
A Relevance-Based Compilation Method
for Conformant Probabilistic Planning

Ran Taig and Ronen I. Brafman
Computer Science Department

Ben Gurion University of The Negev
Beer-Sheva, Israel 84105
taig,brafman@cs.bgu.ac.il

Abstract

Conformant probabilistic planning (CPP) differs from con-
formant planning (CP) by two key elements: the initial belief
state is probabilistic, and the conformant plan must achieve
the goal with probability ≥ θ, for some 0 < θ ≤ 1. In earlier
work we observed that one can reduce CPP to CP by finding a
set of initial states whose probability ≥ θ, for which a confor-
mant plan exists. In previous solvers we used the underlying
planner to select this set of states and to plan for them si-
multaneously. Here we suggest an alternative approach: start
with relevance analysis to determine a promising set of initial
states on which to focus. Then, call an off-the-shelf confor-
mant planner to solve the resulting problem. This approach
has a number of advantages. First, instead of depending on
the heuristic function to select the set of initial states, we can
introduce specific, efficient relevance reasoning techniques.
Second, we can benefit from optimizations used by confor-
mant planners that are unsound when applied to the origi-
nal CPP. Finally, we are free to use any existing (or new)
CP solver. Consequently, the new planner dominates previ-
ous solvers on almost all domains and scales to instances that
were not solved before.

Introduction
In conformant probabilistic planning (CPP) we are given a
set of actions – which like most past work, are assumed to
be deterministic, a distribution over initial states, a goal con-
dition, and a real value 0 < θ ≤ 1. We seek a plan π such
that following its execution, the goal is achieved with proba-
bility ≥ θ. Not many natural problems fit the frameworks of
conformant planning (CP) and CPP, yet both serve as basic
frameworks on which ideas for planning under uncertainty
can be developed and tested. Indeed, important ideas devel-
oped in CP were later extended to the richer framework of
contingent planning, including techniques for representing
and reasoning about belief states (Hoffmann and Brafman
2005) and various translation schemes (Albore, Palacios,
and Geffner 2009). The latter represent an important trend in
research on planning under uncertainty, where simple plan-
ners are used to solve more complex problems (Yoon, Fern,
and Givan 2007; Palacios and Geffner 2009; Albore, Pala-
cios, and Geffner 2009).

Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper utilizes this reduction idea to develop an ef-
fective reduction scheme for solving CPP problems with de-
terministic actions, motivated by our observation 2013: One
can solve CPP by finding a set of initial states with joint
probability ≥ θ for which a conformant plan exists. In our
earlier work, we used this idea to build a translation-based
CPP solver that has special actions that let the planner ig-
nore a certain state in the solution. Each such action carries
a cost equal to the probability of the ignored state. A plan
with cost ≤ 1− θ is a solution to the original CPP problem.
This technique has several weaknesses. First, the choice of
which states to ignore is carried out by the underlying plan-
ner’s heuristic function. It is not clear that this function is
well suited for this task. Second, the planner need not mini-
mize cost, but rather, ensure that a certain cost bound is met.
Few current planners or search techniques support this op-
timization criterion. Finally, various optimization schemes
used by CP solvers are unsound under this scheme.

We suggest an alternative, simpler approach where, first,
dedicated relevance-based preprocessing analysis is con-
ducted, determining a promising set of states with probabil-
ity ≥ θ to plan on. Then, this state set is given to an off-the-
shelf conformant planner as its initial state. Besides address-
ing the above shortcomings of our older method, this method
provides the flexibility of selecting the underlying confor-
mant planner to suit the current planning domain. Our em-
pirical evaluation shows that this approach dominates exist-
ing state-of-the-art planners on almost all problem instances.

In the next section, we provide some required background
on CPP. Then, we discuss related work, followed by a formal
description of our planner and its properties. We conclude
with an empirical evaluation and a discussion of our results
and potential future work.

Conformant Probabilistic Planning
We assume familiarity with the basic notation of classi-
cal planning domains via STRIPS with conditional effects:
(V,A, I,G), corresponding to a set of propositions, actions,
initial world state, and goal. A CP problem, (V,A, bI , G),
generalizes this framework, replacing the single initial state
with a set of initially possible states, called the initial belief

state bI . This initial state is often described by means of a
formula ϕI , such that bI = {w|w |= ϕI}. A plan is an
action sequence a such that a(wI) ⊇ G for every wI ∈ bI .

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2374

CPP extend CP by quantifying the uncertainty regarding
bI using a probability distribution bπI . In its most general
form, CPP allows for stochastic actions, but we leave this to
future work, and assume all actions are deterministic. CPP
tasks are 5-tuples (V,A, bπI , G, θ), corresponding to the set

of propositions, set of actions, initial belief state, goals, and
acceptable goal satisfaction probability. As before, G is a
conjunction of propositions. bπI denotes a probability distri-
bution over the world states, where bπI (w) is the probability
that w is the true initial world state.

In many settings, achieving G with certainty is impossi-
ble. CPP introduces the parameter θ, which specifies the
required lower bound on the probability of achieving G. A
sequence of actions a is called a plan if the weight of the
initial states from which a reaches the goal is at least θ.

Some approaches (PFF’s,for instance) to CPP require that
the plan be executable in all initial states, even those from
which it does not reach the goal. That is, each plan pre-
fix must be conformant (with probability 1) with respect to
the preconditions of the next action. This extra requirement
may make sense in domains where executing an action with-
out satisfying its preconditions may have catastrophic conse-
quences. However, it seems to conflict with the very explicit
success criterion of CPPs specified by the parameter θ, and
we adapt this requirement as the only requirement from a
plan for a CPP problem in our work.

A CPP specification language must provide a way to
specify the initial distribution bπI . Following previous
work (Domshlak and Hoffmann 2007) we assume that bπI

is specified using a Bayes net (BN) NbI . (We assume the
reader is familiar with the notion of BN’s.) BNs are typi-
cally defined over a set of multi-valued variables, and there
are numerous formats used in the literature for their speci-
fication, all having the same semantics. Here, we adopt the
notation used by the PFF planner (Domshlak and Hoffmann
2007) which contains two parts. First, a definition of an in-
duced set of multi-valued variables, corresponding to a set of
literals, only one of which can be true at a time (e.g., literals
denoting possible locations of an object). And second, NbI ,
which is a BN defined over this set of multi-valued variables.

Related Work
The best current CPP solvers are Probabilistic FF

(PFF) (Domshlak and Hoffmann 2007) and PCBP (Taig and
Brafman 2013), but each works well only on a subset of
benchmark domains. Probabilistic-FF uses a time-stamped
Bayesian Networks (BN) to describe probabilistic belief
states, extending Conformant-FF’s (Hoffmann and Brafman
2006) belief state encoding to model these BN. It uses SAT
reasoning (following Conformant-FF) and weighted model-
counting to determine whether goal probability is at least θ.
In addition, it introduces approximate probabilistic reason-
ing into Conformant-FF’s heuristic function. PFF performs
well on many domains, but it is sensitive to the syntax of
conditional effects (the order of literals in effect conditions),
and requires complex probabilistic reasoning. To model the
belief state during planning, it extends the original BN into a
time stamped dynamic (and thus continually growing) BN,
on which it performs probabilistic inference by compiling

probabilistic queries into WMC queries. The algorithm we
introduce reasons with a single, static BN that represents the
initial state probability. Reasoning is performed at the pre-
processing time only, in order to assess initial state restric-
tions. No probabilistic queries or data structures need be
maintained at planning time, leading to significant saving of
time and memory.

Closely related to our work are the CLG+ planner (Al-
bore and Geffner 2009) and the assumption-based planning
approach introduced recently (Davis-Mendelow, Baier, and
McIlraith 2013). Both attempt to solve planning problems
with incomplete information in which goal achievement
cannot be guaranteed from all states, by making assumptions
that reduce the uncertainty, and planning under these as-
sumptions. However, neither planner uses an explicit prob-
abilistic semantics – a core part of CPP. In CLG+, assump-
tions are made online w.r.t. information gathered during
planning and sensing, while our assumptions are made by an
efficient analysis preprocessing phase. (Davis-Mendelow,
Baier, and McIlraith 2013) consider the idea of planning un-
der assumptions in general, but do not describe a particular
strategy for selecting them, possibly allowing a domain ex-
pert to specify them.

Another line of related work by Tran et al. (Tran et al.
2009) and Nguyen et al. (Nguyen et al. 2011) considers
methods for reducing the initial belief state by a preprocess-
ing analysis phase while ensuring that the resulting plan ap-
plies to all original states. Thus, this is a completeness pre-
serving, sound optimization method that can be used by our
underlying conformant planner.

Relevance-Based Reduction
PCBP is the planner most relevant to our current work. It is
a relevance-based translation-based planner that exploits the
following Lemma:
Lemma 1 (Taig & Brafman, 2013) A CPP CP =
(V,A, bπI , G, θ) is solvable iff there exists a solvable CP

problem C = (V,A, bI , G) such that bπI ({w ∈ bI}) ≥ θ.

Moreover, a is a solution to CP iff it is a solution to P .

PCBP augments the regular set of actions with special
actions — one per possible initial state. Each such action
allows the planner to ignore a possible state by essentially
making the goal easy to achieve from that state. The cost of
each such action equals the initial probability of the corre-
sponding state, while all other actions have zero cost. A plan
for the new problem with cost ≤ 1− θ represents a solution
to the original CPP because the set of states from which it
fails to reach the goal has probability ≤ 1− θ.

PCBP performs well on a number of domains, but almost
completely fails on others (such as logistics, grid, rovers).
It suffers from a number of weaknesses — some inherent,
and some tied to the limitation of existing translation meth-
ods and search methods. First, the choice of which states
to ignore is essentially carried out by the planner’s heuristic
function, because it is implemented by the action selection
mechanism. It is not clear that this function is well suited for
this task. Second, the planner needs to solve a cost-bounded
planning problem which few current planners or search tech-

2375

niques support. Third, there are various optimization that
existing CP solvers carry out which are unsound in this
scheme. For example, the completeness preserving pruning
methods mentioned above, or T0’s relevance-analysis (Pala-
cios and Geffner 2009) which identify clauses and propo-
sitions that can be safely ignored during planning. These
techniques are unsound for CPPs. Finally, PCBP’s reduc-
tion does not work if actions have cost and we seek a (truly)
cost-optimal, or cost-efficient plan.

The RBPP Planner
To overcome these problems, we suggest a simpler, prepro-
cessing approach. First, relevance-based analysis is carried
out to identify those states which would be most profitable
to ignore. Then, a CP problem is defined in which the ini-
tial state consists of all states that are not ignored. This is
given to an off-the-shelf CP solver. This method addresses
the above shortcomings of PCBP, and in addition gives us
the flexibility to choose which conformant planner to use.
While in this paper we do not attempt to provide an auto-
mated portfolio-based method, our empirical analysis indi-
cates that different solvers have advantages in different do-
mains, showing the potential for farther improvement by
automatically selecting the underlying conformant planner
which best suits the characteristics of the problem in hand.
Algorithm 1 RBPP (P, conf-planner)
ψI ⇐ RESTRICT(P);
return conf-planner(�P = (V,A,ψI , G));

Algorithm 2 RESTRICT (P)
Q ⇐ SORT-CLAUSES(P);
ψI ⇐ ϕI ;
while (bπI (ψI) ≥ θ) do

C ⇐ Extract-First(Q);
ψI ⇐ RESTRICT-CLAUSE(C,ψI , P);

end while
return ψI ;

Algorithm 3 SORT-CLAUSES (P)
return A sorted list of all non-unit clauses in ϕI according to
the following parameters order:
1. RL(C) (high to low).
2. Rad(C) (high to low).
3. PI(C) (High to low).
4. RP(C). (low to high).
5. prefer, if exist, Clauses C where: C ∩G �= ∅.
6. If all previous parameters equal – choose arbitrarily.

First, our algorithm generates an initial belief-state for-
mula ϕI from the BN describing the initial belief state
NbI . ϕI is constructed as follows: for every multi-value
variable X whose initial value is uncertain, ϕI contains a
One-Of clause CX with one literal for every value of X
possible (i.e., which has probability > 0). In addition, if
Pr(X = x|Parents(X) = y) = 0 (i.e., X = x is not
possible when Pa(X) have value y, an additional Or clause
expressing Pa(X) = y → ¬(X = x) is added. This for-
mula can be generated in linear time using a single top down
traversal of the BN. The following is immediate:

Lemma 2 ϕI |= w iff bπI (w) > 0.

Next, we seek to simplify ϕI by ignoring a set of states
with probability at most 1 − θ. Thus, at this stage we oper-
ate on the structure: P = (V,A,ϕI ,NbI , G, θ) which de-
notes the original CPP together with the generated initial
state formula. Algorithm 1 describes the high-level struc-
ture of RBPP – our relevance-based probabilistic planner.

We denote the formula expressing the set of states valid af-
ter the simplification of ϕI as ψI . We also use: bπI (ϕ) to
denote Σϕ|=wbπI (w).

The main element – relevance-based analysis – is carried
out by the Restrict procedure (Algorithm 2) which deter-
mines which initial states to ignore. This analysis is heuris-
tic, and it is strongly motivated by the notions of conformant
width and relevance developed by (Palacios and Geffner
2009) in the context of conformant planning.

First, Restrict sorts the clauses. Then, at each iteration
it selects the first non-unit clause (i.e., a clause expressing
uncertainty) in the list and restricts it by dropping some lit-
eral(s) using Algorithm 4. This results in a smaller clause
satisfied by fewer states, hence ignoring those states satis-
fied by the dropped literal. The procedure is repeated un-
til no further restrictions are possible given the probability
bound. We note that each restriction is made only after we

Algorithm 4 RESTRICT-CLAUSE (C,ψI , P)

while (|C| > 1 ∧ bπI (ψI) ≥ θ) do
C � ← C;
choose next proposition p ∈ C � by the following order:

1. p /∈ g.
2. bπI (ψI ∧ ¬p) ≥ θ.
3. Prefer not removing p ∈ DRC(C) before other

propositions.
4. bπI (p) - The initial probability of p. (low to high).
5. If all previous parameters equal - choose arbitrarily.

C � ← C \ p;
ψI ← ψI \ C ∪ C �;1

end while
return ψI ;

check (using a standard BN software package) that the prob-
ability of the removed initial states does not exceed 1− θ.

Restrict maximally restricts a clause before moving on to
the next clause. We have found this priority to be most use-
ful, as there appears to be greater advantage to making a
single clause much smaller than to making multiple clauses
smaller. Clauses are sorted based on a prioritized list of pa-
rameters, as shown in Algorithm 3. These parameters at-
tempt to assess the impact of a clause on the difficulty of
solving a problem. Future work could improve this by adapt-
ing the parameters and their priority to take into account
their effect on the underlying conformant planner.

Choice of Clauses Our analysis is strongly motivated by
the notion of conformant relevance (Palacios and Geffner

1For clarity, we use set notation, treating ψ as a set of clauses
and treating clauses as a set of literals. Here, p is removed from C
to obtain C�, and C is replaced by C� to obtain the updated ψI .

2376

θ = 0.25 θ = 0.5 θ = 0.75
t/l t/l t/l

Task PFF PCBP RBPP[T-0] RBPP[CFF] PFF PCBP RBPP[T-0] RBPP[CFF] PFF PCBP RBPP[T-0] RBPP[CFF] RBPP*[T-0] RBPP*[CFF]
Safe-uni-70 2.3/18 0.02/18 0.07/18 0.1/18 5.5/35 0.05/35 0.1/35 1.13/35 9.6/53 6.4/70 0.07/53 1.44/53 0.07/53 1.03/53
Safe-cub-70 0.07/5 0.03/5 0.09/5 0.06/5 1.62/12 0.04/21 0.07/12 0.07/12 2.92/21 0.04/21 0.08/12 0.08/12 0.08/12 0.08/12
NC-Safe-uni-70 1.15/5 1.41/12 1.39/5 1.13/5 2.28/12 1.47/12 1.39/12 2.31/12 4.92/21 1.56/20 1.39/20 1.3/20 1.1/20 1.1/20
Cube-uni-corner-15 3.44/26 OOT 0.11/36 2.37/36 4.7/33 OOT 0.07/42 4.34/44 6.9/38 OOT 0.07/42 4.29/42 0.07/42 3.31/42
Cube-cub-corner-15 1.86/20 OOT 0.06/37 2.93/37 4.2/28 OOT 0.09/37 3.01/37 5.03/33 OOT 0.1/40 3.32/40 0.1/40 2.79/40
Cube-uni-center-15 OOT OOT 6.15/70 OOT OOT OOT 5.27/68 OOT OOT OOT 6.94/56 OOT 5.88/56 OOT
Cube-cub-center-15 OOT OOT 6.02/64 OOT OOT OOT 5.72/61 OOT OOT OOT 3.87/61 OOT 3.40/61 OOT
NC-cube-cub-15 5.22/20 OOT 2.93/37 10.42/37 2.94/27 OOT 0.86/37 2.63/37 5.74/33 OOT 1.29/37 2.37/37 1.19/37 2.21/37
NC-cube-uni-15 2.28/26 OOT 0.08/34 0.08/34 13.98/47 OOT 3.06/34 4.00/34 NP NP NP NP NP NP
Push-Cube-uni-15 7.39/50 2.08/42 1.21/66 0.06/57 27.28/66 2.33/45 1.79/72 0.09/63 55.21/74 2.28/46 1.81/74 0.11/63 1.92/74 0.12/63
Push-Cube-cub-15 0.08/15 1.48/28 0.07/42 0.05/33 0.09/17 3.88/37 1.26/58 0.05/48 0.09/18 2.09/37 1.34/59 0.09/48 1.36/59 0.14/48
Bomb-50-50 0.01/0 0.01/0 0.01/0 0.01/0 0.1/16 9.02/50 0.09/50 6.13/50 0.2/36 8.4/90 0.07/50 6.22/50 0.06/50 5.78/50
Bomb-50-10 0.01/0 0.01/0 0.01/0 0.01/0 2.89/22 8.4/90 0.04/90 1.43/22 5.74/63 8.4/90 0.04/90 5.59/63 0.02/90 4.66/63
Bomb-50-5 0.01/0 0.01/0 0.01/0 0.01/0 1.94/27 8.6/95 0.04/95 1.83/27 8.02/63 9.14/95 0.04/95 7.07/67 0.04/95 7.81/67
Bomb-50-1 0.01/0 0.01/0 0.01/0 0.01/0 2.21/31 5.02/49 0.03/100 1.88/31 10.12/71 4.8/74 0.05/100 7.9/71 0.05/100 7.14/71
10-Log-2 3.73/72 OOT 4.51/85 2.79/77 3.17/79 OOT 4.97/84 2.56/77 2.46/80 OOT 3.13/80 5.3/87 4.9/86 5.48/87
10-Log-3 7.47/64 OOT 5.16/57 2.83/58 35.4/98 OOT 8.98/77 3.23/77 8.91/99 OOT 24.28/123 4.12/91 13.71/146 4.49/91
10-Log-4 8.35/75 OOT 8.41/47 4.59/47 34.2/81 OOT 13.29/78 5.38/70 12.09/95 OOT 36.53/111 7.43/95 95/180 50/150
15-Log-4 OOT OOT OOT 15.02/98 OOT OOT OOT 28.31/138 OOT OOT OOT 32.5/154 OOT OOT
2-planes-log-3 19.81/84 OOT 14.09/64 7.62/69 57.98/97 OOT 31.24/104 18.72/89 10.12/112 OOT 229/134 13.7/109 OOT OOT
2-planes-log-4 OOT OOT 23.19/62 12.64/57 OOT OOT 74.03/101 17.91/87 OOT OOT 522/145 47.52/107 OOT OOT
2-planes-C OOT OOT OOT 3.65/83 OOT OOT OOT 4.92/83 OOT OOT OOT 14.06/108 OOT 15.22/108
grid-uni-2 0.07/21 OOT 4.33/75 3.15/47 1.35/48 OOT OOT 3.18/53 6.11/69 OOT OOT 5.41/66 OOT 6.47/65
grid-uni-3 16.01/76 OOT 6.22/86 41.14/86 15.8/89 OOT 5.93/96 127/103 82.24/123 OOT 7.26/102 OOT OOT 166/105
grid-uni-4 28.15/96 OOT 6.78/111 134.21/115 51.58/111 OOT OOT 247.58/117 50.80/115 OOT OOT 721/146 OOT OOT
grid-cub-3 OOT OOT 18.14/40 9.47/30 OOT OOT 31.14/43 16.11/35 OOT OOT 27.71/64 39.42/76 OOT 90.05/88
grid-cub-4 OOT OOT 10.8/77 83.84/92 OOT OOT 9.37/78 114/92 OOT OOT 14.95/85 200/106 26.11/112 243/106
Rovers-3 0.04/14 0.06/19 0.02/12 0.02/12 0.05/17 0.06/19 0.02/12 0.02/12 0.06/18 0.06/25 0.02/20 0.03/24 0.14/60 1.83/24
Rovers-7 5.72/65 4.12/54 0.04/47 0.04/41 5.48/75 4.14/54 OOT 0.07/56 6.55/83 10.74/88 OOT 2.09/72 OOT 7.14/72
C-Rovers-PP-7 10.54/65 OOT OOT 1.1/41 15.4/75 OOT OOT 1.12/56 39.1/77 OOT OOT 2.23/72 OOT OOT
C-Rovers-PPP-7-3-ID 3060/68 OOT OOT 3.31/47 OOT OOT OOT 11.34/71 OOT OOT OOT 127.53/96 OOT OOT
C-Rovers-PPP-NC-7 30.11/67 OOT OOT 3.12/41 46.3/79 OOT OOT 4.14/57 NP NP NP NP NP NP

Table 1: Empirical results. t: time in seconds. l: plan length. Entries marked OOT means the search did not return after 30
minutes. ’NP’-no plan for this goal probability exists.

2009) (PG), and many of our definitions are adaptation of
their concepts to the probabilistic case. Relevance is a tran-
sitive relation between facts expressing whether uncertainty
about the value of one fact affects our knowledge about the
value of the other. The relation propagates only through con-
ditional effects of actions. Our relevance analysis focuses on
facts relevant to subgoals, and while it is possible to consider
also facts relevant to preconditions, we found the overhead
of these computations costly.

Definition 1 (Conformant Relevance (PG 2009))
1. p is relevant to p.

2. p is relevant to q if there exist an action a ∈ A with

conditional effect C → q and p ∈ C .

3. If p is relevant to r and r is relevant to q then p is relevant

to q.

4. p is relevant to q if p is relevant to ¬r and r is relevant to

¬q.

We extend this relation to relevance between an initial
non-unit clause and a (goal) fact as follows:

Definition 2 (probabilistic clause relevance) A non unit

clause ϕ ∈ ϕI is considered relevant to a proposition p if

∃q ∈ ϕ s.t q ∈ rel(p).

PG consider ϕ relevant to p only if all propositions of ϕ
are in rel(p). The latter yields fewer relevant propositions
but cannot be extended to the probabilistic case. Suppose,
for example, that we have One-Of(p,q) in ϕI . Assume p is
relevant to some goal fact g but q is not. Assume also that
bπI (p) = 0.5 and Θ = 0.4. In the conformant case, this

clause may be ignored, but in CPP, because we do not need
to succeed with certainty, we must be take into account the
possibility to plan from all p states, even though planning
from all q is infeasible.

Definition 3 (relevant clauses set) ∀g ∈ G : rel(g) con-

tains all the clauses from ϕI relevant to g;

rel(g) expresses the maximal amount of initial uncer-
tainty relevant to a specific goal fact. Maxg∈G{|rel(g)|} is
closely related to the notion of conformant width introduced
by PB. They show that the complexity of their reduction-
based planning algorithm grows exponentially with this pa-
rameter. This effect on the problem’s complexity stems from
the fact that the solver must potentially consider initial states
(or more accurately, initial state-sets) that correspond to all
possible assignments to rel(g) variables to compute the cur-
rent probability of g, in the probabilistic case, and to deter-
mine whether g is valid, in the standard conformant case.
And while this value was suggested by PG in the context of
their analysis of the T-0 planner, it appears relevant to the
performance of other conformant planners, such as CFF, as
our empirical analysis shows.

There are two technical differences between our rel(g)
and PG’s conformant width: First, we use probabilistic
clause relevance, explained earlier. Second, PG compute the
closure of rel(g), called CI(L)∗. while we this costly com-
putation, using rel(g) instead. For our heuristic usage, this
provides a better tradeoff, and in fact, rel(g) = CI(L)∗ in
almost all experimented benchmarks.

2377

Given the above theoretical and empirical justifications
for relation between rel(g) and problem hardness, our most
important parameter for assessing clauses is RL(C):
Definition 4 (clause relevance level) RL(C) =
MAX{|rel(g)|}g∈G∧C∈rel(g).

Relevance sets can also be used to understand how many
goal facts are influenced by the uncertainty expressed by
a clause. Restricting clauses that affect many goal facts is
likely to be better, motivating the following definition:
Definition 5 (clause radius) Rad(C) = #g ∈ G s.t C ∈
rel(g).

Example: Consider the logistics domain with 10 cities,10
trucks, 10 packages, and one plane. Initially, there is one
package and truck per city. There are 10 sub-goals speci-
fying the final location of each package. Actions have no
pre-conditions, but only conditional effects. The initial lo-
cation of trucks and the plane are unknown. Each truck can
be in one of three possible locations in a city. Each truck’s
location uncertainty is relevant only to one sub-goal (corre-
sponding to the package in this city). Uncertainty regarding
the plane is relevant to all goals. RL(C) = 2 for all clauses,
while the radius of the clause expressing the plane’s uncer-
tainty is 10, and that of other clauses is 1. Restricting this
clause will prevent the conformant planner from repeatedly
reasoning about the plane’s location. It is likely to yield a
simpler plan, too, as there is no need for extra flights that
will ensure a known location to the plane.

Relevance analysis ignores the initial probabilistic distri-
bution. PI(CX) takes this information into account. It is
a rough and tractable estimate of the effect evidences on X
(e.g restrictions on CX ’s literals) might have on our knowl-
edge regarding CY ’s literals.
Definition 6 (Probabilistic Influence) Let X ∈ NbI be

the corresponding node of a clause CX . We define:

RelChildren(X) = {Y |X ∈ Parents(Y) ∧ ∃g ∈
G s.t CY ∈ rel(g)}
PI(CX) = |RelChildren(X)|.
Potentially, restricting CX might induce immediate restric-
tions on CY which, in turn, reduces the relevant uncertainty
in the resulting conformant problem. Ideally, our definition
should have been transitive, but again, to limit the cost of the
restriction heuristic, we consider immediate parents only. In
order to exploit this information and monitor such effects,
after each restriction of a clause CX s.t PI(CX) > 0, we
query NbI to check whether any of the literals in CY for
each Y ∈ RelChildren(X) has probability 0. In that case
we restrict CY accordingly.
Example (continued): Suppose that the plane’s initial lo-
cation distribution is dependent on the initial distribution on
the weather in some city city. Other than that, the weather
does not influence other problem variables and does not ap-
pear in action descriptions. The relevance analysis will not
identify the ”weather” clause Cw as having any importance.
However. since PI(Cw) = 1, while for all other clauses
PI(C) = 0, the algorithm might choose to restrict Cw, set-
ting the weather in city to extreme. Given this value there
is 0 probability for the plane to be in city with the effect of

restricting the clause expressing the plane’s location uncer-
tainty – Cp. This can help us in cases where θ and the initial
distribution limits our ability to directly restrict Cp but allow
the restriction of Cw.

Restrictions come with a cost: the probability mass we
lose. We wish to restrict as many propositions as possible,
so we prefer restrictions that carry lower probability ”cost”.
Definition 7 (clause restriction potential) RP(C) =

Min{bπI (p) | p ∈ C}. (By bπI (p) we mean The initial

probability of p).

RP (C) improves our ability to identify, in advance, clauses
that are potentially more attractive for restriction. As such,
it serves as a good tie-breaker. Note that if the node corre-
sponding to C in NbI is not barren, this parameter is ignored.

Clause Restriction First, we make sure facts that can neg-
atively affect the completeness or quality of solution are not
removed, e.g., goal facts. Second, sometimes only a sub-
set of facts are responsible for making the clause relevant to
a goal and removing them can make the goal unreachable.
Thus, we define:
Definition 8 (Direct Relevance causes) DRC(C) = {p ∈
C | ∃g ∈ G : p is relevant to g}.

If, for a clause C: DRC(C) � C a plan might not exist
from all assignments to C. Thus, we don’t remove facts
from DRC(C) unless no other option exists.

Finally, we prefer to remove facts whose initial probabil-
ity is smaller, to leave more probabilistic mass for farther
restrictions but once again, if the node corresponding to C �s
in NbI is not barren, the latter parameter is ignored.

Properties
Soundness: Our algorithm is sound if the underlying CP
solver is sound. This follows from Lemma 1, provided we
ensure that the probability of our new initial state ≥ θ. Each
clause restriction is equivalent to ignoring a possible value
of a variable. To accept such a restriction, we compute the
probability of the set of ignored states, ensuring it does not
exceed 1− θ. When multiple values are ignored, we use the
standard probabilistic semantics to compute their aggregated
weight. (E.g., if we ignore ¬p and then ¬q, we compute the
weight of ¬p, and add the weight of ¬q ∧ p).
Completeness: Our algorithm is incomplete because we do
not attempt to systematically examine all possible restric-
tions with weight ≤ 1−θ. Conceptually, it is a simple matter
to add an outer loop that will make the algorithm complete,
(e.g., as used by some greedy algorithms to provide theo-
retical completeness). Practically (and theoretically) this is
a potentially super-exponential algorithm and we see little
value in it (unlike soundness), as it will not help us scale up
any better. As our experiments demonstrate, our algorithm
does scale up better than earlier methods.
Complexity: There are three elements contributing to the
complexity to our algorithm: the algorithm for selecting pos-
sible initial-state restrictions, the BN queries, and the CP
solver. In theory, there are super-exponentially many pos-
sible restrictions to the initial state and the computation of
each one’s probability can be NP-hard. In practice, we use

2378

a heuristic low-order polynomial time algorithms to iden-
tify promising restrictions. For this we pay by sacrificing
completeness. To check the validity of restrictions, we com-
pute marginal distribution of variables in a BN, which is NP-
hard (Cooper 1990). In practice, the queries we seek to com-
pute are very simple, and are not likely to be the bottle-neck
even when we go beyond current CPP benchmarks which
feature very simple initial state BNs. Solving CP is a diffi-
cult problem (Haslum and Jonsson 1999), and this appears
to be the more significant bottleneck in practice. This, of
course, is to be expected, as we are solving a problem that is
at least as difficult as CP. Thus, we have focused on making
the reduction process simple and fast.

Empirical Evaluation
We implemented the algorithms and experimented with
them on a variety of domains taken from PFF repository and
the 2006 IPPC, as well as new, modified versions of these
domains. Beyond our tools, we used a modification of PG’s
cf2cs code for the relevance analysis and NORSYS NETICA

java api program for the Bayesian net creation and reason-
ing. As the underlying conformant planner for RBPP we
used both T-0 and CFF. GC[LAMA] (Nguyen et al. 2012)
is unable to handle most of the domains we tested on. The
two RBPP variants were compared with state-of-the-art CPP
planners: PFF and PCBP, We have not compared against
POND (Bryce, Kambhampati, and Smith 2006) as PFF out-
performs it. We note that in almost all experimented bench-
marks there are very few (if any) preconditions with rele-
vant uncertainty and thus, comparison to PFF is fair. Re-
sults are presented in Table 1. Each task was tested with
three different θ value and two different initial state distri-
butions: uniform (uni) and cubic(cub). In order to demon-
strate the significance and generality of our main parameter,
RL(C), we included (in the case of θ = 0.75) results for
RBPP ∗ which is identical to RBPP except that RL(C)
is not used to evaluate potential restrictions. Results for
this variant show that ignoring RL(C) has a detrimental ef-
fect in the more complex benchmarks, both on plan qual-
ity and execution time and that in most benchmarks with
high width, RBPP ∗ fails to scale up. Results show dom-
inance of RBPP[T-0] on almost all benchmarks, in many
cases by an order of magnitude. An interesting observation
is that in most cases RBPP[CFF] performs better than PFF

which is a specially designed extension of Conformant-FF’s.
This demonstrates the effectiveness of the compilation ap-
proach over direct probabilistic reasoning, as used by PFF.
On some of the simplest tasks such as safe-70 PCBP has a
small advantage due to the overhead of relevance analysis
relative to solution time in this problem. In more complex
problems, such as cube-15-corner (an agent can initially be
in any of the cube’s 153 locations and needs to navigate to a
corner) our planners run-time dominance is clear, although
PFF’s plans are shorter. When, in the same setting, the
agent needs to plan to the center of the cube, RBPP[T-0]

produces good plans in a matter of seconds, while all other
planners fail. Similar performance is seen in the push-cube

domain (Taig and Brafman 2013). Here, a player must push
a ball with unknown initial position to some location on a

grid. It can select (position, direction) pairs, and if the ball
is in position, it moves in direction. Solving this problem
requires many actions, and RBPP is the clear winner. The
m-logistics-n problem refers to logistics with m packages
and m cities of size n. Here, too, the various RBPP versions
are faster and generate shorter plans, when we set m = 15
only RBPP[CFF] scales up. The 2-planes variation of lo-
gistics has 2 planes, instead of 10, as well as uncertainty on
their initial location. Both rovers and grid have large proba-
bilistic width, and our relevance analysis is crucial. Results
here are mixed. As the uncertainty grows (grid-4,rovers-7)
both PFF and RBPP[T-0] fail to scale up. RBPP[CFF] is
the only planner that manages to solve all tasks, typically
dominating other planners.

We also experimented on domains with no conformant
plan (marked NC). For example, we modified cube such that
some transitions between adjacent locations are blocked so
the agent cannot reach the goal location if initially located
beyond the blocked path. These experiments demonstrate
the ability of RBPP’s preprocessing phase to select initial
states from which the goal is reachable.

Another important line of experiments is on the problems
marked with C. In these problems the initial state distribu-
tion is more complex and involves dependencies. 2-planes-

C reflects the example given in this paper. In rovers-pp, ob-
ject visibility from a waypoint depends on whether or not a
rock sample is located at the waypoint. The probability of
visibility is much higher if the latter is not the case. Rovers-
PPP extends RoversPP by introducing the need to collect
data about water existence. Each soil sample has a certain
probability to be wet. For communicated sample data, an
additional operator tests whether the sample was wet. The
probability of being wet depends on sample location. In the
instance marked ”ID,” one of the 3 samples must be wet, in-
creasing dependencies to a level that only RBPP[CFF] can
handle. In the instance marked NC, there is no guarantee that
one of the 2 samples is wet, and thus, there is no conformant
plan. Here, RBPP[CFF] scales better than PFF by an order
of magnitude. Overall RBPP[CFF] appears less sensitive to
the conformant width than RBPP[T-0].

Conclusion and Future work
We presented a new approach to CPP where relevance analy-
sis and heuristics are used before planning to identify states
that can likely be ignored in planning and use conformant
planning to solve the problem of the remaining states. Our
empirical evaluation shows that this method is the strongest
CPP algorithm currently, with better coverage and scaling
than previous approaches.

Presently, we make no attempt to automatically select
the underlying conformant solver. In future work, we
intend to attempt to identify problem features that can
help predict which planner will perform better, and to
use these within a portfolio-based solver. In addition, we
intend to extend the approach presented here to handle CPP
domain with stochastic actions. A first step is to simply
consider deterministic version of these actions, and to be
able to verify that the solution addresses a sufficiently large

2379

probability mass.

Acknowledgments The authors were supported in part by
ISF grant 933/13 and the Lynn and William Frankel Center
for Computer Science.

References
Albore, A., and Geffner, H. 2009. Acting in partially ob-
servable environments when achievement of the goal cannot
be guaranteed. In ICAPS’09 Planning and Plan Execution

for Real-World Systems Workshop.
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In IJ-

CAI, 1623–1628.
Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Plan-
ning graph heuristics for belief space search. J. Artif. Intell.

Res. (JAIR) 26:35–99.
Cooper, G. F. 1990. The computational complexity of prob-
abilistic inference using bayesian belief networks. Artif. In-

tell. 42(2-3):393–405.
Davis-Mendelow, S.; Baier, J. A.; and McIlraith, S. A. 2013.
Assumption-based planning: Generating plans and explana-
tions under incomplete knowledge. In AAAI.
Domshlak, C., and Hoffmann, J. 2007. Probabilistic plan-
ning via heuristic forward search and weighted model count-
ing. J. Artif. Intell. Res. (JAIR) 30:565–620.
Haslum, P., and Jonsson, P. 1999. Some results on the com-
plexity of planning with incomplete information. In ECP,
308–318.
Hoffmann, J., and Brafman, R. I. 2005. Contingent planning
via heuristic forward search witn implicit belief states. In
ICAPS, 71–80.
Hoffmann, J., and Brafman, R. I. 2006. Conformant plan-
ning via heuristic forward search: A new approach. Artif.

Intell. 170(6-7):507–541.
Nguyen, H.-K.; Tran, D.-V.; Son, T. C.; and Pontelli, E.
2011. On improving conformant planners by analyzing
domain-structures. In AAAI.
Nguyen, H.-K.; Tran, D.-V.; Son, T. C.; and Pontelli, E.
2012. On computing conformant plans using classical plan-
ners: A generate-and-complete approach. In ICAPS.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
JAIR 35:623–675.
Taig, R., and Brafman, R. I. 2013. Compiling conformant
probabilistic planning problems into classical planning. In
ICAPS.
Tran, D.-V.; Nguyen, H.-K.; Pontelli, E.; and Son, T. C.
2009. Improving performance of conformant planners:
Static analysis of declarative planning domain specifica-
tions. In PADL, 239–253.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. Ff-replan: A
baseline for probabilistic planning. In ICAPS, 352–.

2380

