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Abstract
Backdoors measure the distance to tractable fragments
and have become an important tool to find fixed-parame-
ter tractable (fpt) algorithms. Despite their success, back-
doors have not been used for planning, a central problem
in AI that has a high computational complexity. In this
work, we introduce two notions of backdoors building
upon the causal graph. We analyze the complexity of
finding a small backdoor (detection) and using the back-
door to solve the problem (evaluation) in the light of
planning with (un)bounded plan length/domain of the
variables. For each setting we present either an fpt-result
or rule out the existence thereof by showing parameter-
ized intractability. In three cases we achieve the most
desirable outcome: detection and evaluation are fpt.

1 Introduction
Planning is one of the central formalisms in AI. Unfortu-
nately, the expressive power of planning comes at the cost of
high computational complexity. In general, already proposi-
tional STRIPS planning is PSPACE-complete for unbounded
plan length. In order to cope with this high complexity, sev-
eral fragments of planning have been considered where plan-
ning becomes tractable. For propositional STRIPS a com-
prehensive complexity analysis was performed by Bylan-
der (1994). Later, Bäckström and Nebel (1995) presented
a similar analysis for the SAS+ formalism, where the state
variables range over multi-valued domains.

A more fine-grained understanding of the hardness of a
problem can be obtained from the viewpoint of parameter-
ized complexity theory (Downey and Fellows 1999). Here
one is interested in identifying one or multiple features of
the instance – the so-called parameters – which capture the
combinatorial explosion. More formally, the time needed to
solve the problem is not only measured in terms of the input
size n, but also depends on the parameter (or combination
of parameters) k. The class of efficiently solvable problems
is FPT (fixed-parameter tractable), i.e., the problem can be
solved by an fpt-algorithm in time f(k) · nO(1), where n
denotes the size of the problem instance and f(k) is a com-
putable function depending on parameter k only (and not on
n). The exponential time complexity is thus confined to the
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parameter, i.e., the function f(k). Therefore, an fpt-algorithm
can be considered efficient as long as the parameter values
of an instance are sufficiently low. Furthermore notice that
an fpt-result immediately yields tractability of the problem
if parameter k is bounded by a constant. Techniques from
parameterized complexity have been successfully used to
tackle hard problems, e.g., in Knowledge Representation &
Reasoning (Gottlob and Szeider 2008). For planning a pa-
rameterized complexity analysis was initiated by Downey,
Fellows, and Stege (1999). In recent works by Bäckström
et al. (2012) and Kronegger, Pfandler, and Pichler (2013),
several fpt-results have been obtained for SAS+ and proposi-
tional STRIPS. Despite this success the desire for additional
fpt-algorithms remains.

A powerful tool to obtain fpt-algorithms are so-called
backdoors (for a survey see Gaspers and Szeider (2012b)).
Backdoors were originally introduced by Williams, Gomes,
and Selman (2003) to explain the behavior of SAT and CSP
solvers on practical instances. The basic idea is that the size
of a backdoor set measures the distance to a tractable frag-
ment of the problem. In the past, the backdoor approach has
been used to obtain fpt-results for SAT (Nishimura, Ragde,
and Szeider 2004; Gaspers and Szeider 2012a), QBFs (Samer
and Szeider 2009), ASP (Fichte and Szeider 2011a), and Ar-
gumentation (Dvorák, Ordyniak, and Szeider 2012). Further-
more, several experiments regarding the size of the backdoors
of SAT and ASP instances were performed (Kilby et al. 2005;
Gregory, Fox, and Long 2008; Fichte and Szeider 2011b).
Interestingly, some of the instances were obtained through
SAT- and ASP-encodings of planning instances. Recently,
backdoors have also been used to construct parameterized
reductions to SAT for problems harder than NP such as
ASP (Fichte and Szeider 2013) and Abduction (Pfandler,
Rümmele, and Szeider 2013). However, backdoors for plan-
ning have not been considered yet.

In contrast to other problems such as SAT, where back-
doors can be defined in a direct way, the situation is different
for planning. Here, an additional layer is needed. The chal-
lenge is to find a suitable notion capturing the underlying
structure of the planning instance, which in the next step can
be used to define the desired notion of backdoors.
Main contributions
In this work, we introduce two natural notions of backdoors
for planning, which are based on the underlying causal graph

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2300



of the planning instance.
For both of the new notions of backdoors, we perform a

comprehensive parameterized complexity analysis (see Ta-
ble 1 for an overview). In more detail, we analyze the com-
plexity of the two phases of the backdoor approach: (i) find-
ing a small backdoor (detection phase), and (ii) using the
additional information given in the backdoor to solve the
planning instance (evaluation phase). In the evaluation phase,
we additionally consider a bound on the plan length and/or on
the domain of the variables as additional restrictions. For each
of the above settings we present either an fpt-result, or show
parameterized intractability. This gives us a complete picture
of the parameterized complexity of the backdoor approach
w.r.t. the considered notions of backdoors.

Among our fpt-results is the first fpt-algorithm for planning
with unbounded plan length that does neither limit the number
of variables nor actions in the planning instance.

2 Preliminaries
We assume the reader to be familiar with the basics of com-
plexity theory and planning. For an introduction to complex-
ity theory we refer, e.g., to the book of Papadimitriou (1994).
For n ∈ N, we use [n] to denote the set {1, . . . , n}.
Parameterized Complexity. Parameterized algorithmics
(cf. Downey and Fellows (1999), Flum and Grohe (2006),
Niedermeier (2006)) is a promising approach to obtain effi-
cient algorithms for fragments of intractable problems. In a
parameterized complexity analysis the runtime of an algo-
rithm is studied with respect to a parameter k ∈ N and input
size n. The basic idea is to find a parameter that describes the
structure of the instance such that the combinatorial explo-
sion can be confined to this parameter. The most favorable
class is FPT (fixed-parameter tractable) which contains all
problems that can be decided by an algorithm running in time
f(k) ·nO(1), where f is a computable function. We call such
an algorithm fixed-parameter tractable (fpt).

Formally, a parameterized problem is a subset of Σ∗ × N,
where Σ is the input alphabet. Problem reductions now also
have to take the parameter into account. Let L1 and L2 be
parameterized problems, withL1 ⊆ Σ∗1×N andL2 ⊆ Σ∗2×N.
A parameterized reduction (or fpt-reduction) from L1 to L2

is a mapping P : Σ∗1×N→ Σ∗2×N such that (i) (x, k) ∈ L1

iff P (x, k) ∈ L2; (ii) the mapping can be computed by an
fpt-algorithm w.r.t. parameter k; (iii) there is a computable
function g such that k′ ≤ g(k), where (x′, k′) = P (x, k).

Next, we will define the classes capturing fixed-parameter
intractability needed in this work. For further details we have
to refer to the literature on parameterized complexity theory.

The class W[1] contains all problems that are fpt-reducible
to INDEPENDENT SET when parameterized by the size of the
solution, i.e., the independent set (Downey and Fellows 1999;
Flum and Grohe 2006). The class paraNP (Flum and Grohe
2003) is defined as the class of problems that are solvable
by a non-deterministic Turing-machine in fpt-time. In our
paraNP-hardness proofs, we will make use of the follow-
ing characterization of paraNP-hardness given by Flum and
Grohe (2006), Theorem 2.14: any parameterized problem that
remains NP-hard when the parameter is set to some constant

is paraNP-hard. The following relations between the param-
eterized complexity classes hold: FPT ⊆ W[1] ⊆ paraNP.
Showing W[1]-hardness for a problem rules out the existence
of a fixed-parameter algorithm under the usual complexity
theoretic assumption FPT 6= W[1].
Planning. Let V = {v1, . . . , vn} be a finite set of variables
over a finite domain D. Implicitly define D+ = D ∪ {u},
where u is a special “undefined” value not present inD. Then
Dn is the set of total states and (D+)n is the set of partial
states over V and D. Clearly, Dn ⊆ (D+)n. The value of a
variable v in a state s ∈ (D+)n is denoted by s[v]. A SAS+

instance is a tuple P = 〈V,D,A, I,G〉 where V is a set of
variables, D is a domain, A is a set of actions, I ∈ Dn is the
initial state and G ∈ (D+)n is the (partial) goal state. Each
action a ∈ A has a precondition pre(a) ∈ (D+)n and an
effect eff(a) ∈ (D+)n. We will frequently use the convention
that a variable has value u in a precondition/effect unless a
value is explicitly specified. Let a ∈ A and let s ∈ Dn. Then
a is valid in s if for all v ∈ V , either pre(a)[v] = s[v] or
pre(a)[v] = u. Furthermore, the result of a in s is a state
t ∈ Dn defined such that for all v ∈ V , t[v] = eff(a)[v] if
eff(a)[v] 6= u and t[v] = s[v] otherwise.

Let s0, s` ∈ Dn and let ω = 〈a1, . . . , a`〉 be a sequence of
actions (of length `). Then ω is a plan from s0 to s` if either
(i) ω = 〈〉 and ` = 0, or (ii) there are states s1, . . . , s`−1 ∈
Dn such that for all 1 ≤ i ≤ `, ai is valid in si−1 and si
is the result of ai in si−1. A state s ∈ Dn is a goal state if
for all v ∈ V , either G[v] = s[v] or G[v] = u. An action
sequence ω is a plan for P if ω is a plan from I to some goal
state. We will study backdoors for the following problems:

SAS+ PLANNING
Instance: A SAS+ instance P.
Question: Does P have a plan?
BOUNDED SAS+ PLANNING
Instance: A SAS+ instance P and a positive integer k.
Parameter: k.
Question: Does P have a plan of length at most k?
Notice that the propositional version of the well-known

STRIPS planning language is a special case of SAS+.
Let P = 〈V,D,A, I,G〉 be an SAS+ instance, V ′ ⊆ V ,

and A′ ⊆ A. Then we denote by P[V ′] the SAS+ instance
〈V ′, Dr, Ar, Ir, Gr〉, where Dr is the restriction of D to the
domains of the variables in V ′,Ar are the actions inA whose
preconditions and effects are restricted to the variables in V ′,
and Ir and Gr are the restriction of I and G to the variables
in V ′. We write P \ V ′ for the instance P[V \ V ′]. Similarly,
we denote by P[A′] the SAS+ instance 〈V,D,A′, I, G〉 and
by P \A′ the SAS+ instance P[A \A′].

3 Using the Causal Graph for Backdoors
In this work we will introduce two new types of backdoors.
Before we start with the presentation of the details, we give a
high-level introduction to the backdoor approach.

The backdoor approach can be separated into two phases.
In the first phase (detection) one searches for a set, i.e., the
backdoor, whose size measures the distance of the given
instance to a tractable base class. In the second phase (evalu-
ation) one makes use of the information of the backdoor to
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Detection Evaluation
Setting (un)bounded plan length bounded plan length unbounded plan length
variable-deletion (un)bounded domain in FPT (Thm. 3) W[1]-hard (Thm. 4) W[1]-hard (Thm. 4)

action-deletion bounded domain in FPT (Thm. 7) in FPT (Thm. 10) in FPT (Thm. 9)
unbounded domain in FPT (Thm. 7) in FPT (Thm. 10) paraNP-hard (Thm. 8)

Table 1: Complexity map of backdoors to planning.

solve the problem. Usually, the size of the backdoor is con-
sidered as parameter in the detection and evaluation problem.
Hence, if both problems are fpt, they can be solved efficiently
as long as the backdoor is of moderate size.

For instance, for the SAT problem, one searches for a small
set of variables of size k such that the given formula can be re-
duced to 2k easy formulas that belong to the desired tractable
base class (e.g., Horn or Krom). For planning, however, it
is not immediately clear how to break a hard instance into
multiple easy instances by using a backdoor set.

The basic idea of this work is to use some underlying
structure of the planning instance, namely the causal graph,
instead of the planning instance itself to define the backdoor.
Therefore, we first need to recapitulate the concept of the
causal graph (Knoblock 1994; Brafman and Domshlak 2006;
Chen and Giménez 2010; Bäckström and Jonsson 2013).

The causal graph GCAUSAL(P) of a SAS+ instance P =
〈V,D,A, I,G〉 is the directed graph with vertices V that con-
tains an arc (v, v′), for distinct v, v′ ∈ V , if either there is an
action a ∈ A with pre(a)[v] 6= u and eff(a)[v′] 6= u or there
is an action a ∈ A with eff(a)[v] 6= u and eff(a)[v′] 6= u.
If C is a set of vertices of a subgraph of GCAUSAL(P) we de-
note by P[C] the SAS+ instance P[V ′] where V ′ ⊆ V are
all variables that correspond to vertices of C. We denote by
cc-size(H) the cardinality of the largest weakly connected
component of the directed graph H . If it is clear from the
context, we will write “components” instead of “weakly con-
nected components of the causal graph GCAUSAL(P)”.

In order to be able to define the backdoors, we need to find
a suitable, tractable base class. From the literature it is known
that SAS+ PLANNING is solvable in polynomial time if the
maximum component size of the underlying graph can be
bounded by a constant c, i.e., cc-size(GCAUSAL(P)) ≤ c.
Theorem (Chen and Giménez (2010)). Let c be a constant.
Then SAS+ PLANNING can be solved in polynomial time for
instances where cc-size(GCAUSAL(P)) ≤ c.

For the setting with bounded plan length it is easy to obtain
a similar result. It suffices to construct the state transition
graph (of size O(|D|c)) for each component and compute
the shortest path to the partial goal. An arbitrary combination
of the shortest plans for each component gives a solution.

Proposition 1. Let c be a constant. Then c-BOUNDED SAS+

PLANNING can be solved in polynomial time for instances
where cc-size(GCAUSAL(P)) ≤ c.

The backdoors introduced in this work measure the dis-
tance of the planning instance P to a tractable planning in-
stance P′ that has bounded component size. We will consider
two natural ways to decompose the components of the causal
graph. The backdoor set S either contains the variables or
the actions that are removed from the instance to reduce the

size of the weakly connected components. Notice that from
the viewpoint of classical complexity theory the evaluation
problem remains as hard as the original planning problem,
because one is free to add all variables or all actions to the
backdoor set.

In this work, each backdoor type is considered in the light
of four different settings of planning. We consider the SAS+

PLANNING and the BOUNDED SAS+ PLANNING problem in
case of an bounded or unbounded domain of the variables. For
each case we will present either an fpt-algorithm or hardness
for the classes W[1] or paraNP. The results of this work are
summarized in Table 1. Due to space limitations several proof
details had to be omitted.

3.1 Variable-Deletion-Backdoors
In this section we consider planning instances that have a
small number of variables whose removal results in a causal
graph with components of bounded size. We show that even
though the detection of these planning instances is fixed-
parameter tractable (Theorem 3) this does not hold for the
evaluation problem even for planning instances with bounded
domain (Theorem 4).

We start by defining the detection problem for the setting
where variables are allowed to be removed (variable-deletion-
backdoors).

c-CAUSAL DETECTION[VARIABLES]
Instance: A SAS+ instance P and a positive integer k.
Parameter: k.
Question: Is there a set S of at most k variables of P
such that cc-size(GCAUSAL(P \ S)) ≤ c?

Intuitively, a variable-deletion-backdoor captures the dis-
tance (in terms of variables that need to be removed) to an
instance where all variables can be partitioned into small sets
that are relevant for independent subtasks. Observe that the
property of having small components in the causal graph is
very fragile: Even if the variables form small independent
components, adding a single variable that occurs in all actions
in the precondition creates a single, big component in the
causal graph. Variable-deletion-backdoors can be seen as a
more robust notion. In the example above a backdoor of size
one (containing the newly introduced variable) is sufficient.

Next, we build upon this backdoor and extend the prob-
lems SAS+ PLANNING and BOUNDED SAS+ PLANNING
to make use of a previously computed backdoor S.

c-CAUSAL EVALUATION[VARIABLES]
Instance: A SAS+ instance P and a set S of variables
of P such that cc-size(GCAUSAL(P \ S)) ≤ c.
Parameter: |S|.
Question: Does P have a plan?
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c-BOUNDED CAUSAL EVALUATION[VARIABLES]
Instance: A SAS+ instance P and a set S of variables
of P such that cc-size(GCAUSAL(P \ S)) ≤ c.
Parameter: |S|+ k.
Question: Does P have a plan of length at most k?

We start the analysis by a discussion of the complexity of
the detection problem. To justify a parameterized complexity
analysis, we first show NP-hardness.

Theorem 2. 1-CAUSAL DETECTION[VARIABLES] is NP-
hard even for planning instances with bounded domain.

Proof. Let 〈G′ = (V,E), k〉, with |V | = n, be an instance of
the well-known VERTEX COVER problem. We construct an
instance 〈P, k〉 of 1-CAUSAL DETECTION[VARIABLES] in
the following way: LetD = {0, 1}, I = 0n andG = 1n. The
planning instance P contains one variable for each vertex in
V . Furthermore, let A be the union of all actions of the form
ax,y with eff(ax,y)[x] = eff(ax,y)[y] = 1 where {x, y} ∈ E.
Then, P := 〈V,D,A, I,G〉.

From the construction it is easy to see that every set S with
|S| = k that is a vertex cover of G′ is a set of k vertices such
that cc-size(GCAUSAL(P \ S)) = 1 and vice versa.

In the next theorem we will show that the detection prob-
lem is fixed-parameter tractable when parameterized by the
size of the backdoor set S. To establish this result we will
make use of Courcelle’s theorem and present an encoding in
Monadic Second-Order logic (MSO).

For the proof of the theorem, we need further definitions.
Let G = (VG, EG) be a graph. A tree-decomposition of
G is a pair 〈T, χ〉 where T = (VT , ET ) is a tree and χ
is a labeling function that maps every vertex x ∈ VT to a
set of vertices χ(x) ⊆ VG with the following properties:
(i) for every vertex y ∈ VG there is a node x ∈ VT such
that y ∈ χ(x), (ii) for every edge {y1, y2} ∈ EG there is
a node x ∈ VT such that y1, y2 ∈ χ(x), and (iii) for all
y1, y2, y3 ∈ VT , if y2 lies on the unique path from y1 to
y3 in T , then χ(y1) ∩ χ(y3) ⊆ χ(y2). The width of a tree-
decomposition 〈T, χ〉 is defined as maxx∈VT

{|χ(x)|} − 1.
The treewidth tw(G) of a graphG is the minimum width over
all its tree-decompositions. Bodlaender (1996) showed that
for any fixed c, one can check in linear time (and hence in
fpt-time when parameterized by c) whether tw(G) ≤ c.

Monadic Second-Order (MSO) logic is first-order logic ex-
tended by set variables. Courcelle (1990) showed that check-
ing whether a graph G satisfies an MSO formula ϕ is fixed-
parameter tractable when parameterized by the treewidth
tw(G) and the length of ϕ.

Theorem 3. c-CAUSAL DETECTION[VARIABLES] is fpt.

Proof. Let 〈P, k〉 be an instance of c-CAUSAL DETEC-
TION[VARIABLES] over variables V . We can construct
GCAUSAL(P) in polynomial time. For every YES-instance the
following holds: GCAUSAL(P) can be partitioned into S and
P1, . . . , Pm such that |S| ≤ k, |Pi| ≤ c for i ∈ [m], and for
every edge {x, y} between two different components either
x ∈ S or y ∈ S. Hence, the Pi are the remaining weakly
connected components if the vertices in S are removed from
GCAUSAL(P). Therefore, a valid tree-decomposition 〈T, χ〉 of

GCAUSAL(P) can be constructed in the following way: T is
a complete bipartite graph with vertices bS and b1, . . . , bm
such that bS is adjacent to all bi. The labeling χ is defined
by χ(bS) = S and χ(bi) = Pi ∪ S. Hence, the treewidth
tw(GCAUSAL(P)) for every YES-instance is bounded above by
k + c − 1. We now use Bodlaender’s theorem to check in
fpt-time whether tw(GCAUSAL(P)) ≤ k + c− 1. If the answer
is NO, there cannot be a backdoor set of size k.

Otherwise, we construct an MSO formula ϕ (whose size
depends only on c and k) which checks whether there is a
set of vertices S ⊆ V such that there is no weakly connected
component of size larger than c after deleting the vertices in S.
Then we can check in fpt-time whether GCAUSAL(P) satisfies
ϕ by using Courcelle’s theorem. It remains to present the
MSO formula ϕ. For this, let adj(x, y) be the symmetric
adjacency relation stating that vertex x is adjacent to/from
vertex y. Then, ϕ is defined as follows:

ϕ := ∃S ⊆ V
[
|S| ≤ k ∧ ¬

(
∃x1, . . . , xc+1 ∈ V \ S ∧

∧
∧

1≤i<j≤c+1

xi 6= xj ∧
∧

1≤i<j≤c+1

(
adj(xi, xj) ∨

∨
l∈{2,...,c}

ψl(xi, xj)
))]

where ψl(x, x
′) :=

(
∃y1, . . . , yl−1 ∈ V \ S

(
adj(x, y1)

∧ adj(yl−1, x
′) ∧

∧
m∈[l−2]

adj(ym, ym+1)
))

It is easy to verify that ϕ is satisfiable if and only if 〈P, k〉
is a YES-instance.

Notice that although the previous result shows fixed-
parameter tractability, the direct applicability might be lim-
ited, due to the running time caused by the function f(k).
However, this fpt-result can be seen as the starting point of
the development of more sophisticated fpt-algorithms with
improved runtime. Such algorithms can be obtained, e.g., by
using dynamic programming or other advanced techniques.

In the next result we show that although finding a small
backdoor is fpt, the evaluation remains hard for this type
of backdoor. This is shown by a reduction from the PAR-
TITIONED CLIQUE problem, which is known to be W[1]-
complete (Pietrzak 2003).

PARTITIONED CLIQUE
Instance: An integer k, a k-partite graph G = (V,E)
with partition {V1, . . . , Vk} of V into sets of equal size.
Parameter: k.
Question: Does G have a k-clique, i.e., a set V ′ ⊆ V
of k vertices such that ∀u, v ∈ V ′, with u 6= v there
is an edge {u, v} ∈ E, and ∀i ∈ [k] it holds that
|V ′ ∩ Vi| = 1?

Theorem 4. c-CAUSAL EVALUATION[VARIABLES] and c-
BOUNDED CAUSAL EVALUATION[VARIABLES] are W[1]-
hard even for planning instances with bounded domain.

Proof. We reduce from PARTITIONED CLIQUE. Let G′ =
(V,E) be a k-partite graph where V is partitioned into
V1, . . . , Vk. We construct an instance 〈P, S〉 of c-CAUSAL
EVALUATION[VARIABLES] and 〈P, S, k′′〉 of c-BOUNDED
CAUSAL EVALUATION[VARIABLES] in the following way.
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Let k′ := k +
(
k
2

)
and k′′ := k + k′. The variables V ′

are the union of three kinds of variables: (i) the variables
corresponding to the vertices of the graph V = {v1, . . . , vn},
(ii) pair-variables Vp of the form pi,j for 1 ≤ i < j ≤ k, and
(iii) counter variables Vc = {c1, . . . , ck′}.

The actions A are the union of two types of actions: First,
the actions Av where for each v ∈ V and l ∈ [k′] we in-
troduce an action alv with pre(alv)[cl] = 0 and eff(alv)[cl] =
eff(alv)[v] = 1. This type of actions allows to select k ver-
tices into the set V ′. Second, the actions Ap where for each
l ∈ [k′] and each edge {vi, vj} ∈ E such that 1 ≤ i < j ≤ n,
vi ∈ Vi′ , vj ∈ Vj′ , and i′, j′ ∈ [k] (with i′ 6= j′), we intro-
duce an action ali,j with pre(ali,j)[cl] = 0, pre(ali,j)[vi] =

pre(ali,j)[vj ] = 1, and eff(ali,j)[cl] = eff(ali,j)[pi′,j′ ] = 1.
The intuition of this type of actions is as follows. These ac-
tions allow to set a pair variable pi′,j′ ∈ Vp to 1 whenever
there is an edge between vi ∈ Vi′ and vj ∈ Vj′ in G′ and
the variables vi and vj have been selected previously using
actions of the first type.

The initial state is defined as I = 0n+k′′
, whereas in

the goal G we set the variables in Vp to 1 and all others
to undefined (u). Now let P := 〈V ′, {0, 1}, A, I,G〉, S :=
Vp ∪ Vc.

It is easy to verify that deleting the variables in S yields
a causal graph where the maximum size of the components
is one. Notice that since |S| = 2k′ − k, |S| is bounded
by a function of k. Furthermore, it is straightforward to
check the equivalence of the following three statements:
(i) 〈P, S〉 is a YES-instance (ii) 〈P, S, k′′〉 is a YES-instance
(iii) 〈k,G′, {V1, . . . , Vk}〉 is a YES-instance.

Note that the previous construction could be simplified
for c-BOUNDED CAUSAL EVALUATION[VARIABLES] by
removing the counter variables.

The hardness results for c-CAUSAL EVALUA-
TION[VARIABLES] and c-BOUNDED CAUSAL EVAL-
UATION[VARIABLES] indicate that we should continue and
consider further types of backdoors in order to obtain the
desirable case where both detection and evaluation are fpt.

3.2 Action-Deletion-Backdoors
In this section we show our two main positive results, namely,
that SAS+ PLANNING is fixed-parameter tractable parame-
terized by the number of actions one needs to delete in order
to obtain a causal graph with constant size components for
planning instances with bounded domain variables. The same
holds true for BOUNDED SAS+ PLANNING even for plan-
ning instances with an unbounded domain. To obtain these
results we first show that the detection problem for action-
deletion-backdoors is fixed-parameter tractable (Theorem 7).
We then show that this also holds true for the evaluation
problem for planning instances of bounded domain and for
instances of bounded planning in Theorem 9 and 10, respec-
tively.

For the action-deletion-backdoors, i.e., the setting where
actions are removed to obtain components of size at most c,
the problems c-CAUSAL DETECTION[ACTIONS], c-CAUSAL
EVALUATION[ACTIONS], and c-BOUNDED CAUSAL EVAL-
UATION[ACTIONS] are defined analogously to the respective

problems for variable-deletion-backdoors. Notice that S now
denotes a set of actions.

The property of having small component size in the causal
graph is fragile with respect to adding actions: For instance,
consider the case where a “reset” action is added to a planning
instance with small component size. The “reset” action sets
all variables according to their value in the initial state. As
a result the causal graph contains only one big component.
However, observe that the size of an action-deletion-backdoor
for this instance is one.

As in the previous section we start by showing classical
hardness of the detection problem. To this end, we make
use of the 3-DIMENSIONAL MATCHING problem, which is
well-known to be NP-complete (Garey and Johnson 1979).

3-DIMENSIONAL MATCHING
Instance: Three disjoint sets X,Y, Z of the same cardi-
nality, a set of triples T ⊆ X × Y × Z, and a k ∈ N.
Question: Is there a set T ′ ⊆ T with |T ′| ≥ k such that
no distinct t, t′ ∈ T ′ agree on at least one coordinate?

Theorem 5. For every c ≥ 3 the problem c-CAUSAL DE-
TECTION[ACTIONS] is NP-hard.

Proof. We reduce from 3-DIMENSIONAL MATCHING to
c-CAUSAL DETECTION[ACTIONS] for every c ≥ 3.
Let 〈(X,Y, Z), T, k〉 be an instance of 3-DIMENSIONAL
MATCHING with |X ∪ Y ∪ Z| = n and |T | = t and let
c ≥ 3. We construct an instance 〈P, k〉 of c-CAUSAL DETEC-
TION[ACTIONS] in the following way: We set D = {0, 1},
I = 0n, G = 1n, V = { vx | x ∈ (X ∪Y ∪Z) }∪{ vit | t ∈
T and 3 < i ≤ c }. Furthermore, the set A of actions con-
tains one action at for every triple t ∈ T with eff(at)[vx] = 1
and eff(at)[v

i
t] = 1 for x in t and 3 < i ≤ c. Notice that the

vit variables are used to pad the size of the components to c if
we reduce to c-CAUSAL DETECTION[ACTIONS] with c > 3.

We claim that 〈(X,Y, Z), T, k〉 is a YES-instance of
3-DIMENSIONAL MATCHING if and only if the instance
〈P, t− k〉 with P = 〈V,D,A, I,G〉 is a YES-instance of
c-CAUSAL DETECTION[ACTIONS].

Suppose that 〈(X,Y, Z), T, k〉 is a YES-instance of 3-
DIMENSIONAL MATCHING and let T ′ be a set of at least k
triples witnessing this. It is straightforward to check that the
set A′ = { at | t ∈ T \ T ′ } satisfies cc-size(GCAUSAL(P \
A′)) ≤ c and hence A′ is a solution of 〈P, t− k〉.

For the reverse direction suppose that 〈P, t− k〉 is a YES-
instance of c-CAUSAL DETECTION[ACTIONS] and let A′ be
a set of at most t− k actions witnessing this. We claim that
the set T ′ = { t | at /∈ A′ } satisfies t∩ t′ = ∅ for every t and
t′ in T ′. Suppose for a contradiction that there are t and t′ in
T ′ with t ∩ t′ 6= ∅. It follows that the graph GCAUSAL(G \A′)
contains a component that contains all vertices in t ∪ t′ and
additionally the vertices { vit′′ | t′′ ∈ {t, t′} and 3 < i ≤ c }.
Since we can assume w.l.o.g. that t 6= t′ and thus |t ∪ t′| ≥ 4
this contradicts our assumption that all components of the
graph GCAUSAL(P \A′) have cardinality at most c.

The following technical lemma is very useful to simplify
the proof of the next theorem, an fpt-result for the detection
problem.
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c-BALANCED LABEL SEPARATOR
Instance: An undirected edge-labeled multigraph G
(without self-loops), a labeling function λ : E(G)→ N,
and an integer k.
Parameter: k.
Question: Is there a set L of at most k labels such that
cc-size(G \ λ−1(L)) ≤ c?

Lemma 6. c-BALANCED LABEL SEPARATOR is fpt.
With help of this lemma, we now show the desired result.

Theorem 7. c-CAUSAL DETECTION[ACTIONS] is fpt.

Proof. We reduce c-CAUSAL DETECTION[ACTIONS] to c-
BALANCED LABEL SEPARATOR. Let 〈P, k〉 be an instance
of CAUSAL DETECTION[ACTIONS]. We construct an equiv-
alent instance 〈G,λ, k〉 of c-BALANCED LABEL SEPARA-
TOR as follows. Let G be the undirected edge-labeled multi-
graph with vertex set V and an edge e labeled with a be-
tween two variables v and v′ for every action a ∈ A with
pre(a)[v] 6= u and eff(a)[v′] 6= u and for every action a ∈ A
with eff(a)[v] 6= u and eff(a)[v′] 6= u. It is straightforward
to check that 〈P, k〉 is a YES-instance of c-CAUSAL DETEC-
TION[ACTIONS] if and only if 〈G,λ, k〉 is a YES-instance of
c-BALANCED LABEL SEPARATOR.

After this promising result for the detection problem, we
turn to the evaluation problem. In case neither the plan length
nor the size of the domain of the variables is bounded, evalu-
ation remains hard even for action-deletion-backdoors. How-
ever, if either the domain or the plan length is bounded we
can show two fpt-results for the evaluation problem.
Theorem 8. 9-CAUSAL EVALUATION[ACTIONS] is
paraNP-hard even if the global actions (the actions in the
backdoor S) have no preconditions.

Proof (sketch). The proof is via a reduction from 3-SAT.
Let Φ be a 3-CNF formula with variables x1, . . . , xn.
We construct an instance 〈P, S〉 of 9-CAUSAL EVALU-
ATION[ACTIONS] where S contains 5 “global actions”
s1, . . . , s5 and GCAUSAL(P) \ S contains one component for
each clause of Φ and one “global” component (each compo-
nent contains at most 9 variables). The main idea is that the
global component guesses an assignment α for the variables
of Φ and forces a sequence of global actions that represents
the guessed assignment. In particular, for every variable xi,
if α(xi) = 0, then the following sequence of global actions
is forced by the global component:

〈s1, s3, . . . , s1, s3︸ ︷︷ ︸
(i−1)-times s1,s3

, s4, s3, s1, s3, . . . , s1, s3︸ ︷︷ ︸
(n−i)-times s1,s3

, s5〉

If α(xi) = 1, then the following sequence of global actions
is forced by the global component:

〈s2, s3, . . . , s2, s3︸ ︷︷ ︸
(i−1)-times s2,s3

, s4, s3, s2, s3, . . . , s2, s3︸ ︷︷ ︸
(n−i)-times s2,s3

, s5〉

Observe that the above sequences uniquely identify the vari-
able xi and its assignment α(xi) for every variable xi. The
total sequence of global actions forced by the global com-
ponent is then the concatenation of the above sequences for

every variable xi. The components of the clauses now ensure
that every clause is satisfied by the assignment chosen by the
global component. They do so by allowing only sequences of
global actions that correspond to a satisfied literal of the re-
spective clause to lead to their (local) goal state. Due to space
limitations we had to omit the details of the construction and
a rigorous proof.

Theorem 9. c-CAUSAL EVALUATION[ACTIONS] is fpt for
planning instances with bounded domain.

Proof. Let 〈P, S〉 with P = 〈V,D,A, I,G〉 be an instance
of c-CAUSAL EVALUATION[ACTIONS] such that |D| ≤ d
for some constant d.

We say that two instances P1 = 〈V1, D1, A1, I1, G1〉 and
P2 = 〈V2, D2, A2, I2, G2〉 of SAS+ PLANNING are isomor-
phic if there is a bijection f from V1∪D1∪A1 to V2∪D2∪A2

such that: (i) f(v) ∈ V2 for every v ∈ V1, f(d) ∈ D2 for
every d ∈ D1, and f(a) ∈ A2 for every a ∈ A1, (ii) for
every a ∈ A1 and v ∈ V1 it holds that f(pre(a)[v]) =
pre(f(a))[f(v)] and f(eff(a)[v]) = eff(f(a))[f(v)], and
(iii) for every v ∈ V1 it holds that f(I1[v]) = I2[f(v)] and
f(G1[v]) = G2[f(v)].

Let C1 and C2 be two weakly connected components of
the graph GCAUSAL(P\S). We say that C1 and C2 are globally
equivalent, denoted by C1 ≡ C2, if there is an isomorphism
f between P[C1] and P[C2] such that f(s) = s for every
s ∈ S.
Claim 1. The number of equivalence classes of the com-
ponents of GCAUSAL(P \ S), with respect to ≡, is at most
cG = c · ((d+ 1)2c)|S|+2 · 2(d+1)2c .

The claim follows from the following observations for
every component C of GCAUSAL(P \ S): (i) C has at most
c variables, (ii) there are at most dc · (d + 1)c ≤ (d + 1)2c

possible configurations for the initial state and for the goal
state on the variables of C, (iii) there are at most (d+ 1)2c

possible combinations of preconditions and effects for any
action in S on the variables of C, (iv) there are at most (d+
1)2c possible distinct actions defined only on the variables of
C, and (v) there are at most 2(d+1)2c distinct sets of actions
defined only on the variables of C.
Claim 2. Let C1 and C2 be two globally equivalent compo-
nents of GCAUSAL(P\S), let V1 be the variables corresponding
to the vertices of C1, and let P′ = P \ V1. Then, P is a YES-
instance if and only if so is P′.

Suppose that there is a plan ω for P. Then it is straightfor-
ward to verify that the plan ω′ obtained from ω after deleting
all occurrences of actions that have at least one precondition
or one effect in C1 and are not in S, is a plan for P′.

For the reverse direction, let ω′ be a plan for P′ and let f
be an isomorphism from P[C2] to P[C1] such that f(s) = s
for every s ∈ S. Furthermore, let ω be obtained from ω′ after
replacing every occurrence of an action a in P′ that has at
least one precondition or one effect in C2 and is not in S,
with the sequence (a, f(a)). Again it is straightforward to
check that ω is a plan for P.

The following algorithm solves the SAS+ PLANNING
problem for P in 3 steps.
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1) Compute the global type, i.e., the equivalence class with
respect to ≡, of each component C in GCAUSAL(P \ S).

2) Compute the reduced instance P′ of SAS+ PLANNING
from P by deleting all but one component for each global
component type from P.

3) Compute the state-transition graph of the reduced instance
P′ and solve P′. Return YES, if P′ is a YES-instance and
otherwise NO.

The correctness of the algorithm follows immediately from
Claim 2.

The running time of the algorithm is obtained as follows.
Because of Claim 1, Step 1 needs time O(|V | · cG) (recall
that cG is the number of equivalence classes with respect to
≡), Step 2 can be executed in time O(|V |) (by using clever
data structures), and Step 3 needs time at most O(dc·cG),
because there are at most c · cG variables left in the reduced
instance. Hence the total running time of the algorithm is
O(dc·cG + |V | · cG), which shows that c-CAUSAL EVALU-
ATION[ACTIONS] is fixed-parameter tractable for planning
instances with a bounded domain of the variables.

Theorem 10. c-BOUNDED CAUSAL EVALUA-
TION[ACTIONS] is fpt.

Proof. Let 〈P, S, k〉 be an instance of c-BOUNDED CAUSAL
EVALUATION[ACTIONS]. The main idea is to iterate over all(
k
l

)
|S|l sequences of actions from S that can appear in a plan

of length l ≤ k for P. For each of those sequences ω and for
every component C of GCAUSAL(P \ S) one can then compute
the minimal plan (if one exists) for P[C] in polynomial time
with the help of the state-transition graph of P[C] (whose
size is at most |D|c). Then P has a plan of length at most k if
and only if there is a sequence of actions of S whose length l
is between 0 and k such that l + s ≤ k, where s is the sum
of the lengths of the minimal plans for each component of
GCAUSAL(P \ S).

Theorems 9 and 10 show in combination with Theorem 7
that the backdoor approach can be used to obtain new fpt-
algorithms for planning problems. This is because, under
action-deletion-backdoors the detection problem as well as
three important evaluation problems are efficiently solvable
– as long as the size of the backdoor is moderate. The fpt-
algorithm for planning works as follows. First we search
for a small backdoor (detection phase), which is then used
in a subsequent step to solve the given planning instance
(evaluation phase). Observe that this is the first fpt-algorithm
for planning with unbounded plan length, which does not
depend on the parameters |V | or |A|.

4 Discussion
In this section we comment briefly on the potential impact
to practical applications and the choice of the tractable base
class. There has recently been a growing interest in finding
tractable fragments of planning using the causal graph (Braf-
man and Domshlak 2003; Chen and Giménez 2010; Katz
and Domshlak 2008; 2010; Giménez and Jonsson 2008;
Katz and Keyder 2012)). As pointed out in (Katz and Keyder
2012):

“Such results are not purely of theoretical interest, as
the causal graph is used in a variety of practical ap-
plications from problem decomposition (Brafman and
Domshlak 2006) to the derivation of non-admissible
domain-independent heuristics for planning (Helmert
2004).”

We believe that this applies even more to (fixed-parameter)
tractable extensions of these fragments obtained by the back-
door approach. In particular, the backdoor approach adds
a novel dimension of flexibility to the definition of these
tractable classes that allows one to trade efficiency for gener-
ality to best suit the particular application. This also allows to
use the insights obtained for those tractable classes to solve
arbitrary planning instances.

Regarding the choice of the tractable base class, we want to
point out that even though the class of instances with bounded
component size of the causal graph itself can be seen as rather
trivial, the backdoor approach extends its applicability to ar-
bitrary planning instances. Moreover, as shown by (Chen
and Giménez 2010) this class is as general as possible for
unbounded planning, in the sense that it cannot be properly
contained in any other polynomial-time tractable fragment
of planning. Nevertheless, considering further fragments re-
mains an interesting direction for future work.

5 Conclusion
In this work we have introduced the first two types of back-
door sets for planning. The distance to the tractable fragment
was expressed by the number of variables or actions that need
to be removed in order to obtain a causal graph of bounded
maximum component size. For each backdoor type and
each setting of considered SAS+ planning formalisms (with
bounded/unbounded plan length and bounded/unbounded
domain of the variables) we have analyzed the (parameter-
ized) complexity of the detection and evaluation problem.
In three cases (all settings under action-deletion-backdoors
with the exception of unbounded planning with unbounded
domain of the variables) we have obtained the most desir-
able result where detection as well as evaluation are fixed-
parameter-tractable. In the remaining cases, we have ruled
out the existence of an fpt-algorithm by showing hardness
for W[1] or paraNP.

We envisage the study of other underlying graph structures
(such as the planning graph) to obtain further useful notions
of backdoor sets. By employing techniques such as dynamic
programming we plan to improve the running time of the
fpt-result obtained via Courcelle’s theorem. Furthermore, we
want to explore additional supporting parameters that help to
make the evaluation problem in the variable-deletion setting
fixed-parameter tractable.
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