor perfor-
mance, but using planner p2 we were able to solve problems
in a reasonable time, even for the most difficult set that we
used (g30, h3, u1). Comparing u0 to u1 we can see that the
cost of uncertainty increases for the more difficult problems,
which is not surprising, since more activities and goals are
likely to increase the number of applicable ICs. An excep-
tion is h2 − g25 which takes less time with u1 than with
u0. u1 has more potentially applicable ICs but slightly less
actually applicable ones. This indicates possible gains from
favorable variable orderings. In a similar way h3− g25 has
lower times for d2 than for d1. Our logs show that tempo-
ral reasoning and resource scheduling account for the differ-
ence which may be explained by ICs in the full set leading
to fewer resource conflicts, which raises questions regarding
the interplay between different constraint types.

Problem decomposition is enabled by the fact that we
model each aspect of a domain with the appropriate type
of constraint. In doing so we can separate reasoning
about time/resources, logical constraints, causal dependen-
cies among actions, ICs and costs from one another. This

allows us to achieve planner p2, which significantly reduces
the number of IC conditions that need to be tested (Algo-
rithm 2 line 4). This effect is shown in Table 1, where we
compare the number of applicable and tested IC conditions
for a subset of problems.

There is another instance of problem decomposition in
Algorithm 1, which lies in the fact that CAUSALREASON-
ING proposes a complete plan π and only considers other
constraints after this sub-problem has been solved. Running
RESOLVE and RESOLVEICS for every decision considered
by CAUSALREASONING would be a clear overhead, since
even in cases where we find a conflict, PRUNING needs a
logarithmic (since it uses binary search) number of tests
(rather than linear) to find the action that caused the conflict.

Temporal expressiveness also contributes to the presented
results. Removing the possible intersection constraint from
the condition of ICs adds a large amount of combinations to
the set of applicable ICs that need to be resolved even if they
implicitly are resolved already. For p2 in Table 1 this would
force Algorithm 2 to resolve all potentially applicable ICs,
since they become applicable.

Except for one instance, all problems in our experiments
were solvable within the allowed time of 30 minutes. In this
one case, however, the limit was reached in PRUNING, which
is explained by the fact that RESOLVEICS has to explore an
exponential number of resolver combinations in the worst
case. This could be counteracted (to a certain degree) by
employing ordering heuristics for the choice of IC (line 2)
and resolver (lines 4–5) in Algorithm 2. These correspond to
variable and value ordering heuristics in a meta-CSP search.

Conclusions & Future Work
We have addressed the problem of considering par-
tially specified schedules of uncontrollable agents in task-
planning. We employ interaction constraints to model pref-
erences of these agents in relation to plans. We propose a
constraint-based approach that allows to decompose reason-
ing about ICs from plan generation. We demonstrate feasi-
bility of the approach and the benefits of problem decompo-
sition in a series of experiments where we planned a day for
a set of robots in a house that is inhabited by a large family.

Our approach is particularly useful for human-aware plan-
ning. There are, however, still several open problems in
this field: While we use cost constraints to impose maxi-
mum social costs, we have not yet considered optimization.
Human schedules may not be known (at all) at planning
time. This would require us to resolve ICs during execution,
which poses additional challenges (Pecora et al., 2012; My-
ers, 1999; Lemai and Ingrand, 2004), such as re-planning.
Another interesting direction is to extend of ICs to allow new
goals as resolvers. If, for instance, a robot happens to be in
the same room as someone who is working, we may want it
to assist, even if this was not one of the original goals. Com-
bined with the previous on-line extension this would allow
very interesting applications.
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